A novel machine learning‐based algorithm to detect damage in high‐rise building structures
Summary A novel model is presented for global health monitoring of large structures such as high‐rise building structures through adroit integration of 2 signal processing techniques, synchrosqueezed wavelet transform and fast Fourier transform, an unsupervised machine learning technique, the restri...
Gespeichert in:
| Veröffentlicht in: | The structural design of tall and special buildings Jg. 26; H. 18 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Wiley Subscription Services, Inc
25.12.2017
|
| Schlagworte: | |
| ISSN: | 1541-7794, 1541-7808 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Summary
A novel model is presented for global health monitoring of large structures such as high‐rise building structures through adroit integration of 2 signal processing techniques, synchrosqueezed wavelet transform and fast Fourier transform, an unsupervised machine learning technique, the restricted Boltzmann machine, and a recently developed supervised classification algorithm called neural dynamics classification (NDC) algorithm. The model extracts hidden features in the frequency domain of the denoised measured response signals recorded by sensors on different elevations or floors of a structure. The extracted features are used as an input of the NDC to detect and classify the global health of the structure into categories such as healthy, light damage, moderate damage, severe damage, and near collapse. The proposed model is validated using the data obtained from a 3D 1:20 scaled 38‐story reinforced concrete building structure. The results are compared with 3 other supervised classification algorithms: k‐nearest neighbor (KNN), probabilistic neural networks (PNN), and enhanced PNN (EPNN). NDC, EPNN, PNN, and KNN yield maximum average accuracies of 96%, 94%, 92%, and 82%, respectively. |
|---|---|
| AbstractList | Summary A novel model is presented for global health monitoring of large structures such as high-rise building structures through adroit integration of 2 signal processing techniques, synchrosqueezed wavelet transform and fast Fourier transform, an unsupervised machine learning technique, the restricted Boltzmann machine, and a recently developed supervised classification algorithm called neural dynamics classification (NDC) algorithm. The model extracts hidden features in the frequency domain of the denoised measured response signals recorded by sensors on different elevations or floors of a structure. The extracted features are used as an input of the NDC to detect and classify the global health of the structure into categories such as healthy, light damage, moderate damage, severe damage, and near collapse. The proposed model is validated using the data obtained from a 3D 1:20 scaled 38-story reinforced concrete building structure. The results are compared with 3 other supervised classification algorithms: k-nearest neighbor (KNN), probabilistic neural networks (PNN), and enhanced PNN (EPNN). NDC, EPNN, PNN, and KNN yield maximum average accuracies of 96%, 94%, 92%, and 82%, respectively. A novel model is presented for global health monitoring of large structures such as high‐rise building structures through adroit integration of 2 signal processing techniques, synchrosqueezed wavelet transform and fast Fourier transform, an unsupervised machine learning technique, the restricted Boltzmann machine, and a recently developed supervised classification algorithm called neural dynamics classification (NDC) algorithm. The model extracts hidden features in the frequency domain of the denoised measured response signals recorded by sensors on different elevations or floors of a structure. The extracted features are used as an input of the NDC to detect and classify the global health of the structure into categories such as healthy, light damage, moderate damage, severe damage, and near collapse. The proposed model is validated using the data obtained from a 3D 1:20 scaled 38‐story reinforced concrete building structure. The results are compared with 3 other supervised classification algorithms: k ‐nearest neighbor (KNN), probabilistic neural networks (PNN), and enhanced PNN (EPNN). NDC, EPNN, PNN, and KNN yield maximum average accuracies of 96%, 94%, 92%, and 82%, respectively. Summary A novel model is presented for global health monitoring of large structures such as high‐rise building structures through adroit integration of 2 signal processing techniques, synchrosqueezed wavelet transform and fast Fourier transform, an unsupervised machine learning technique, the restricted Boltzmann machine, and a recently developed supervised classification algorithm called neural dynamics classification (NDC) algorithm. The model extracts hidden features in the frequency domain of the denoised measured response signals recorded by sensors on different elevations or floors of a structure. The extracted features are used as an input of the NDC to detect and classify the global health of the structure into categories such as healthy, light damage, moderate damage, severe damage, and near collapse. The proposed model is validated using the data obtained from a 3D 1:20 scaled 38‐story reinforced concrete building structure. The results are compared with 3 other supervised classification algorithms: k‐nearest neighbor (KNN), probabilistic neural networks (PNN), and enhanced PNN (EPNN). NDC, EPNN, PNN, and KNN yield maximum average accuracies of 96%, 94%, 92%, and 82%, respectively. |
| Author | Rafiei, Mohammad Hossein Adeli, Hojjat |
| Author_xml | – sequence: 1 givenname: Mohammad Hossein orcidid: 0000-0003-4923-9584 surname: Rafiei fullname: Rafiei, Mohammad Hossein organization: The Ohio State University – sequence: 2 givenname: Hojjat orcidid: 0000-0001-5718-1453 surname: Adeli fullname: Adeli, Hojjat email: adeli.1@osu.edu organization: The Ohio State University |
| BookMark | eNp10L9OwzAQBnALFYm2IPEIllhYUuw4dpKxqvgnVWIpK5HjXBJXqV1sB9SNR-AZeRJSCguC6W74fXfSN0EjYw0gdE7JjBISXwXZzWhCyBEaU57QKM1INvrZ0zw5QRPv14TQnHA2Rk9zbOwLdHgjVasN4A6kM9o0H2_vpfRQYdk11unQbnCwuIIAKuBKbmQDWBvc6qYdqNMecNnrrhqi2AfXq9A78KfouJadh7PvOUWPN9erxV20fLi9X8yXkWI8J5HgtQQhaMoorQUtY65SwlIWA4GU8IxXjKuyoiTJq5xLHgOFNBdCcKliFTM2RReHu1tnn3vwoVjb3pnhZUFzkaVJIpJsULODUs5676AulA4yaGuCk7orKCn2HRZDh8W-wyFw-SuwdXoj3e4vGh3oq-5g968rVvPll_8E_-qDXA |
| CitedBy_id | crossref_primary_10_1111_mice_13166 crossref_primary_10_1111_mice_13043 crossref_primary_10_1111_mice_13164 crossref_primary_10_1111_mice_12633 crossref_primary_10_3233_ICA_180560 crossref_primary_10_1111_mice_12510 crossref_primary_10_1111_mice_12752 crossref_primary_10_1111_mice_12632 crossref_primary_10_1111_mice_12993 crossref_primary_10_1111_mice_12629 crossref_primary_10_3390_buildings12081225 crossref_primary_10_1111_mice_12626 crossref_primary_10_3390_app12189244 crossref_primary_10_1016_j_asoc_2022_108628 crossref_primary_10_1080_15732479_2020_1811991 crossref_primary_10_1111_mice_13298 crossref_primary_10_1177_14759217241252756 crossref_primary_10_1111_mice_12646 crossref_primary_10_1111_mice_12523 crossref_primary_10_1016_j_engappai_2023_107226 crossref_primary_10_1111_mice_12766 crossref_primary_10_1111_mice_12642 crossref_primary_10_1111_mice_12522 crossref_primary_10_1111_mice_12640 crossref_primary_10_1177_1475921720916923 crossref_primary_10_1002_tal_1491 crossref_primary_10_1007_s13349_021_00505_9 crossref_primary_10_1111_mice_70077 crossref_primary_10_1016_j_conbuildmat_2023_132596 crossref_primary_10_1111_mice_12517 crossref_primary_10_1111_mice_13291 crossref_primary_10_1016_j_mtcomm_2024_109278 crossref_primary_10_1155_2021_1102521 crossref_primary_10_1111_mice_13384 crossref_primary_10_1111_mice_13383 crossref_primary_10_1111_mice_12613 crossref_primary_10_1111_mice_12850 crossref_primary_10_1111_mice_12971 crossref_primary_10_1016_j_measurement_2019_01_035 crossref_primary_10_1111_mice_12848 crossref_primary_10_1177_14759217251316532 crossref_primary_10_1111_mice_12605 crossref_primary_10_1002_tal_2115 crossref_primary_10_1007_s10921_020_00744_8 crossref_primary_10_1007_s13349_023_00683_8 crossref_primary_10_1111_mice_12980 crossref_primary_10_1111_mice_13154 crossref_primary_10_1111_mice_12503 crossref_primary_10_1111_mice_12625 crossref_primary_10_1111_mice_12741 crossref_primary_10_1111_mice_12500 crossref_primary_10_1111_mice_13399 crossref_primary_10_1016_j_camwa_2025_02_004 crossref_primary_10_1111_mice_13390 crossref_primary_10_1061__ASCE_PS_1949_1204_0000557 crossref_primary_10_3390_rs17050935 crossref_primary_10_3390_cryst11020210 crossref_primary_10_1111_mice_13001 crossref_primary_10_1111_mice_13000 crossref_primary_10_1111_mice_12954 crossref_primary_10_1016_j_engappai_2024_109438 crossref_primary_10_1111_mice_13009 crossref_primary_10_1002_stc_2571 crossref_primary_10_1111_mice_12710 crossref_primary_10_3390_s21062005 crossref_primary_10_1111_mice_12708 crossref_primary_10_1111_mice_12826 crossref_primary_10_1177_14759217221097868 crossref_primary_10_1088_1757_899X_1150_1_012019 crossref_primary_10_1061__ASCE_CO_1943_7862_0001570 crossref_primary_10_1111_mice_13374 crossref_primary_10_1111_mice_13130 crossref_primary_10_1111_mice_13372 crossref_primary_10_1111_mice_13370 crossref_primary_10_1016_j_autcon_2022_104381 crossref_primary_10_1111_mice_12602 crossref_primary_10_1111_mice_12845 crossref_primary_10_1111_mice_13014 crossref_primary_10_3233_ICA_230714 crossref_primary_10_1080_15732479_2024_2355929 crossref_primary_10_1016_j_ymssp_2020_107077 crossref_primary_10_1111_mice_12837 crossref_primary_10_1111_mice_12959 crossref_primary_10_3390_app13042553 crossref_primary_10_1016_j_jclepro_2022_135334 crossref_primary_10_1016_j_measurement_2020_107858 crossref_primary_10_1007_s40430_022_03818_y crossref_primary_10_1111_mice_13464 crossref_primary_10_1111_mice_12375 crossref_primary_10_1111_mice_12493 crossref_primary_10_1111_mice_13461 crossref_primary_10_3390_s20072069 crossref_primary_10_1111_mice_12499 crossref_primary_10_1111_mice_13105 crossref_primary_10_3233_JIFS_191105 crossref_primary_10_1016_j_autcon_2021_103786 crossref_primary_10_1111_mice_12497 crossref_primary_10_1111_mice_13224 crossref_primary_10_1111_mice_13466 crossref_primary_10_1111_mice_13102 crossref_primary_10_3390_infrastructures9090145 crossref_primary_10_1016_j_engstruct_2018_10_065 crossref_primary_10_3233_ICA_200632 crossref_primary_10_1002_eqe_3892 crossref_primary_10_3233_ICA_200638 crossref_primary_10_1111_mice_13110 crossref_primary_10_3233_ICA_210651 crossref_primary_10_1111_mice_13472 crossref_primary_10_1111_mice_13470 crossref_primary_10_1016_j_autcon_2020_103470 crossref_primary_10_1111_mice_13119 crossref_primary_10_1007_s40430_025_05697_5 crossref_primary_10_1111_mice_13117 crossref_primary_10_1111_mice_12389 crossref_primary_10_1111_mice_12387 crossref_primary_10_1177_14759217211061518 crossref_primary_10_1111_mice_13113 crossref_primary_10_1111_mice_13355 crossref_primary_10_1111_mice_12817 crossref_primary_10_1061_JSENDH_STENG_13467 crossref_primary_10_1111_mice_12594 crossref_primary_10_1111_mice_13200 crossref_primary_10_3390_jimaging10040093 crossref_primary_10_1111_mice_12595 crossref_primary_10_1002_stc_2777 crossref_primary_10_1002_stc_2897 crossref_primary_10_1016_j_jobe_2020_101816 crossref_primary_10_1111_mice_13329 crossref_primary_10_1111_mice_12477 crossref_primary_10_1111_mice_13204 crossref_primary_10_1111_mice_13202 crossref_primary_10_1111_mice_12476 crossref_primary_10_1016_j_matpr_2022_08_204 crossref_primary_10_1007_s00521_025_11387_z crossref_primary_10_1111_mice_70000 crossref_primary_10_4028_www_scientific_net_KEM_846_47 crossref_primary_10_1007_s13349_023_00688_3 crossref_primary_10_1177_14759217251348421 crossref_primary_10_1155_2020_3714973 crossref_primary_10_1111_mice_12485 crossref_primary_10_1111_mice_12480 crossref_primary_10_3390_app11020813 crossref_primary_10_1111_mice_12481 crossref_primary_10_3390_ai5030074 crossref_primary_10_1007_s11831_021_09666_8 crossref_primary_10_1177_14759217241239041 crossref_primary_10_1111_mice_12367 crossref_primary_10_1111_mice_12488 crossref_primary_10_1111_mice_13336 crossref_primary_10_1111_mice_13333 crossref_primary_10_1007_s00366_021_01584_4 crossref_primary_10_3390_s20092710 crossref_primary_10_1016_j_autcon_2022_104739 crossref_primary_10_1111_mice_12451 crossref_primary_10_1111_mice_12573 crossref_primary_10_1111_mice_12570 crossref_primary_10_1111_mice_12692 crossref_primary_10_1007_s11804_022_00263_0 crossref_primary_10_1016_j_autcon_2022_104271 crossref_primary_10_1111_mice_12459 crossref_primary_10_1111_mice_12578 crossref_primary_10_1111_mice_12458 crossref_primary_10_1111_mice_12579 crossref_primary_10_1007_s10999_023_09692_3 crossref_primary_10_1111_mice_12454 crossref_primary_10_1111_mice_70021 crossref_primary_10_1016_j_mechrescom_2023_104087 crossref_primary_10_1111_mice_12460 crossref_primary_10_1111_mice_12580 crossref_primary_10_1155_2022_6557898 crossref_primary_10_1016_j_ijdrr_2025_105294 crossref_primary_10_1111_mice_13313 crossref_primary_10_1177_14759217231206178 crossref_primary_10_1007_s11831_020_09471_9 crossref_primary_10_1016_j_jweia_2024_105698 crossref_primary_10_1007_s41062_023_01217_3 crossref_primary_10_3390_en15093109 crossref_primary_10_1111_mice_12793 crossref_primary_10_1111_mice_13088 crossref_primary_10_3390_buildings14061711 crossref_primary_10_1111_mice_13086 crossref_primary_10_1007_s13369_022_06731_7 crossref_primary_10_1111_mice_13084 crossref_primary_10_1177_1077546320929145 crossref_primary_10_1111_mice_12558 crossref_primary_10_1111_mice_13406 crossref_primary_10_1111_mice_13527 crossref_primary_10_3233_ICA_190603 crossref_primary_10_1111_mice_12799 crossref_primary_10_1111_mice_12433 crossref_primary_10_1111_mice_12675 crossref_primary_10_1016_j_asoc_2023_111174 crossref_primary_10_1111_mice_12797 crossref_primary_10_1016_j_aei_2020_101105 crossref_primary_10_1111_mice_12794 crossref_primary_10_1007_s40997_021_00462_0 crossref_primary_10_1111_mice_12428 crossref_primary_10_1111_mice_12549 crossref_primary_10_3390_polym14081517 crossref_primary_10_3390_app8112068 crossref_primary_10_1111_mice_12561 crossref_primary_10_1109_TNNLS_2022_3190448 crossref_primary_10_1111_mice_12562 crossref_primary_10_1111_mice_12680 crossref_primary_10_1007_s13296_024_00815_w crossref_primary_10_1007_s11042_022_12703_8 crossref_primary_10_1016_j_istruc_2023_03_152 crossref_primary_10_3233_ICA_180596 crossref_primary_10_1016_j_cscm_2021_e00719 crossref_primary_10_1111_mice_12448 crossref_primary_10_1111_mice_12449 crossref_primary_10_3390_ma15134512 crossref_primary_10_1111_mice_12567 crossref_primary_10_1111_mice_12447 crossref_primary_10_1111_mice_12568 crossref_primary_10_1111_mice_12689 crossref_primary_10_1007_s00521_019_04025_y crossref_primary_10_1111_mice_12686 crossref_primary_10_1177_14759217231207762 crossref_primary_10_1016_j_engappai_2023_106858 crossref_primary_10_1111_mice_12563 crossref_primary_10_1111_mice_13411 crossref_primary_10_1111_mice_12564 crossref_primary_10_1111_mice_12685 crossref_primary_10_1016_j_autcon_2021_103821 crossref_primary_10_1016_j_cma_2021_113741 crossref_primary_10_1111_mice_13409 crossref_primary_10_1155_2019_5954104 crossref_primary_10_3846_jcem_2021_14348 crossref_primary_10_1016_j_istruc_2022_08_089 crossref_primary_10_1111_mice_13067 crossref_primary_10_1111_mice_12890 crossref_primary_10_1111_mice_13186 crossref_primary_10_1111_mice_12536 crossref_primary_10_1111_mice_70059 crossref_primary_10_3389_fmats_2022_1058407 crossref_primary_10_1111_mice_12658 crossref_primary_10_1111_mice_12655 crossref_primary_10_1016_j_engstruct_2017_10_070 crossref_primary_10_1016_j_engstruct_2021_112412 crossref_primary_10_1080_14680629_2019_1614969 crossref_primary_10_1111_mice_12411 crossref_primary_10_1111_mice_12532 crossref_primary_10_1111_mice_12412 crossref_primary_10_1111_mice_12533 crossref_primary_10_1016_j_autcon_2024_105641 crossref_primary_10_1016_j_istruc_2021_12_067 crossref_primary_10_1016_j_cmpb_2018_04_012 crossref_primary_10_1111_mice_12408 crossref_primary_10_1111_mice_12406 crossref_primary_10_1111_mice_13181 crossref_primary_10_1002_aisy_202300480 crossref_primary_10_1111_mice_12660 crossref_primary_10_1061__ASCE_ST_1943_541X_0003041 crossref_primary_10_1002_tal_1914 crossref_primary_10_1111_mice_13076 crossref_primary_10_1111_mice_12666 crossref_primary_10_1111_mice_12425 crossref_primary_10_1111_mice_12546 crossref_primary_10_1111_mice_12422 crossref_primary_10_1111_mice_12543 crossref_primary_10_1111_mice_12783 crossref_primary_10_1111_mice_12421 crossref_primary_10_1061_NHREFO_NHENG_1950 crossref_primary_10_3390_app13127212 crossref_primary_10_1111_mice_12417 crossref_primary_10_1111_mice_12539 crossref_primary_10_1007_s00521_019_04146_4 crossref_primary_10_1111_mice_13070 crossref_primary_10_1111_mice_13191 crossref_primary_10_1088_1361_6501_ac4b8d crossref_primary_10_1016_j_conbuildmat_2018_04_050 |
| Cites_doi | 10.1111/j.1467-8667.2005.00403.x 10.21595/jve.2016.17218 10.1126/science.1127647 10.1061/(ASCE)0733-9364(1998)124:1(18) 10.1111/mice.12217 10.1142/S0129065713500251 10.1016/0045-7949(95)00048-L 10.1111/mice.12059 10.1111/mice.12004 10.1016/j.jsv.2005.06.016 10.1111/mice.12147 10.1111/mice.12198 10.1016/j.jsv.2005.03.016 10.1111/j.1467-8667.2012.00777.x 10.1111/mice.12169 10.1016/j.jneumeth.2011.01.027 10.1111/mice.12144 10.1088/0964-1726/24/12/125040 10.1111/mice.12112 10.1002/eqe.1192 10.1111/mice.12124 10.1111/j.1467-8667.2011.00735.x 10.1061/(ASCE)ST.1943-541X.0000366 10.1088/0964-1726/24/6/065034 10.1111/j.1467-8667.2012.00766.x 10.1111/mice.12005 10.3233/ICA-150505 10.1111/mice.12126 10.3233/ICA-150482 10.1111/mice.12122 10.1109/IEMBS.2008.4649729 10.1061/(ASCE)CO.1943-7862.0001047 10.1111/j.1467-8667.2010.00686.x 10.1190/geo2012-0199.1 10.1007/s11831-014-9135-7 10.1111/j.1467-8667.2006.00434.x 10.1111/mice.12146 10.1111/mice.12231 10.1016/0096-3003(94)90134-1 10.1016/j.scient.2012.09.002 10.1111/mice.12106 10.1201/9781315214764 10.1111/mice.12227 10.1061/(ASCE)0733-9445(2006)132:1(102) 10.1111/j.1467-8667.2004.00360.x 10.1016/j.acha.2010.08.002 10.1111/mice.12086 10.1002/nme.1964 10.1016/j.ijnonlinmec.2011.07.011 10.14359/51689560 10.1111/mice.12141 10.1109/TSP.2013.2265222 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
| DOI | 10.1002/tal.1400 |
| DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1541-7808 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_tal_1400 TAL1400 |
| Genre | article |
| GroupedDBID | .3N .GA 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 G-S G.N GNP GODZA H.T H.X HGLYW HHY HZ~ I-F IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N QB0 QRW R.K ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ XV2 ~IA ~IF ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X 1OB 7ST 8FD C1K FR3 KR7 SOI |
| ID | FETCH-LOGICAL-c3590-65fae6617311f61b25c703732e0e70585d35cbd1049d95a52e1e796665ac2c233 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 306 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419944600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1541-7794 |
| IngestDate | Wed Aug 13 09:49:13 EDT 2025 Tue Nov 18 21:44:00 EST 2025 Sat Nov 29 07:50:09 EST 2025 Wed Jan 22 17:10:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3590-65fae6617311f61b25c703732e0e70585d35cbd1049d95a52e1e796665ac2c233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5718-1453 0000-0003-4923-9584 |
| PQID | 1968744648 |
| PQPubID | 2034345 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_1968744648 crossref_citationtrail_10_1002_tal_1400 crossref_primary_10_1002_tal_1400 wiley_primary_10_1002_tal_1400_TAL1400 |
| PublicationCentury | 2000 |
| PublicationDate | 25 December 2017 |
| PublicationDateYYYYMMDD | 2017-12-25 |
| PublicationDate_xml | – month: 12 year: 2017 text: 25 December 2017 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | The structural design of tall and special buildings |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2013; 28 2013; 23 1995; 57 2015; 30 2013; 61 2015; 142 2009 1998 2016; 31 2008 2011; 30 2006; 132 2005; 20 2007 1996 2012; 19 2006; 291 2007; 71 2006; 290 2014; 29 2016; 18 2006; 313 1994; 62 2014; 21 2011; 197 2015; 24 2004; 19 2017a 2006; 21 2013; 78 2010; 137 2015; 22 2012; 27 2011; 26 2017b; 114 2012; 47 1998; 124 2016; 26 2012; 41 2016; 23 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_23_1 e_1_2_5_46_1 Daubechies I. (e_1_2_5_47_1) 1996 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 Li Z. (e_1_2_5_26_1) 2016; 26 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_3_1 e_1_2_5_19_1 Paris P. C. D. (e_1_2_5_52_1) 2015; 22 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_60_1 Lee J. (e_1_2_5_41_1) 2007 e_1_2_5_20_1 Rafiei M. H. (e_1_2_5_42_1) 2017 e_1_2_5_14_1 e_1_2_5_39_1 Adeli H. (e_1_2_5_48_1) 2009 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 Palomo E. J. (e_1_2_5_31_1) 2016; 26 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 Rafiei M. H. (e_1_2_5_54_1) 2015; 142 Qarib H. (e_1_2_5_5_1) 2014; 21 e_1_2_5_18_1 e_1_2_5_50_1 |
| References_xml | – volume: 27 start-page: 202 issue: 3 year: 2012 publication-title: Comput. Aided Civ. Inf. Eng. – year: 2009 – volume: 124 start-page: 18 issue: 1 year: 1998 publication-title: J. Constr. Eng. M. ASCE – volume: 31 start-page: 633 issue: 8 year: 2016 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 23 issue: 06 year: 2013 publication-title: Int. J. Neural Syst. – year: 2007 publication-title: J. Intell. Mater. Syst. Struct. – volume: 30 start-page: 151 issue: 2 year: 2015 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 30 start-page: 636 issue: 8 year: 2015 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 31 start-page: 846 issue: 11 year: 2016 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 20 start-page: 369 issue: 5 year: 2005 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 30 start-page: 759 issue: 10 year: 2015 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 19 start-page: 324 issue: 5 year: 2004 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 30 start-page: 843 issue: 11 year: 2015 publication-title: Comput. Aided Civ. Inf. Eng. – year: 1998 – volume: 30 start-page: 859 issue: 11 year: 2015 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 114 start-page: 237 issue: 2 year: 2017b publication-title: ACI Mater. J. – volume: 197 start-page: 165 issue: 1 year: 2011 publication-title: J. Neurosci. Methods – volume: 62 start-page: 81 issue: 1 year: 1994 publication-title: Appl. Math. Comput. – volume: 27 start-page: 687 issue: 9 year: 2012 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 19 start-page: 1355 issue: 6 year: 2012 publication-title: Sci. Iran. – year: 2017a publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 21 start-page: 1733 issue: 6 year: 2014 publication-title: Sci. Iran. Trans. A – volume: 57 start-page: 383 issue: 3 year: 1995 publication-title: Comput. Struct. – volume: 24 issue: 6 year: 2015 publication-title: Smart Mater. Struct. – volume: 23 start-page: 115 issue: 2 year: 2016 publication-title: Integrated Computer‐Aided Engineering – volume: 26 issue: 3 year: 2016 publication-title: Struct. Design Tall Spec. Build. – volume: 31 start-page: 887 issue: 11 year: 2016 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 21 start-page: 268 issue: 4 year: 2006 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 26 start-page: 190 issue: 3 year: 2011 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 132 start-page: 102 issue: 1 year: 2006 publication-title: J. Struct. Eng. – volume: 27 start-page: 699 issue: 9 year: 2012 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 22 start-page: 135 issue: 2 year: 2015 publication-title: Integrated Computer‐Aided Engineering – volume: 30 start-page: 330 issue: 5 year: 2015 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 23 start-page: 1 issue: 1 year: 2016 publication-title: Archives of Computational Methods in Engineering – volume: 30 start-page: 376 issue: 5 year: 2015 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 78 start-page: O9 issue: 2 year: 2013 publication-title: Geophysics – volume: 31 start-page: 465 issue: 6 year: 2016 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 29 start-page: 416 issue: 6 year: 2014 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 137 start-page: 1518 issue: 12 year: 2010 publication-title: J. Struct. Eng. – volume: 30 start-page: 347 issue: 5 year: 2015 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 29 start-page: 221 issue: 3 year: 2014 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 28 start-page: 434 issue: 6 year: 2013 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 26 issue: 3 year: 2016 publication-title: Int. J. Neural Syst. – volume: 291 start-page: 349 issue: 1 year: 2006 publication-title: J. Sound Vib. – volume: 30 start-page: 243 issue: 2 year: 2011 publication-title: Appl. Comput. Harmon. Anal. – volume: 71 start-page: 606 issue: 5 year: 2007 publication-title: Int. J. Numer. Methods Eng. – volume: 47 start-page: 1 issue: 1 year: 2012 publication-title: Int.J. Non‐Linear Mech. – volume: 18 start-page: 2186 issue: 4 year: 2016 publication-title: Journal of Vibroengineering – volume: 61 start-page: 3999 issue: 16 year: 2013 publication-title: IEEE Trans. Signal Process. – start-page: 2586 year: 2008 end-page: 2589 – start-page: 527 year: 1996 publication-title: Wavelets in Medicine and Biology – volume: 24 start-page: 125040 year: 2015 publication-title: Smart Mater. Struct. – volume: 30 start-page: 703 issue: 9 year: 2015 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 41 start-page: 1609 issue: 12 year: 2012 publication-title: Earthq. Eng. Struct. Dyn. – volume: 30 start-page: 785 issue: 10 year: 2015 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 30 start-page: 771 issue: 10 year: 2015 publication-title: Comput. Aided Civ. Inf. Eng. – volume: 313 start-page: 504 issue: 5786 year: 2006 publication-title: Science – volume: 142 issue: 2 year: 2015 publication-title: J. Constr. Eng. Manag. – volume: 290 start-page: 242 issue: 1–2 year: 2006 publication-title: J. Sound Vib. – ident: e_1_2_5_40_1 doi: 10.1111/j.1467-8667.2005.00403.x – ident: e_1_2_5_39_1 doi: 10.21595/jve.2016.17218 – ident: e_1_2_5_53_1 doi: 10.1126/science.1127647 – ident: e_1_2_5_56_1 doi: 10.1061/(ASCE)0733-9364(1998)124:1(18) – ident: e_1_2_5_12_1 doi: 10.1111/mice.12217 – ident: e_1_2_5_22_1 doi: 10.1142/S0129065713500251 – ident: e_1_2_5_43_1 doi: 10.1016/0045-7949(95)00048-L – ident: e_1_2_5_21_1 doi: 10.1111/mice.12059 – ident: e_1_2_5_13_1 doi: 10.1111/mice.12004 – volume: 26 issue: 3 year: 2016 ident: e_1_2_5_26_1 publication-title: Struct. Design Tall Spec. Build. – ident: e_1_2_5_20_1 doi: 10.1016/j.jsv.2005.06.016 – ident: e_1_2_5_3_1 doi: 10.1111/mice.12147 – ident: e_1_2_5_27_1 doi: 10.1111/mice.12198 – ident: e_1_2_5_60_1 doi: 10.1016/j.jsv.2005.03.016 – ident: e_1_2_5_45_1 doi: 10.1111/j.1467-8667.2012.00777.x – ident: e_1_2_5_7_1 doi: 10.1111/mice.12169 – ident: e_1_2_5_59_1 doi: 10.1016/j.jneumeth.2011.01.027 – ident: e_1_2_5_29_1 doi: 10.1111/mice.12144 – ident: e_1_2_5_38_1 doi: 10.1088/0964-1726/24/12/125040 – ident: e_1_2_5_11_1 doi: 10.1111/mice.12112 – ident: e_1_2_5_16_1 doi: 10.1002/eqe.1192 – ident: e_1_2_5_14_1 doi: 10.1111/mice.12124 – start-page: 527 year: 1996 ident: e_1_2_5_47_1 publication-title: Wavelets in Medicine and Biology – ident: e_1_2_5_17_1 doi: 10.1111/j.1467-8667.2011.00735.x – ident: e_1_2_5_32_1 doi: 10.1061/(ASCE)ST.1943-541X.0000366 – ident: e_1_2_5_25_1 doi: 10.1088/0964-1726/24/6/065034 – year: 2017 ident: e_1_2_5_42_1 publication-title: IEEE Transactions on Neural Networks and Learning Systems – ident: e_1_2_5_33_1 doi: 10.1111/j.1467-8667.2012.00766.x – ident: e_1_2_5_15_1 doi: 10.1111/mice.12005 – ident: e_1_2_5_51_1 doi: 10.3233/ICA-150505 – year: 2007 ident: e_1_2_5_41_1 publication-title: J. Intell. Mater. Syst. Struct. – ident: e_1_2_5_9_1 doi: 10.1111/mice.12126 – volume: 22 start-page: 135 issue: 2 year: 2015 ident: e_1_2_5_52_1 publication-title: Integrated Computer‐Aided Engineering doi: 10.3233/ICA-150482 – ident: e_1_2_5_6_1 doi: 10.1111/mice.12122 – ident: e_1_2_5_35_1 doi: 10.1109/IEMBS.2008.4649729 – volume: 142 issue: 2 year: 2015 ident: e_1_2_5_54_1 publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001047 – ident: e_1_2_5_18_1 doi: 10.1111/j.1467-8667.2010.00686.x – ident: e_1_2_5_36_1 doi: 10.1190/geo2012-0199.1 – ident: e_1_2_5_28_1 doi: 10.1007/s11831-014-9135-7 – ident: e_1_2_5_50_1 doi: 10.1111/j.1467-8667.2006.00434.x – ident: e_1_2_5_8_1 doi: 10.1111/mice.12146 – ident: e_1_2_5_30_1 doi: 10.1111/mice.12231 – ident: e_1_2_5_58_1 doi: 10.1016/0096-3003(94)90134-1 – ident: e_1_2_5_10_1 doi: 10.1016/j.scient.2012.09.002 – ident: e_1_2_5_4_1 doi: 10.1111/mice.12106 – ident: e_1_2_5_57_1 doi: 10.1201/9781315214764 – volume: 26 issue: 3 year: 2016 ident: e_1_2_5_31_1 publication-title: Int. J. Neural Syst. – ident: e_1_2_5_19_1 doi: 10.1111/mice.12227 – ident: e_1_2_5_23_1 doi: 10.1061/(ASCE)0733-9445(2006)132:1(102) – ident: e_1_2_5_24_1 doi: 10.1111/j.1467-8667.2004.00360.x – ident: e_1_2_5_46_1 doi: 10.1016/j.acha.2010.08.002 – ident: e_1_2_5_49_1 doi: 10.1111/mice.12086 – volume-title: Intelligent Infrastructure: Neural Networks, Wavelets, and Chaos Theory for Intelligent Transportation Systems and Smart Structures year: 2009 ident: e_1_2_5_48_1 – volume: 21 start-page: 1733 issue: 6 year: 2014 ident: e_1_2_5_5_1 publication-title: Sci. Iran. Trans. A – ident: e_1_2_5_44_1 doi: 10.1002/nme.1964 – ident: e_1_2_5_34_1 doi: 10.1016/j.ijnonlinmec.2011.07.011 – ident: e_1_2_5_55_1 doi: 10.14359/51689560 – ident: e_1_2_5_2_1 doi: 10.1111/mice.12141 – ident: e_1_2_5_37_1 doi: 10.1109/TSP.2013.2265222 |
| SSID | ssj0019053 |
| Score | 2.5704083 |
| Snippet | Summary
A novel model is presented for global health monitoring of large structures such as high‐rise building structures through adroit integration of 2... A novel model is presented for global health monitoring of large structures such as high‐rise building structures through adroit integration of 2 signal... Summary A novel model is presented for global health monitoring of large structures such as high-rise building structures through adroit integration of 2... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Artificial intelligence Classification Concrete Concrete construction Damage detection Data processing Fast Fourier transformations Feature extraction Fourier transforms Global health health monitoring High rise buildings high‐rise building Information processing Learning algorithms Machine learning neural dynamics model of Adeli and Park Neural networks Noise reduction Reinforced concrete Signal processing Structural damage tall building Wavelet transforms |
| Title | A novel machine learning‐based algorithm to detect damage in high‐rise building structures |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftal.1400 https://www.proquest.com/docview/1968744648 |
| Volume | 26 |
| WOSCitedRecordID | wos000419944600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1541-7808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019053 issn: 1541-7794 databaseCode: DRFUL dateStart: 20030101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA6yedCD3-J0SgTRU1mTNOt6HOrwMIbIBjtZ0iSdg7WVbe7sT_A3-kt806bbBAXBUy9vIOTjfZ-nSZ4HoSuhAEYzBexEKOp4ERAUAcDYiYWrAf770pMqN5vwe73WcBg82luV5i1MoQ-x_OFmdkaer80GF9GssRINNdgU2AHQ9ap5UwXEq3r31Bl0l2cIgZtrUAJGIIAhA6-UnnVpo2z7vRitEOY6Ts0LTWf3P13cQzsWXuJ2sR720YZOD9D2mujgIXpu4zRb6AlO8nuUGlvjiNHn-4epaQqLySibjucvCZ5nWGlzzICVSCDz4HGKjcAxhEJy0Diyptq4kKF9A-5-hAad-_7tg2NdFhzJeADckcdCQ5X2GSFxk0SUS8gCPqPa1b4LbEIxLiMFtC1QARecaqJ9IElNLiSVlLFjVEmzVJ8gHBAuAY4I5rHY8wCK6NgHwEig4hlvG1FDN-Vwh9JKkBsnjElYiCfT0PikmBGroctl5Gshu_FDTL2csdBuvFkICcUI-je9Vg1d53Pza_uw3-6a7-lfA8_QFjVFnVCH8jqqwMjqc7QpF_PxbHphl98XY3DemQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3IJqgPfovzM4LoU1mbNO2KT0MdE-sQmeCTJUvSOdha0blnf4K_0V_iTT-mgoLgU19uoCS5956TtOcAHAqFMJopZCdCUcvtIUERCIytWNga4b8vXakyswm_02nc3QXXM3BS_guT60NMD9xMZmT12iS4OZCuf6qGGnCK9AD5etX1mN-oQPXspnUbTi8RAjsToUSQ4CCIDNxSe9am9XLs9270CTG_AtWs07SW_vWOy7BYAEzSzHfECszoZBUWvsgOrsF9kyTpRA_JKPuSUpPCOqL__vpmupoiYthPnwbjhxEZp0Rpc9FAlBhh7SGDhBiJYwzF8qBJr7DVJrkQ7Quy93W4bZ13T9tW4bNgScYDZI88Fhr7tM8cJ_acHuUS64DPqLa1byOfUIzLnkLiFqiAC061o32kSR4XkkrK2AZUkjTRm0ACh0sEJIK5LHZdBCM69hEyOtjzjLuNqMFxOd-RLETIjRfGMMrlk2lknFLMjNXgYBr5mAtv_BCzUy5ZVKTec4QlxUj6e26jBkfZ4vw6Puo2Q_Pc-mvgPsy1u1dhFF50LrdhnpoW71CL8h2o4CzrXZiVk_Hg-Wmv2IsfujDiiQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFL1IFdGFb7FadQTRVWgyj6bBVVGLYilFKnRlmM5MaqFNilbXfoLf6Jd4J4-qoCC4yuYOhJm5956TyZwDcCw1wmimkZ1ITR3eR4IiERg7kXQNwn9fcaVTswm_3a73ekFnDs6KuzCZPsTsg5vNjLRe2wQ3Ex1VP1VDLThFeoB8fZ6LQPASzF_cNu9as0OEwE1FKBEkeAgiA15oz7q0Woz93o0-IeZXoJp2mubqv95xDVZygEka2Y5YhzkTb8DyF9nBTbhvkDh5MSMyTv-kNCS3jhi8v77ZrqaJHA2Sx-H0YUymCdHGHjQQLcdYe8gwJlbiGEOxPBjSz221SSZE-4zsfQvumpfd8ysn91lwFBMBskcRSYN92meeF9W8PhUK64DPqHGN7yKf0EyovkbiFuhASEGNZ3ykSTUhFVWUsW0oxUlsdoAEnlAISCTjLOIcwYiJfISMHvY8624jy3BazHeochFy64UxCjP5ZBpapxQ7Y2U4mkVOMuGNH2IqxZKFeeo9hVhSrKR_jdfLcJIuzq_jw26jZZ-7fw08hMXORTNsXbdv9mCJ2g7vUYeKCpRwks0-LKiX6fDp8SDfih9xDOIE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+machine+learning%E2%80%90based+algorithm+to+detect+damage+in+high%E2%80%90rise+building+structures&rft.jtitle=The+structural+design+of+tall+and+special+buildings&rft.au=Rafiei%2C+Mohammad+Hossein&rft.au=Adeli%2C+Hojjat&rft.date=2017-12-25&rft.issn=1541-7794&rft.eissn=1541-7808&rft.volume=26&rft.issue=18&rft_id=info:doi/10.1002%2Ftal.1400&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tal_1400 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-7794&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-7794&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-7794&client=summon |