The innovation algorithms for multivariable state‐space models

Summary This paper derives the input‐output representation of the dynamical system described by a linear multivariable state‐space model and the corresponding multivariate linear regressive model (ie, multivariate equation‐error model). A projection identification algorithm, a multivariate stochasti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of adaptive control and signal processing Ročník 33; číslo 11; s. 1601 - 1618
Hlavní autoři: Ding, Feng, Zhang, Xiao, Xu, Ling
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bognor Regis Wiley Subscription Services, Inc 01.11.2019
Témata:
ISSN:0890-6327, 1099-1115
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Summary This paper derives the input‐output representation of the dynamical system described by a linear multivariable state‐space model and the corresponding multivariate linear regressive model (ie, multivariate equation‐error model). A projection identification algorithm, a multivariate stochastic gradient identification algorithm, and a multi‐innovation stochastic gradient (MISG) identification algorithm are proposed for multivariate equation‐error systems by using the negative gradient search and the multi‐innovation identification theory. The convergence analysis of the MISG algorithm indicates that the parameter estimation errors converge to zero under the persistent excitation condition. Finally, a numerical example illustrates the effectiveness of the proposed algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0890-6327
1099-1115
DOI:10.1002/acs.3053