Importance and applications of DOE/optimization methods in PEM fuel cells: A review
Summary Although proton exchange membrane (PEM) fuel cells are seen as one of the energy conversion technologies of the future due to their high energy conversion efficiency, low levels of emissions, low temperature operation, and compact systems, studies continue to reduce their cost, which is the...
Uloženo v:
| Vydáno v: | International journal of energy research Ročník 44; číslo 1; s. 4 - 25 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bognor Regis
John Wiley & Sons, Inc
01.01.2020
|
| Témata: | |
| ISSN: | 0363-907X, 1099-114X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Summary
Although proton exchange membrane (PEM) fuel cells are seen as one of the energy conversion technologies of the future due to their high energy conversion efficiency, low levels of emissions, low temperature operation, and compact systems, studies continue to reduce their cost, which is the biggest obstacle to commercialization. Design of experiment (DOE) methods are frequently used in optimization of PEM fuel cells to reduce their cost by decreasing experimental runs. This paper reviews the main gains subsuming the usage of several DOE and optimization methods in PEM fuel cell components, design, operation conditions, and model parameters. It firstly focuses on the Taguchi method and response surface methodology (RSM) known to be applied usually in PEM fuel cell studies. In addition to these known methods, other experimental design and optimization methods used in PEM fuel cells are discussed, and the results are summarized.
This manuscript showed that the use of DOE and optimization methods in each working area of the PEM fuel cell, such as understanding the operating principle, elucidating the relationship between the components, determining the optimum conditions in the production and design of the components, and deciding the operating conditions of the single cell or stack system, are important in both increasing efficiency and lowering the cost. |
|---|---|
| AbstractList | Although proton exchange membrane (PEM) fuel cells are seen as one of the energy conversion technologies of the future due to their high energy conversion efficiency, low levels of emissions, low temperature operation, and compact systems, studies continue to reduce their cost, which is the biggest obstacle to commercialization. Design of experiment (DOE) methods are frequently used in optimization of PEM fuel cells to reduce their cost by decreasing experimental runs. This paper reviews the main gains subsuming the usage of several DOE and optimization methods in PEM fuel cell components, design, operation conditions, and model parameters. It firstly focuses on the Taguchi method and response surface methodology (RSM) known to be applied usually in PEM fuel cell studies. In addition to these known methods, other experimental design and optimization methods used in PEM fuel cells are discussed, and the results are summarized. Summary Although proton exchange membrane (PEM) fuel cells are seen as one of the energy conversion technologies of the future due to their high energy conversion efficiency, low levels of emissions, low temperature operation, and compact systems, studies continue to reduce their cost, which is the biggest obstacle to commercialization. Design of experiment (DOE) methods are frequently used in optimization of PEM fuel cells to reduce their cost by decreasing experimental runs. This paper reviews the main gains subsuming the usage of several DOE and optimization methods in PEM fuel cell components, design, operation conditions, and model parameters. It firstly focuses on the Taguchi method and response surface methodology (RSM) known to be applied usually in PEM fuel cell studies. In addition to these known methods, other experimental design and optimization methods used in PEM fuel cells are discussed, and the results are summarized. This manuscript showed that the use of DOE and optimization methods in each working area of the PEM fuel cell, such as understanding the operating principle, elucidating the relationship between the components, determining the optimum conditions in the production and design of the components, and deciding the operating conditions of the single cell or stack system, are important in both increasing efficiency and lowering the cost. |
| Author | Karanfil, Gamze |
| Author_xml | – sequence: 1 givenname: Gamze orcidid: 0000-0002-7941-9853 surname: Karanfil fullname: Karanfil, Gamze email: gamzekaranfil86@gmail.com organization: Karamanoglu Mehmetbey University |
| BookMark | eNp10FtLwzAUAOAgCm5T_AsBH3yQbknTtI1vY1YdTCZeYG8hywUz2qYmnWP-ervNJ9GnA-d8nFsfHNeu1gBcYDTECMUj7YdJjukR6GHEWIRxsjgGPURSEjGULU5BP4QVQl0NZz3wMq0a51tRSw1FraBomtJK0VpXB-gMvJ0XI9e0trJf-ySsdPvuVIC2hk_FIzRrXUKpyzLcwDH0-tPqzRk4MaIM-vwnDsDbXfE6eYhm8_vpZDyLJKGMRiyOM5HkVDGBGSJExSmlSiyTbrU0l5licilMbrCWLBNSxIoZKVCqJNUilZQMwOWhb-Pdx1qHlq_c2tfdSB4TgtI8S5KkU9FBSe9C8Npwadv9La0XtuQY8d3fuPZ897fOX_3yjbeV8Ns_5PVBbmypt_8xXjzv9TcMIXyW |
| CitedBy_id | crossref_primary_10_1080_01430750_2022_2126006 crossref_primary_10_59761_RCR5121 crossref_primary_10_1016_j_energy_2023_130131 crossref_primary_10_1002_er_6825 crossref_primary_10_1016_j_enconman_2025_120251 crossref_primary_10_1016_j_hydromet_2021_105732 crossref_primary_10_1007_s13369_023_08470_9 crossref_primary_10_1016_j_enconman_2020_113798 crossref_primary_10_1038_s41598_025_04803_w crossref_primary_10_1016_j_ijhydene_2023_04_039 crossref_primary_10_1016_j_ijhydene_2020_09_125 crossref_primary_10_1016_j_pmatsci_2024_101389 crossref_primary_10_1039_D1MH01307F crossref_primary_10_3390_en16041565 crossref_primary_10_1002_er_6987 crossref_primary_10_1002_er_5218 crossref_primary_10_1016_j_ijhydene_2020_10_146 crossref_primary_10_1002_er_7158 crossref_primary_10_1007_s12274_022_4831_3 crossref_primary_10_1016_j_fuel_2021_122419 crossref_primary_10_1038_s41598_024_84541_7 crossref_primary_10_1016_j_ijhydene_2021_09_119 crossref_primary_10_1016_j_chphma_2023_12_002 crossref_primary_10_1007_s00289_023_05029_4 crossref_primary_10_36306_konjes_1609063 crossref_primary_10_3390_su15054625 crossref_primary_10_1002_er_5244 crossref_primary_10_3390_su13147911 crossref_primary_10_1016_j_checat_2023_100746 crossref_primary_10_1080_15567036_2022_2066225 crossref_primary_10_3390_en14165022 crossref_primary_10_1016_j_jpowsour_2022_232261 crossref_primary_10_1016_j_heliyon_2024_e29069 crossref_primary_10_1016_j_enconman_2022_115521 crossref_primary_10_1007_s11831_022_09721_y crossref_primary_10_1038_s41598_023_46847_w crossref_primary_10_1016_j_enconman_2022_115761 crossref_primary_10_1016_j_egyr_2023_08_024 crossref_primary_10_1016_j_egyr_2025_04_007 crossref_primary_10_1016_j_est_2023_107622 crossref_primary_10_1002_er_7898 crossref_primary_10_1007_s00202_023_02221_7 crossref_primary_10_1007_s10973_021_11171_w crossref_primary_10_1002_er_5429 crossref_primary_10_1007_s00289_025_05773_9 crossref_primary_10_1016_j_energy_2025_134728 crossref_primary_10_1007_s00521_025_11552_4 crossref_primary_10_3390_polym15143076 crossref_primary_10_1002_er_5265 crossref_primary_10_1007_s10462_023_10696_w crossref_primary_10_1016_j_ijhydene_2021_01_098 crossref_primary_10_1002_er_6834 crossref_primary_10_1002_er_7126 |
| Cites_doi | 10.23883/IJRTER.2017.3331.JCWTP 10.1016/j.renene.2017.12.051 10.1016/j.energy.2019.02.082 10.1016/j.ijheatmasstransfer.2016.09.068 10.1016/j.est.2017.10.014 10.1016/j.jpowsour.2005.06.009 10.1016/j.jpowsour.2008.07.036 10.1080/AMP-200060605 10.1016/j.enconman.2016.01.045 10.1016/S0924-2244(03)00048-7 10.1016/j.ijhydene.2011.07.094 10.1016/j.enconman.2017.10.053 10.3139/217.3411 10.1016/j.energy.2015.10.048 10.1016/j.desal.2012.08.029 10.1007/s10853-018-2411-4 10.1016/j.ijhydene.2016.05.017 10.1016/j.ijhydene.2017.06.167 10.1016/j.ijhydene.2016.11.151 10.1016/j.ijhydene.2008.02.040 10.1016/j.enconman.2014.12.093 10.1002/pen.24591 10.1007/s11814-017-0200-4 10.1016/j.proeng.2013.09.114 10.1016/j.energy.2010.02.044 10.1016/j.asej.2015.05.003 10.1016/j.jmatprotec.2003.10.020 10.1016/j.carbon.2012.02.052 10.1016/j.jpowsour.2005.08.036 10.1016/j.energy.2018.02.133 10.1016/j.jclepro.2017.02.033 10.1016/j.ijhydene.2016.10.040 10.1016/j.apenergy.2010.09.030 10.1016/j.ijhydene.2018.10.225 10.23919/ChiCC.2017.8028797 10.1016/j.jpowsour.2006.06.054 10.1016/j.ijepes.2010.08.032 10.1016/j.jpowsour.2018.01.093 10.1016/j.jiec.2011.12.003 10.1016/j.ijhydene.2010.05.017 10.1016/j.jpowsour.2018.07.100 10.1007/s11696-018-0511-x 10.1365/s10337-007-0264-0 10.1016/j.renene.2008.03.006 10.1016/j.colsurfa.2008.11.045 10.1016/j.jpowsour.2009.11.128 10.1016/j.ijhydene.2011.09.115 10.1016/j.apenergy.2015.12.123 10.1080/01430750.2015.1023842 10.1016/j.rser.2014.01.012 10.1016/j.ijhydene.2007.06.025 10.1016/j.apenergy.2015.12.098 10.1016/j.rser.2009.04.004 10.1016/j.enconman.2018.12.088 10.17485/ijst/2018/v11i1/117126 10.1016/j.jfoodeng.2005.11.024 10.1016/j.jpowsour.2009.06.107 10.1016/j.energy.2017.08.049 10.1016/j.enconman.2018.12.057 10.1016/j.colsurfb.2013.09.030 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons, Ltd. 2020 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. – notice: 2020 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| DOI | 10.1002/er.4815 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-114X |
| EndPage | 25 |
| ExternalDocumentID | 10_1002_er_4815 ER4815 |
| Genre | reviewArticle |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION O8X PHGZM PHGZT PQGLB 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| ID | FETCH-LOGICAL-c3595-9227a485d9a19033d2655dab409968c7d9cbaf8f1ec97aca2d9fca06dc5ea6c53 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000483944000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0363-907X |
| IngestDate | Wed Aug 13 06:13:41 EDT 2025 Sat Nov 29 02:58:41 EST 2025 Tue Nov 18 21:58:48 EST 2025 Wed Jan 22 16:36:00 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3595-9227a485d9a19033d2655dab409968c7d9cbaf8f1ec97aca2d9fca06dc5ea6c53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7941-9853 |
| OpenAccessLink | https://hdl.handle.net/11492/2404 |
| PQID | 2330687444 |
| PQPubID | 996365 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2330687444 crossref_citationtrail_10_1002_er_4815 crossref_primary_10_1002_er_4815 wiley_primary_10_1002_er_4815_ER4815 |
| PublicationCentury | 2000 |
| PublicationDate | January 2020 2020-01-00 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal of energy research |
| PublicationYear | 2020 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2017; 42 2017; 1 2017; 3 2017; 4 2013; 64 2003; 14 2012; 18 2008; 33 2017; 154 2007; 32 2016; 37 2007; 78 2008; 185 2009; 13 2017; 34 2013; 315 2016; 113 2006; 162 2016; 41 2010; 195 2018; 72 2007; 3 2007; 21 2010; 2 1988 2015; 4 2010; 35 2004; 146 2009; 20 2018; 381 2015; 93 2016; 166 2011; 33 1995 2016; 94 2003 2011; 37 2011; 36 2019; 182 2019; 183 2006; 156 2009; 336 2014; 113 1999 2012; 50 2009; 34 2016; 7 2018; 150 2019; 44 2018; 119 2018; 399 2017; 12 2011; 88 2017 2017; 140 2009; 6 2017; 185 2019; 173 2018; 11 2018; 53 2017; 148 2018; 15 2017; 105 2014; 32 2018; 58 e_1_2_7_5_1 e_1_2_7_3_1 Varadharajan L (e_1_2_7_24_1) 2017; 4 e_1_2_7_9_1 e_1_2_7_7_1 Varadharajan L (e_1_2_7_21_1) 2017; 12 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_49_1 e_1_2_7_28_1 Myers RH (e_1_2_7_43_1) 1995 Varadharajan L (e_1_2_7_26_1) 2015; 4 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 Varadharajan L (e_1_2_7_22_1) 2017; 1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Gökçe B (e_1_2_7_12_1) 2009; 6 Khuri AI (e_1_2_7_42_1) 2010; 2 Penny DJ (e_1_2_7_44_1) 1999 Ross PJ (e_1_2_7_17_1) 1988 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 Koç B (e_1_2_7_41_1) 2009; 20 e_1_2_7_14_1 e_1_2_7_63_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 Varadharajan L (e_1_2_7_25_1) 2017; 3 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – volume: 105 start-page: 81 year: 2017 end-page: 89 article-title: The optimization of channels for a proton exchange membrane fuel cell applying genetic algorithm publication-title: Int J Heat Mass Transf – volume: 185 start-page: 1225 year: 2017 end-page: 1232 article-title: Optimization of an open‐cathode polymer electrolyte fuel cells stack utilizing Taguchi method publication-title: Appl Energy – volume: 2 start-page: 128 year: 2010 end-page: 149 article-title: Response surface methodology publication-title: Adv Rev – volume: 150 start-page: 320 year: 2018 end-page: 328 article-title: Comparative performance evaluation of self‐humidifying PEMFCs with short‐side‐chain and long‐side‐chain membranes under various operating conditions publication-title: Energy – volume: 140 start-page: 794 year: 2017 end-page: 803 article-title: Investigation of hot pressing parameters for manufacture of catalyst‐coated membrane electrode (CCME) for polymer electrolyte membrane fuel cells by response surface method publication-title: Energy – volume: 315 start-page: 107 year: 2013 end-page: 114 article-title: Optimization of TiO modified poly (vinyl alcohol) thin film composite nanofiltration membranes using Taguchi method publication-title: Desalination – volume: 3 start-page: 226 issue: 4 year: 2017 end-page: 234 article-title: Performance enhancement of 64 cm active area of PEMFC by using Taguchi method publication-title: Int J Adv Res Innov Ideas Educ – volume: 381 start-page: 84 year: 2018 end-page: 93 article-title: Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell publication-title: J Power Sources – start-page: 9046 year: 2017 end-page: 9051 – volume: 15 start-page: 8 year: 2018 end-page: 16 article-title: Parameter optimization of polymer electrolyte membrane fuel cell using moment‐based uncertainty evaluation technique publication-title: J Energy Storage – volume: 3 start-page: 53 issue: 7 year: 2017 end-page: 58 article-title: Parametric analysis performed on 49 cm serpentine flow channel of PEM fuel cell by Taguchi method publication-title: Int J Recent Trends Eng Res – volume: 4 start-page: 582 issue: 7 year: 2017 end-page: 586 article-title: Taguchi method of optimization performed on 49 cm active area on interdigitated flow channel of PEMFC publication-title: Int Res J Eng Technol – volume: 7 start-page: 347 issue: 1 year: 2016 end-page: 360 article-title: Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization–Differential Evolution algorithm publication-title: Ain Shams Eng J – volume: 21 start-page: 19 year: 2007 end-page: 21 article-title: Optimization of grinding process through design of experiment (doe)‐a comparative study publication-title: Mater Manuf Process – volume: 36 start-page: 13683 issue: 21 year: 2011 end-page: 13694 article-title: The optimal design for PEMFC modeling based on Taguchi method and genetic algorithm neural networks publication-title: Int J Hydrogen Energy – volume: 32 start-page: 810 year: 2014 end-page: 853 article-title: An overview of fuel cell technology: fundamentals and applications publication-title: Renew Sustain Energy Rev – volume: 6 start-page: 71 issue: 1 year: 2009 end-page: 83 article-title: Kalite için deney tasarımı publication-title: Electron J Mach Technol – volume: 33 start-page: 2311 issue: 9 year: 2008 end-page: 2322 article-title: Parametric analysis of the proton exchange membrane fuel cell performance using design of experiments publication-title: Int J Hydrogen Energy – volume: 156 start-page: 424 issue: 2 year: 2006 end-page: 433 article-title: Main and interaction effects of PEM fuel cell design parameters publication-title: J Power Sources – volume: 11 start-page: 1 issue: 1 year: 2018 end-page: 7 article-title: Optimization of various parameters for the performance enhancement of PEM Fuel Cell publication-title: Indian J Sci Technol – volume: 50 start-page: 2853 issue: 8 year: 2012 end-page: 2859 article-title: The use of Taguchi optimization in determining optimum electrophoretic conditions for the deposition of carbon nanofiber on carbon fibers for use in carbon/epoxy composites publication-title: Carbon – volume: 37 start-page: 639 issue: 6 year: 2016 end-page: 644 article-title: Effects of membrane electrode assembly fabrication parameters on the proton exchange membrane fuel cell performance publication-title: Int J Ambient Energy – volume: 4 start-page: 79 year: 2015 end-page: 88 article-title: Parametric analysis of proton exchange membrane fuel cell (PEMFC) performed by the Taguchi method publication-title: Trans Famena – volume: 32 start-page: 4418 issue: 17 year: 2007 end-page: 4423 article-title: Optimization of parametric performance of a PEMFC publication-title: Int J Hydrogen Energy – volume: 37 start-page: 1613 issue: 2 year: 2011 end-page: 1627 article-title: Effects of modified flow field on optimal parameters estimation and cell performance of a PEM fuel cell with the Taguchi method publication-title: Int J Hydrogen Energy – volume: 173 start-page: 151 year: 2019 end-page: 161 article-title: Performance improvement of polymer fuel cell by simultaneously inspection of catalyst loading, catalyst content and ionomer using home‐made cathodic half‐cell and response surface method publication-title: Energy – volume: 42 start-page: 2309 issue: 4 year: 2017 end-page: 2326 article-title: Parameter extraction and uncertainty analysis of a proton exchange membrane fuel cell system based on Monte Carlo simulation publication-title: Int J Hydrogen Energy – volume: 35 start-page: 9349 issue: 17 year: 2010 end-page: 9384 article-title: Review of the proton exchange membranes for fuel cell applications publication-title: Int J Hydrogen Energy – start-page: 1 year: 1988 end-page: 278 – volume: 20 start-page: 1 issue: 3 year: 2009 end-page: 8 article-title: Response surface methodology and food processıng applıcatıons publication-title: Gıda – volume: 183 start-page: 149 year: 2019 end-page: 158 article-title: Optimization of critical parameters of PEM fuel cell using TLBO‐DE based on Elman neural network publication-title: Energ Conver Manage – volume: 41 start-page: 12293 issue: 28 year: 2016 end-page: 12306 article-title: Investigation and optimization of physicochemical properties of sulfated zirconia/sulfonated poly (ether ether ketone) nanocomposite membranes for medium temperature proton exchange membrane fuel cells publication-title: Int J Hydrogen Energy – volume: 195 start-page: 3621 issue: 11 year: 2010 end-page: 3630 article-title: Analysis of operating parameters considering flow orientation for the performance of a proton exchange membrane fuel cell using the Taguchi method publication-title: J Power Sources – volume: 58 start-page: 619 issue: 5 year: 2018 end-page: 631 article-title: Modeling and optimization of sulfonated poly (ether ether ketone) nanofibrous proton exchange membranes with response surface methodology publication-title: Polym Eng Sci – volume: 113 start-page: 52 year: 2016 end-page: 65 article-title: Modeling and operation optimization of a proton exchange membrane fuel cell system for maximum efficiency publication-title: Energ Conver Manage – volume: 195 start-page: 62 issue: 1 year: 2010 end-page: 68 article-title: Optimization of assembly clamping pressure on performance of proton‐exchange membrane fuel cells publication-title: J Power Sources – volume: 94 start-page: 292 year: 2016 end-page: 303 article-title: Study of hydrogen crossover and proton conductivity of self‐humidifying nanocomposite proton exchange membrane based on sulfonated poly (ether ether ketone) publication-title: Energy – volume: 3 start-page: 223 year: 2007 end-page: 229 article-title: Investigating the effect of chromatographic conditions on retention of organic acids in hydrophilic interaction chromatography using a design of experiment publication-title: Chromatographia – start-page: 25 year: 2003 end-page: 40 – volume: 185 start-page: 226 issue: 1 year: 2008 end-page: 232 article-title: Optimization of the polypyrrole‐coating parameters for proton exchange membrane fuel cell bipolar plates using the Taguchi method publication-title: J Power Sources – volume: 399 start-page: 304 year: 2018 end-page: 313 article-title: Direct hydrogen fuel cell electric vehicle cost analysis: system and high volume manufacturing description, validation, and outlook publication-title: J Power Sources – volume: 162 start-page: 246 issue: 1 year: 2006 end-page: 254 article-title: Optimization of key parameters in the proton exchange membrane fuel cell publication-title: J Power Sources – volume: 12 start-page: 523 issue: 3 year: 2017 end-page: 532 article-title: Optimisation of 16 cm single pass serpentine flow channel of PEMFC using Taguchi method publication-title: Int J Theor Appl Mech – volume: 88 start-page: 981 issue: 4 year: 2011 end-page: 1007 article-title: A review of polymer electrolyte membrane fuel cells: technology, applications and needs on fundamental research publication-title: Appl Energy – volume: 78 start-page: 836 issue: 3 year: 2007 end-page: 845 article-title: Modeling and optimization I: usability of response surface methodology publication-title: J Food Eng – volume: 182 start-page: 1 year: 2019 end-page: 8 article-title: Shark Smell Optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model publication-title: Energ Conver Manage – volume: 93 start-page: 9 year: 2015 end-page: 22 article-title: Model development and optimization of operating conditions to maximize PEMFC performance by response surface methodology publication-title: Energ Conver Manage – volume: 1 start-page: 481 issue: 4 year: 2017 end-page: 486 article-title: Optimization of 36 cm effective area on serpentine flow channel of PEMFC publication-title: Int J Trend Sci Res Dev – volume: 154 start-page: 149 year: 2017 end-page: 156 article-title: Targeting optimized and robust operating conditions in a hydrogen‐fed proton exchange membrane fuel cell publication-title: Energ Conver Manage – volume: 13 start-page: 2430 issue: 9 year: 2009 end-page: 2440 article-title: A review on fuel cell technologies and power electronic interface publication-title: Renew Sustain Energy Rev – volume: 119 start-page: 641 year: 2018 end-page: 648 article-title: Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer publication-title: Renew Energy – volume: 72 start-page: 2879 issue: 11 year: 2018 end-page: 2891 article-title: Investigation of alternative chemical agent to recover valuable metals from anode slime publication-title: Chem Papers – volume: 53 start-page: 11633 issue: 16 year: 2018 end-page: 11647 article-title: Electrospun carbon nanofiber catalyst layers for polymer electrolyte membrane fuel cells: fabrication and optimization publication-title: J Mater Sci – volume: 42 start-page: 1189 issue: 2 year: 2017 end-page: 1202 article-title: Characterizing membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells using design of experiments publication-title: Int J Hydrogen Energy – volume: 34 start-page: 135 issue: 1 year: 2009 end-page: 144 article-title: Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network publication-title: Renew Energy – volume: 44 start-page: 1096 issue: 2 year: 2019 end-page: 1109 article-title: Investigation, modeling, and optimization of parameters affecting sulfonated polyether ether ketone membrane‐electrode assembly publication-title: Int J Hydrogen Energy – volume: 18 start-page: 1039 issue: 3 year: 2012 end-page: 1050 article-title: Optimization of operating parameters for liquid‐cooled PEM fuel cell stacks using Taguchi method publication-title: J Ind Eng Chem – volume: 4 start-page: 508 year: 2017 end-page: 514 article-title: Optimization of parameters for electrospinning of polyacrylonitrile nanofibers by the Taguchi method publication-title: Int Polym Proc – volume: 113 start-page: 330 year: 2014 end-page: 337 article-title: Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment publication-title: Colloids Surf B Biointerfaces – volume: 14 start-page: 131 issue: 4 year: 2003 end-page: 144 article-title: Improving food processing using modern optimization methods publication-title: Trends Food Sci Technol – volume: 336 start-page: 69 issue: 1–3 year: 2009 end-page: 74 article-title: Fabrication of NiO/SiO nanocomposites using sol–gel method and optimization of gelation time using Taguchi robust design method publication-title: Colloids Surf A Physicochem Eng Asp – volume: 64 start-page: 409 year: 2013 end-page: 418 article-title: Optimization of operating and design parameters on proton exchange membrane fuel cell by using Taguchi method publication-title: Procedia Eng – volume: 148 start-page: 934 year: 2017 end-page: 947 article-title: Control structure design and robust model predictive control for controlling a proton exchange membrane fuel cell publication-title: J Clean Prod – year: 1995 – volume: 156 start-page: 92 issue: 1 year: 2006 end-page: 99 article-title: Study of gas pressure and flow rate influences on a 500 W PEM fuel cell, thanks to the experimental design methodology publication-title: J Power Sources – volume: 35 start-page: 2796 issue: 7 year: 2010 end-page: 2806 article-title: Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell publication-title: Energy – volume: 166 start-page: 165 year: 2016 end-page: 173 article-title: Analysis of the system efficiency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions publication-title: Appl Energy – volume: 33 start-page: 369 issue: 3 year: 2011 end-page: 376 article-title: Electrical power and energy systems seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC) publication-title: Electr Power Energy Syst – volume: 146 start-page: 221 issue: 2 year: 2004 end-page: 227 article-title: Design of experiment considering two‐way interactions and its application to injection molding processes with numerical analysis publication-title: J Mater Process Technol – volume: 42 start-page: 20187 issue: 31 year: 2017 end-page: 20200 article-title: Performance optimization of polymer electrolyte membrane fuel cells using the Nelder‐Mead algorithm publication-title: Int J Hydrogen Energy – volume: 34 start-page: 2958 issue: 11 year: 2017 end-page: 2965 article-title: Optimization of gold recovery from copper anode slime by acidic ionic liquid publication-title: Korean J Chem Eng – year: 1999 – ident: e_1_2_7_23_1 doi: 10.23883/IJRTER.2017.3331.JCWTP – ident: e_1_2_7_63_1 doi: 10.1016/j.renene.2017.12.051 – ident: e_1_2_7_56_1 doi: 10.1016/j.energy.2019.02.082 – ident: e_1_2_7_67_1 doi: 10.1016/j.ijheatmasstransfer.2016.09.068 – ident: e_1_2_7_53_1 doi: 10.1016/j.est.2017.10.014 – ident: e_1_2_7_72_1 doi: 10.1016/j.jpowsour.2005.06.009 – ident: e_1_2_7_38_1 doi: 10.1016/j.jpowsour.2008.07.036 – ident: e_1_2_7_3_1 – ident: e_1_2_7_11_1 doi: 10.1080/AMP-200060605 – ident: e_1_2_7_68_1 doi: 10.1016/j.enconman.2016.01.045 – ident: e_1_2_7_39_1 doi: 10.1016/S0924-2244(03)00048-7 – ident: e_1_2_7_32_1 doi: 10.1016/j.ijhydene.2011.07.094 – ident: e_1_2_7_54_1 doi: 10.1016/j.enconman.2017.10.053 – ident: e_1_2_7_13_1 doi: 10.3139/217.3411 – ident: e_1_2_7_50_1 doi: 10.1016/j.energy.2015.10.048 – ident: e_1_2_7_18_1 doi: 10.1016/j.desal.2012.08.029 – ident: e_1_2_7_57_1 doi: 10.1007/s10853-018-2411-4 – volume: 4 start-page: 582 issue: 7 year: 2017 ident: e_1_2_7_24_1 article-title: Taguchi method of optimization performed on 49 cm2 active area on interdigitated flow channel of PEMFC publication-title: Int Res J Eng Technol – ident: e_1_2_7_60_1 doi: 10.1016/j.ijhydene.2016.05.017 – ident: e_1_2_7_65_1 doi: 10.1016/j.ijhydene.2017.06.167 – ident: e_1_2_7_66_1 doi: 10.1016/j.ijhydene.2016.11.151 – volume-title: Response surface methodology: process and product optimization using designed experiments year: 1995 ident: e_1_2_7_43_1 – ident: e_1_2_7_30_1 doi: 10.1016/j.ijhydene.2008.02.040 – ident: e_1_2_7_51_1 doi: 10.1016/j.enconman.2014.12.093 – ident: e_1_2_7_58_1 doi: 10.1002/pen.24591 – ident: e_1_2_7_15_1 doi: 10.1007/s11814-017-0200-4 – ident: e_1_2_7_27_1 doi: 10.1016/j.proeng.2013.09.114 – ident: e_1_2_7_52_1 doi: 10.1016/j.energy.2010.02.044 – ident: e_1_2_7_69_1 doi: 10.1016/j.asej.2015.05.003 – ident: e_1_2_7_10_1 doi: 10.1016/j.jmatprotec.2003.10.020 – ident: e_1_2_7_19_1 doi: 10.1016/j.carbon.2012.02.052 – volume: 6 start-page: 71 issue: 1 year: 2009 ident: e_1_2_7_12_1 article-title: Kalite için deney tasarımı publication-title: Electron J Mach Technol – ident: e_1_2_7_36_1 doi: 10.1016/j.jpowsour.2005.08.036 – ident: e_1_2_7_46_1 doi: 10.1016/j.energy.2018.02.133 – ident: e_1_2_7_64_1 doi: 10.1016/j.jclepro.2017.02.033 – ident: e_1_2_7_47_1 doi: 10.1016/j.ijhydene.2016.10.040 – volume-title: Numerical methods using MATLAB year: 1999 ident: e_1_2_7_44_1 – ident: e_1_2_7_5_1 doi: 10.1016/j.apenergy.2010.09.030 – volume: 3 start-page: 226 issue: 4 year: 2017 ident: e_1_2_7_25_1 article-title: Performance enhancement of 64 cm2 active area of PEMFC by using Taguchi method publication-title: Int J Adv Res Innov Ideas Educ – ident: e_1_2_7_45_1 doi: 10.1016/j.ijhydene.2018.10.225 – ident: e_1_2_7_48_1 doi: 10.23919/ChiCC.2017.8028797 – ident: e_1_2_7_73_1 doi: 10.1016/j.jpowsour.2006.06.054 – ident: e_1_2_7_70_1 doi: 10.1016/j.ijepes.2010.08.032 – start-page: 1 volume-title: Taguchi techniques for quality engineering year: 1988 ident: e_1_2_7_17_1 – ident: e_1_2_7_55_1 doi: 10.1016/j.jpowsour.2018.01.093 – ident: e_1_2_7_35_1 doi: 10.1016/j.jiec.2011.12.003 – volume: 2 start-page: 128 year: 2010 ident: e_1_2_7_42_1 article-title: Response surface methodology publication-title: Adv Rev – ident: e_1_2_7_4_1 doi: 10.1016/j.ijhydene.2010.05.017 – volume: 20 start-page: 1 issue: 3 year: 2009 ident: e_1_2_7_41_1 article-title: Response surface methodology and food processıng applıcatıons publication-title: Gıda – ident: e_1_2_7_7_1 doi: 10.1016/j.jpowsour.2018.07.100 – ident: e_1_2_7_16_1 doi: 10.1007/s11696-018-0511-x – ident: e_1_2_7_9_1 doi: 10.1365/s10337-007-0264-0 – ident: e_1_2_7_33_1 doi: 10.1016/j.renene.2008.03.006 – ident: e_1_2_7_14_1 doi: 10.1016/j.colsurfa.2008.11.045 – ident: e_1_2_7_29_1 doi: 10.1016/j.jpowsour.2009.11.128 – ident: e_1_2_7_28_1 doi: 10.1016/j.ijhydene.2011.09.115 – ident: e_1_2_7_49_1 doi: 10.1016/j.apenergy.2015.12.123 – ident: e_1_2_7_37_1 doi: 10.1080/01430750.2015.1023842 – ident: e_1_2_7_6_1 doi: 10.1016/j.rser.2014.01.012 – ident: e_1_2_7_31_1 doi: 10.1016/j.ijhydene.2007.06.025 – volume: 12 start-page: 523 issue: 3 year: 2017 ident: e_1_2_7_21_1 article-title: Optimisation of 16 cm2 single pass serpentine flow channel of PEMFC using Taguchi method publication-title: Int J Theor Appl Mech – volume: 1 start-page: 481 issue: 4 year: 2017 ident: e_1_2_7_22_1 article-title: Optimization of 36 cm2 effective area on serpentine flow channel of PEMFC publication-title: Int J Trend Sci Res Dev – volume: 4 start-page: 79 year: 2015 ident: e_1_2_7_26_1 article-title: Parametric analysis of proton exchange membrane fuel cell (PEMFC) performed by the Taguchi method publication-title: Trans Famena – ident: e_1_2_7_34_1 doi: 10.1016/j.apenergy.2015.12.098 – ident: e_1_2_7_2_1 doi: 10.1016/j.rser.2009.04.004 – ident: e_1_2_7_61_1 doi: 10.1016/j.enconman.2018.12.088 – ident: e_1_2_7_20_1 doi: 10.17485/ijst/2018/v11i1/117126 – ident: e_1_2_7_40_1 doi: 10.1016/j.jfoodeng.2005.11.024 – ident: e_1_2_7_71_1 doi: 10.1016/j.jpowsour.2009.06.107 – ident: e_1_2_7_59_1 doi: 10.1016/j.energy.2017.08.049 – ident: e_1_2_7_62_1 doi: 10.1016/j.enconman.2018.12.057 – ident: e_1_2_7_8_1 doi: 10.1016/j.colsurfb.2013.09.030 |
| SSID | ssj0009917 |
| Score | 2.5036743 |
| SecondaryResourceType | review_article |
| Snippet | Summary
Although proton exchange membrane (PEM) fuel cells are seen as one of the energy conversion technologies of the future due to their high energy... Although proton exchange membrane (PEM) fuel cells are seen as one of the energy conversion technologies of the future due to their high energy conversion... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4 |
| SubjectTerms | Automobile industry Commercialization Design Design of experiments Design optimization Energy conversion Energy conversion efficiency Experimental design Fuel cells Fuel technology Low temperature Marketing Optimization Product development proton exchange membrane fuel cell Proton exchange membrane fuel cells Response surface methodology Taguchi method Taguchi methods |
| Title | Importance and applications of DOE/optimization methods in PEM fuel cells: A review |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.4815 https://www.proquest.com/docview/2330687444 |
| Volume | 44 |
| WOSCitedRecordID | wos000483944000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1099-114X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009917 issn: 0363-907X databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB209aAHv8VqlT0Ub7F202Sz3opNUdBaqoXewmY_oNCmkrT-fnc3aRsRQfCUyw6EnZndN7PMewANGTB9j7Wkw037XiNi4RgadQfHbksZirGWjK3YBOn3g_GYDkpSXzk_xLrhZjLDntcmwVmcNTekoTK9NUQj21A1I1U6oKvdYW_0vGHcpVZu1z5U6gpwnE_MGuNmYfr9KtrgyzJKtddM7-AfP3gI-wW2RJ08GI5gSybHsFdiHDyBt6eZBdza1YglApXfr9Fcoe5rqMvoxWRWjGeiXGE6Q5MEDcIXpJZyikyzP7tHHZTPvZzCqBe-Pzw6ha6CdohnpBkxJqwdeIIyDQdcV2Df8wSLdalH_YATQXnMVKBaklPCOMOCKs7ufME9yXzuuWdQSeaJPAckuXJpQKjGbRr6YT8mjMZKUcIFiRV2a3Cz2uKIF6TjRvtiGuV0yTiSaWR2qQZovfAj59n4uaS-8lFUJFoWYVfXPIbCv12DhvXGb-ZRODSfi78tu4RdbCpr22ypQ2WRLuUV7PDPxSRLr4tY-wJkq9bQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4omKgH30YUdQ_EW4Vu6WO9ES2BCEgQEm7Ndh8JCRTTgr_f3bY8jDEx8dTLTNLszHS-me18A1ARHlV5zBQG0-17hYi5oWnUDRxaptQUY6YI02UTbq_njcekn_9VqWdhMn6IdcNNR0b6vdYBrhvS1Q1rqIgfNdPILhTryolqBSi-DJqjzoZyl6T7dtObSlUCjrORWa1czVW_56INwNyGqWmeaR7_5w1P4ChHl6iRucMp7IjoDA63OAfP4b09SyG3MjaiEUfbN9hoLtHLm68K6cVklg9oomzHdIImEer7XSSXYop0uz95Qg2UTb5cwKjpD59bRr5ZQZnE1ssZMXZp3bM5oQoQWBbHjm1zGqpijzgeczlhIZWeNAUjLmUUcyIZrTmc2YI6zLYuoRDNI3EFSDBpEc8lCrkp8Ied0KUklJK4jLuhxFYJHlZnHLCcdlxvv5gGGWEyDkQc6FMqAVoLfmRMGz9FyisjBXmoJQG2VNWjSfzrJaik5vhNPfAH-nH9N7F72G8Nu52g0-693sAB1nV22nopQ2ERL8Ut7LHPxSSJ73LH-wIyuNq3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60FdGDb7FadQ_FW6zZNI_1VmyCxVpLtdBb2OwDCm1aktbf726SPkQEwVMusxB2djLfzGa-D6AmPKrymCkMptv3ChFzQ9OoGziyTKkpxkwRZWITbrfrDYekV_xVqWdhcn6IVcNNR0b2vdYBLmZc1tesoSK510wj21Bu2Arll6Dc6geDzppyl2R6u9lNpSoBh_nIrF5cL5Z-z0VrgLkJU7M8Exz-5w2P4KBAl6iZH4dj2BLxCexvcA6ewnt7kkFu5WxEY442b7DRVKLWm68K6floUgxoolxjOkWjGPX8VyQXYox0uz99RE2UT76cwSDwP56ejUJZQbnE1uKMGLu04dmcUAUILItjx7Y5jVSxRxyPuZywiEpPmoIRlzKKOZGMPjic2YI6zLbOoRRPY3EBSDBpEc8lCrkp8IedyKUkkpK4jLuRxFYF7pZ7HLKCdlyrX4zDnDAZhyIJ9S5VAK0MZznTxk-T6tJJYRFqaYgtVfVoEv9GBWqZO35bHvp9_bj8m9kt7PZaQdhpd1-uYA_rMjvrvFShNE8W4hp22Od8lCY3xbn7Agrr2js |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Importance+and+applications+of+DOE%2Foptimization+methods+in+PEM+fuel+cells%3A+A+review&rft.jtitle=International+journal+of+energy+research&rft.au=Karanfil%2C+Gamze&rft.date=2020-01-01&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=44&rft.issue=1&rft.spage=4&rft.epage=25&rft_id=info:doi/10.1002%2Fer.4815&rft.externalDBID=10.1002%252Fer.4815&rft.externalDocID=ER4815 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |