A novel machine learning‐based algorithm to detect damage in high‐rise building structures

Summary A novel model is presented for global health monitoring of large structures such as high‐rise building structures through adroit integration of 2 signal processing techniques, synchrosqueezed wavelet transform and fast Fourier transform, an unsupervised machine learning technique, the restri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The structural design of tall and special buildings Jg. 26; H. 18
Hauptverfasser: Rafiei, Mohammad Hossein, Adeli, Hojjat
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Wiley Subscription Services, Inc 25.12.2017
Schlagworte:
ISSN:1541-7794, 1541-7808
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Summary A novel model is presented for global health monitoring of large structures such as high‐rise building structures through adroit integration of 2 signal processing techniques, synchrosqueezed wavelet transform and fast Fourier transform, an unsupervised machine learning technique, the restricted Boltzmann machine, and a recently developed supervised classification algorithm called neural dynamics classification (NDC) algorithm. The model extracts hidden features in the frequency domain of the denoised measured response signals recorded by sensors on different elevations or floors of a structure. The extracted features are used as an input of the NDC to detect and classify the global health of the structure into categories such as healthy, light damage, moderate damage, severe damage, and near collapse. The proposed model is validated using the data obtained from a 3D 1:20 scaled 38‐story reinforced concrete building structure. The results are compared with 3 other supervised classification algorithms: k‐nearest neighbor (KNN), probabilistic neural networks (PNN), and enhanced PNN (EPNN). NDC, EPNN, PNN, and KNN yield maximum average accuracies of 96%, 94%, 92%, and 82%, respectively.
AbstractList Summary A novel model is presented for global health monitoring of large structures such as high-rise building structures through adroit integration of 2 signal processing techniques, synchrosqueezed wavelet transform and fast Fourier transform, an unsupervised machine learning technique, the restricted Boltzmann machine, and a recently developed supervised classification algorithm called neural dynamics classification (NDC) algorithm. The model extracts hidden features in the frequency domain of the denoised measured response signals recorded by sensors on different elevations or floors of a structure. The extracted features are used as an input of the NDC to detect and classify the global health of the structure into categories such as healthy, light damage, moderate damage, severe damage, and near collapse. The proposed model is validated using the data obtained from a 3D 1:20 scaled 38-story reinforced concrete building structure. The results are compared with 3 other supervised classification algorithms: k-nearest neighbor (KNN), probabilistic neural networks (PNN), and enhanced PNN (EPNN). NDC, EPNN, PNN, and KNN yield maximum average accuracies of 96%, 94%, 92%, and 82%, respectively.
A novel model is presented for global health monitoring of large structures such as high‐rise building structures through adroit integration of 2 signal processing techniques, synchrosqueezed wavelet transform and fast Fourier transform, an unsupervised machine learning technique, the restricted Boltzmann machine, and a recently developed supervised classification algorithm called neural dynamics classification (NDC) algorithm. The model extracts hidden features in the frequency domain of the denoised measured response signals recorded by sensors on different elevations or floors of a structure. The extracted features are used as an input of the NDC to detect and classify the global health of the structure into categories such as healthy, light damage, moderate damage, severe damage, and near collapse. The proposed model is validated using the data obtained from a 3D 1:20 scaled 38‐story reinforced concrete building structure. The results are compared with 3 other supervised classification algorithms: k ‐nearest neighbor (KNN), probabilistic neural networks (PNN), and enhanced PNN (EPNN). NDC, EPNN, PNN, and KNN yield maximum average accuracies of 96%, 94%, 92%, and 82%, respectively.
Summary A novel model is presented for global health monitoring of large structures such as high‐rise building structures through adroit integration of 2 signal processing techniques, synchrosqueezed wavelet transform and fast Fourier transform, an unsupervised machine learning technique, the restricted Boltzmann machine, and a recently developed supervised classification algorithm called neural dynamics classification (NDC) algorithm. The model extracts hidden features in the frequency domain of the denoised measured response signals recorded by sensors on different elevations or floors of a structure. The extracted features are used as an input of the NDC to detect and classify the global health of the structure into categories such as healthy, light damage, moderate damage, severe damage, and near collapse. The proposed model is validated using the data obtained from a 3D 1:20 scaled 38‐story reinforced concrete building structure. The results are compared with 3 other supervised classification algorithms: k‐nearest neighbor (KNN), probabilistic neural networks (PNN), and enhanced PNN (EPNN). NDC, EPNN, PNN, and KNN yield maximum average accuracies of 96%, 94%, 92%, and 82%, respectively.
Author Rafiei, Mohammad Hossein
Adeli, Hojjat
Author_xml – sequence: 1
  givenname: Mohammad Hossein
  orcidid: 0000-0003-4923-9584
  surname: Rafiei
  fullname: Rafiei, Mohammad Hossein
  organization: The Ohio State University
– sequence: 2
  givenname: Hojjat
  orcidid: 0000-0001-5718-1453
  surname: Adeli
  fullname: Adeli, Hojjat
  email: adeli.1@osu.edu
  organization: The Ohio State University
BookMark eNp10L9OwzAQBnALFYm2IPEIllhYUuw4dpKxqvgnVWIpK5HjXBJXqV1sB9SNR-AZeRJSCguC6W74fXfSN0EjYw0gdE7JjBISXwXZzWhCyBEaU57QKM1INvrZ0zw5QRPv14TQnHA2Rk9zbOwLdHgjVasN4A6kM9o0H2_vpfRQYdk11unQbnCwuIIAKuBKbmQDWBvc6qYdqNMecNnrrhqi2AfXq9A78KfouJadh7PvOUWPN9erxV20fLi9X8yXkWI8J5HgtQQhaMoorQUtY65SwlIWA4GU8IxXjKuyoiTJq5xLHgOFNBdCcKliFTM2RReHu1tnn3vwoVjb3pnhZUFzkaVJIpJsULODUs5676AulA4yaGuCk7orKCn2HRZDh8W-wyFw-SuwdXoj3e4vGh3oq-5g968rVvPll_8E_-qDXA
CitedBy_id crossref_primary_10_1111_mice_13166
crossref_primary_10_1111_mice_13043
crossref_primary_10_1111_mice_13164
crossref_primary_10_1111_mice_12633
crossref_primary_10_3233_ICA_180560
crossref_primary_10_1111_mice_12510
crossref_primary_10_1111_mice_12752
crossref_primary_10_1111_mice_12632
crossref_primary_10_1111_mice_12993
crossref_primary_10_1111_mice_12629
crossref_primary_10_3390_buildings12081225
crossref_primary_10_1111_mice_12626
crossref_primary_10_3390_app12189244
crossref_primary_10_1016_j_asoc_2022_108628
crossref_primary_10_1080_15732479_2020_1811991
crossref_primary_10_1111_mice_13298
crossref_primary_10_1177_14759217241252756
crossref_primary_10_1111_mice_12646
crossref_primary_10_1111_mice_12523
crossref_primary_10_1016_j_engappai_2023_107226
crossref_primary_10_1111_mice_12766
crossref_primary_10_1111_mice_12642
crossref_primary_10_1111_mice_12522
crossref_primary_10_1111_mice_12640
crossref_primary_10_1177_1475921720916923
crossref_primary_10_1002_tal_1491
crossref_primary_10_1007_s13349_021_00505_9
crossref_primary_10_1111_mice_70077
crossref_primary_10_1016_j_conbuildmat_2023_132596
crossref_primary_10_1111_mice_12517
crossref_primary_10_1111_mice_13291
crossref_primary_10_1016_j_mtcomm_2024_109278
crossref_primary_10_1155_2021_1102521
crossref_primary_10_1111_mice_13384
crossref_primary_10_1111_mice_13383
crossref_primary_10_1111_mice_12613
crossref_primary_10_1111_mice_12850
crossref_primary_10_1111_mice_12971
crossref_primary_10_1016_j_measurement_2019_01_035
crossref_primary_10_1111_mice_12848
crossref_primary_10_1177_14759217251316532
crossref_primary_10_1111_mice_12605
crossref_primary_10_1002_tal_2115
crossref_primary_10_1007_s10921_020_00744_8
crossref_primary_10_1007_s13349_023_00683_8
crossref_primary_10_1111_mice_12980
crossref_primary_10_1111_mice_13154
crossref_primary_10_1111_mice_12503
crossref_primary_10_1111_mice_12625
crossref_primary_10_1111_mice_12741
crossref_primary_10_1111_mice_12500
crossref_primary_10_1111_mice_13399
crossref_primary_10_1016_j_camwa_2025_02_004
crossref_primary_10_1111_mice_13390
crossref_primary_10_1061__ASCE_PS_1949_1204_0000557
crossref_primary_10_3390_rs17050935
crossref_primary_10_3390_cryst11020210
crossref_primary_10_1111_mice_13001
crossref_primary_10_1111_mice_13000
crossref_primary_10_1111_mice_12954
crossref_primary_10_1016_j_engappai_2024_109438
crossref_primary_10_1111_mice_13009
crossref_primary_10_1002_stc_2571
crossref_primary_10_1111_mice_12710
crossref_primary_10_3390_s21062005
crossref_primary_10_1111_mice_12708
crossref_primary_10_1111_mice_12826
crossref_primary_10_1177_14759217221097868
crossref_primary_10_1088_1757_899X_1150_1_012019
crossref_primary_10_1061__ASCE_CO_1943_7862_0001570
crossref_primary_10_1111_mice_13374
crossref_primary_10_1111_mice_13130
crossref_primary_10_1111_mice_13372
crossref_primary_10_1111_mice_13370
crossref_primary_10_1016_j_autcon_2022_104381
crossref_primary_10_1111_mice_12602
crossref_primary_10_1111_mice_12845
crossref_primary_10_1111_mice_13014
crossref_primary_10_3233_ICA_230714
crossref_primary_10_1080_15732479_2024_2355929
crossref_primary_10_1016_j_ymssp_2020_107077
crossref_primary_10_1111_mice_12837
crossref_primary_10_1111_mice_12959
crossref_primary_10_3390_app13042553
crossref_primary_10_1016_j_jclepro_2022_135334
crossref_primary_10_1016_j_measurement_2020_107858
crossref_primary_10_1007_s40430_022_03818_y
crossref_primary_10_1111_mice_13464
crossref_primary_10_1111_mice_12375
crossref_primary_10_1111_mice_12493
crossref_primary_10_1111_mice_13461
crossref_primary_10_3390_s20072069
crossref_primary_10_1111_mice_12499
crossref_primary_10_1111_mice_13105
crossref_primary_10_3233_JIFS_191105
crossref_primary_10_1016_j_autcon_2021_103786
crossref_primary_10_1111_mice_12497
crossref_primary_10_1111_mice_13224
crossref_primary_10_1111_mice_13466
crossref_primary_10_1111_mice_13102
crossref_primary_10_3390_infrastructures9090145
crossref_primary_10_1016_j_engstruct_2018_10_065
crossref_primary_10_3233_ICA_200632
crossref_primary_10_1002_eqe_3892
crossref_primary_10_3233_ICA_200638
crossref_primary_10_1111_mice_13110
crossref_primary_10_3233_ICA_210651
crossref_primary_10_1111_mice_13472
crossref_primary_10_1111_mice_13470
crossref_primary_10_1016_j_autcon_2020_103470
crossref_primary_10_1111_mice_13119
crossref_primary_10_1007_s40430_025_05697_5
crossref_primary_10_1111_mice_13117
crossref_primary_10_1111_mice_12389
crossref_primary_10_1111_mice_12387
crossref_primary_10_1177_14759217211061518
crossref_primary_10_1111_mice_13113
crossref_primary_10_1111_mice_13355
crossref_primary_10_1111_mice_12817
crossref_primary_10_1061_JSENDH_STENG_13467
crossref_primary_10_1111_mice_12594
crossref_primary_10_1111_mice_13200
crossref_primary_10_3390_jimaging10040093
crossref_primary_10_1111_mice_12595
crossref_primary_10_1002_stc_2777
crossref_primary_10_1002_stc_2897
crossref_primary_10_1016_j_jobe_2020_101816
crossref_primary_10_1111_mice_13329
crossref_primary_10_1111_mice_12477
crossref_primary_10_1111_mice_13204
crossref_primary_10_1111_mice_13202
crossref_primary_10_1111_mice_12476
crossref_primary_10_1016_j_matpr_2022_08_204
crossref_primary_10_1007_s00521_025_11387_z
crossref_primary_10_1111_mice_70000
crossref_primary_10_4028_www_scientific_net_KEM_846_47
crossref_primary_10_1007_s13349_023_00688_3
crossref_primary_10_1177_14759217251348421
crossref_primary_10_1155_2020_3714973
crossref_primary_10_1111_mice_12485
crossref_primary_10_1111_mice_12480
crossref_primary_10_3390_app11020813
crossref_primary_10_1111_mice_12481
crossref_primary_10_3390_ai5030074
crossref_primary_10_1007_s11831_021_09666_8
crossref_primary_10_1177_14759217241239041
crossref_primary_10_1111_mice_12367
crossref_primary_10_1111_mice_12488
crossref_primary_10_1111_mice_13336
crossref_primary_10_1111_mice_13333
crossref_primary_10_1007_s00366_021_01584_4
crossref_primary_10_3390_s20092710
crossref_primary_10_1016_j_autcon_2022_104739
crossref_primary_10_1111_mice_12451
crossref_primary_10_1111_mice_12573
crossref_primary_10_1111_mice_12570
crossref_primary_10_1111_mice_12692
crossref_primary_10_1007_s11804_022_00263_0
crossref_primary_10_1016_j_autcon_2022_104271
crossref_primary_10_1111_mice_12459
crossref_primary_10_1111_mice_12578
crossref_primary_10_1111_mice_12458
crossref_primary_10_1111_mice_12579
crossref_primary_10_1007_s10999_023_09692_3
crossref_primary_10_1111_mice_12454
crossref_primary_10_1111_mice_70021
crossref_primary_10_1016_j_mechrescom_2023_104087
crossref_primary_10_1111_mice_12460
crossref_primary_10_1111_mice_12580
crossref_primary_10_1155_2022_6557898
crossref_primary_10_1016_j_ijdrr_2025_105294
crossref_primary_10_1111_mice_13313
crossref_primary_10_1177_14759217231206178
crossref_primary_10_1007_s11831_020_09471_9
crossref_primary_10_1016_j_jweia_2024_105698
crossref_primary_10_1007_s41062_023_01217_3
crossref_primary_10_3390_en15093109
crossref_primary_10_1111_mice_12793
crossref_primary_10_1111_mice_13088
crossref_primary_10_3390_buildings14061711
crossref_primary_10_1111_mice_13086
crossref_primary_10_1007_s13369_022_06731_7
crossref_primary_10_1111_mice_13084
crossref_primary_10_1177_1077546320929145
crossref_primary_10_1111_mice_12558
crossref_primary_10_1111_mice_13406
crossref_primary_10_1111_mice_13527
crossref_primary_10_3233_ICA_190603
crossref_primary_10_1111_mice_12799
crossref_primary_10_1111_mice_12433
crossref_primary_10_1111_mice_12675
crossref_primary_10_1016_j_asoc_2023_111174
crossref_primary_10_1111_mice_12797
crossref_primary_10_1016_j_aei_2020_101105
crossref_primary_10_1111_mice_12794
crossref_primary_10_1007_s40997_021_00462_0
crossref_primary_10_1111_mice_12428
crossref_primary_10_1111_mice_12549
crossref_primary_10_3390_polym14081517
crossref_primary_10_3390_app8112068
crossref_primary_10_1111_mice_12561
crossref_primary_10_1109_TNNLS_2022_3190448
crossref_primary_10_1111_mice_12562
crossref_primary_10_1111_mice_12680
crossref_primary_10_1007_s13296_024_00815_w
crossref_primary_10_1007_s11042_022_12703_8
crossref_primary_10_1016_j_istruc_2023_03_152
crossref_primary_10_3233_ICA_180596
crossref_primary_10_1016_j_cscm_2021_e00719
crossref_primary_10_1111_mice_12448
crossref_primary_10_1111_mice_12449
crossref_primary_10_3390_ma15134512
crossref_primary_10_1111_mice_12567
crossref_primary_10_1111_mice_12447
crossref_primary_10_1111_mice_12568
crossref_primary_10_1111_mice_12689
crossref_primary_10_1007_s00521_019_04025_y
crossref_primary_10_1111_mice_12686
crossref_primary_10_1177_14759217231207762
crossref_primary_10_1016_j_engappai_2023_106858
crossref_primary_10_1111_mice_12563
crossref_primary_10_1111_mice_13411
crossref_primary_10_1111_mice_12564
crossref_primary_10_1111_mice_12685
crossref_primary_10_1016_j_autcon_2021_103821
crossref_primary_10_1016_j_cma_2021_113741
crossref_primary_10_1111_mice_13409
crossref_primary_10_1155_2019_5954104
crossref_primary_10_3846_jcem_2021_14348
crossref_primary_10_1016_j_istruc_2022_08_089
crossref_primary_10_1111_mice_13067
crossref_primary_10_1111_mice_12890
crossref_primary_10_1111_mice_13186
crossref_primary_10_1111_mice_12536
crossref_primary_10_1111_mice_70059
crossref_primary_10_3389_fmats_2022_1058407
crossref_primary_10_1111_mice_12658
crossref_primary_10_1111_mice_12655
crossref_primary_10_1016_j_engstruct_2017_10_070
crossref_primary_10_1016_j_engstruct_2021_112412
crossref_primary_10_1080_14680629_2019_1614969
crossref_primary_10_1111_mice_12411
crossref_primary_10_1111_mice_12532
crossref_primary_10_1111_mice_12412
crossref_primary_10_1111_mice_12533
crossref_primary_10_1016_j_autcon_2024_105641
crossref_primary_10_1016_j_istruc_2021_12_067
crossref_primary_10_1016_j_cmpb_2018_04_012
crossref_primary_10_1111_mice_12408
crossref_primary_10_1111_mice_12406
crossref_primary_10_1111_mice_13181
crossref_primary_10_1002_aisy_202300480
crossref_primary_10_1111_mice_12660
crossref_primary_10_1061__ASCE_ST_1943_541X_0003041
crossref_primary_10_1002_tal_1914
crossref_primary_10_1111_mice_13076
crossref_primary_10_1111_mice_12666
crossref_primary_10_1111_mice_12425
crossref_primary_10_1111_mice_12546
crossref_primary_10_1111_mice_12422
crossref_primary_10_1111_mice_12543
crossref_primary_10_1111_mice_12783
crossref_primary_10_1111_mice_12421
crossref_primary_10_1061_NHREFO_NHENG_1950
crossref_primary_10_3390_app13127212
crossref_primary_10_1111_mice_12417
crossref_primary_10_1111_mice_12539
crossref_primary_10_1007_s00521_019_04146_4
crossref_primary_10_1111_mice_13070
crossref_primary_10_1111_mice_13191
crossref_primary_10_1088_1361_6501_ac4b8d
crossref_primary_10_1016_j_conbuildmat_2018_04_050
Cites_doi 10.1111/j.1467-8667.2005.00403.x
10.21595/jve.2016.17218
10.1126/science.1127647
10.1061/(ASCE)0733-9364(1998)124:1(18)
10.1111/mice.12217
10.1142/S0129065713500251
10.1016/0045-7949(95)00048-L
10.1111/mice.12059
10.1111/mice.12004
10.1016/j.jsv.2005.06.016
10.1111/mice.12147
10.1111/mice.12198
10.1016/j.jsv.2005.03.016
10.1111/j.1467-8667.2012.00777.x
10.1111/mice.12169
10.1016/j.jneumeth.2011.01.027
10.1111/mice.12144
10.1088/0964-1726/24/12/125040
10.1111/mice.12112
10.1002/eqe.1192
10.1111/mice.12124
10.1111/j.1467-8667.2011.00735.x
10.1061/(ASCE)ST.1943-541X.0000366
10.1088/0964-1726/24/6/065034
10.1111/j.1467-8667.2012.00766.x
10.1111/mice.12005
10.3233/ICA-150505
10.1111/mice.12126
10.3233/ICA-150482
10.1111/mice.12122
10.1109/IEMBS.2008.4649729
10.1061/(ASCE)CO.1943-7862.0001047
10.1111/j.1467-8667.2010.00686.x
10.1190/geo2012-0199.1
10.1007/s11831-014-9135-7
10.1111/j.1467-8667.2006.00434.x
10.1111/mice.12146
10.1111/mice.12231
10.1016/0096-3003(94)90134-1
10.1016/j.scient.2012.09.002
10.1111/mice.12106
10.1201/9781315214764
10.1111/mice.12227
10.1061/(ASCE)0733-9445(2006)132:1(102)
10.1111/j.1467-8667.2004.00360.x
10.1016/j.acha.2010.08.002
10.1111/mice.12086
10.1002/nme.1964
10.1016/j.ijnonlinmec.2011.07.011
10.14359/51689560
10.1111/mice.12141
10.1109/TSP.2013.2265222
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/tal.1400
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1541-7808
EndPage n/a
ExternalDocumentID 10_1002_tal_1400
TAL1400
Genre article
GroupedDBID .3N
.GA
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HZ~
I-F
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
XV2
~IA
~IF
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
1OB
7ST
8FD
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c3590-65fae6617311f61b25c703732e0e70585d35cbd1049d95a52e1e796665ac2c233
IEDL.DBID DRFUL
ISICitedReferencesCount 306
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419944600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1541-7794
IngestDate Wed Aug 13 09:49:13 EDT 2025
Tue Nov 18 21:44:00 EST 2025
Sat Nov 29 07:50:09 EST 2025
Wed Jan 22 17:10:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3590-65fae6617311f61b25c703732e0e70585d35cbd1049d95a52e1e796665ac2c233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5718-1453
0000-0003-4923-9584
PQID 1968744648
PQPubID 2034345
PageCount 11
ParticipantIDs proquest_journals_1968744648
crossref_citationtrail_10_1002_tal_1400
crossref_primary_10_1002_tal_1400
wiley_primary_10_1002_tal_1400_TAL1400
PublicationCentury 2000
PublicationDate 25 December 2017
PublicationDateYYYYMMDD 2017-12-25
PublicationDate_xml – month: 12
  year: 2017
  text: 25 December 2017
  day: 25
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The structural design of tall and special buildings
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 28
2013; 23
1995; 57
2015; 30
2013; 61
2015; 142
2009
1998
2016; 31
2008
2011; 30
2006; 132
2005; 20
2007
1996
2012; 19
2006; 291
2007; 71
2006; 290
2014; 29
2016; 18
2006; 313
1994; 62
2014; 21
2011; 197
2015; 24
2004; 19
2017a
2006; 21
2013; 78
2010; 137
2015; 22
2012; 27
2011; 26
2017b; 114
2012; 47
1998; 124
2016; 26
2012; 41
2016; 23
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_23_1
e_1_2_5_46_1
Daubechies I. (e_1_2_5_47_1) 1996
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
Li Z. (e_1_2_5_26_1) 2016; 26
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_3_1
e_1_2_5_19_1
Paris P. C. D. (e_1_2_5_52_1) 2015; 22
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_60_1
Lee J. (e_1_2_5_41_1) 2007
e_1_2_5_20_1
Rafiei M. H. (e_1_2_5_42_1) 2017
e_1_2_5_14_1
e_1_2_5_39_1
Adeli H. (e_1_2_5_48_1) 2009
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
Palomo E. J. (e_1_2_5_31_1) 2016; 26
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
Rafiei M. H. (e_1_2_5_54_1) 2015; 142
Qarib H. (e_1_2_5_5_1) 2014; 21
e_1_2_5_18_1
e_1_2_5_50_1
References_xml – volume: 27
  start-page: 202
  issue: 3
  year: 2012
  publication-title: Comput. Aided Civ. Inf. Eng.
– year: 2009
– volume: 124
  start-page: 18
  issue: 1
  year: 1998
  publication-title: J. Constr. Eng. M. ASCE
– volume: 31
  start-page: 633
  issue: 8
  year: 2016
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 23
  issue: 06
  year: 2013
  publication-title: Int. J. Neural Syst.
– year: 2007
  publication-title: J. Intell. Mater. Syst. Struct.
– volume: 30
  start-page: 151
  issue: 2
  year: 2015
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 30
  start-page: 636
  issue: 8
  year: 2015
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 31
  start-page: 846
  issue: 11
  year: 2016
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 20
  start-page: 369
  issue: 5
  year: 2005
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 30
  start-page: 759
  issue: 10
  year: 2015
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 19
  start-page: 324
  issue: 5
  year: 2004
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 30
  start-page: 843
  issue: 11
  year: 2015
  publication-title: Comput. Aided Civ. Inf. Eng.
– year: 1998
– volume: 30
  start-page: 859
  issue: 11
  year: 2015
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 114
  start-page: 237
  issue: 2
  year: 2017b
  publication-title: ACI Mater. J.
– volume: 197
  start-page: 165
  issue: 1
  year: 2011
  publication-title: J. Neurosci. Methods
– volume: 62
  start-page: 81
  issue: 1
  year: 1994
  publication-title: Appl. Math. Comput.
– volume: 27
  start-page: 687
  issue: 9
  year: 2012
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 19
  start-page: 1355
  issue: 6
  year: 2012
  publication-title: Sci. Iran.
– year: 2017a
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 21
  start-page: 1733
  issue: 6
  year: 2014
  publication-title: Sci. Iran. Trans. A
– volume: 57
  start-page: 383
  issue: 3
  year: 1995
  publication-title: Comput. Struct.
– volume: 24
  issue: 6
  year: 2015
  publication-title: Smart Mater. Struct.
– volume: 23
  start-page: 115
  issue: 2
  year: 2016
  publication-title: Integrated Computer‐Aided Engineering
– volume: 26
  issue: 3
  year: 2016
  publication-title: Struct. Design Tall Spec. Build.
– volume: 31
  start-page: 887
  issue: 11
  year: 2016
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 21
  start-page: 268
  issue: 4
  year: 2006
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 26
  start-page: 190
  issue: 3
  year: 2011
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 132
  start-page: 102
  issue: 1
  year: 2006
  publication-title: J. Struct. Eng.
– volume: 27
  start-page: 699
  issue: 9
  year: 2012
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 22
  start-page: 135
  issue: 2
  year: 2015
  publication-title: Integrated Computer‐Aided Engineering
– volume: 30
  start-page: 330
  issue: 5
  year: 2015
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 23
  start-page: 1
  issue: 1
  year: 2016
  publication-title: Archives of Computational Methods in Engineering
– volume: 30
  start-page: 376
  issue: 5
  year: 2015
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 78
  start-page: O9
  issue: 2
  year: 2013
  publication-title: Geophysics
– volume: 31
  start-page: 465
  issue: 6
  year: 2016
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 29
  start-page: 416
  issue: 6
  year: 2014
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 137
  start-page: 1518
  issue: 12
  year: 2010
  publication-title: J. Struct. Eng.
– volume: 30
  start-page: 347
  issue: 5
  year: 2015
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 29
  start-page: 221
  issue: 3
  year: 2014
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 28
  start-page: 434
  issue: 6
  year: 2013
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 26
  issue: 3
  year: 2016
  publication-title: Int. J. Neural Syst.
– volume: 291
  start-page: 349
  issue: 1
  year: 2006
  publication-title: J. Sound Vib.
– volume: 30
  start-page: 243
  issue: 2
  year: 2011
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 71
  start-page: 606
  issue: 5
  year: 2007
  publication-title: Int. J. Numer. Methods Eng.
– volume: 47
  start-page: 1
  issue: 1
  year: 2012
  publication-title: Int.J. Non‐Linear Mech.
– volume: 18
  start-page: 2186
  issue: 4
  year: 2016
  publication-title: Journal of Vibroengineering
– volume: 61
  start-page: 3999
  issue: 16
  year: 2013
  publication-title: IEEE Trans. Signal Process.
– start-page: 2586
  year: 2008
  end-page: 2589
– start-page: 527
  year: 1996
  publication-title: Wavelets in Medicine and Biology
– volume: 24
  start-page: 125040
  year: 2015
  publication-title: Smart Mater. Struct.
– volume: 30
  start-page: 703
  issue: 9
  year: 2015
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 41
  start-page: 1609
  issue: 12
  year: 2012
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 30
  start-page: 785
  issue: 10
  year: 2015
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 30
  start-page: 771
  issue: 10
  year: 2015
  publication-title: Comput. Aided Civ. Inf. Eng.
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  publication-title: Science
– volume: 142
  issue: 2
  year: 2015
  publication-title: J. Constr. Eng. Manag.
– volume: 290
  start-page: 242
  issue: 1–2
  year: 2006
  publication-title: J. Sound Vib.
– ident: e_1_2_5_40_1
  doi: 10.1111/j.1467-8667.2005.00403.x
– ident: e_1_2_5_39_1
  doi: 10.21595/jve.2016.17218
– ident: e_1_2_5_53_1
  doi: 10.1126/science.1127647
– ident: e_1_2_5_56_1
  doi: 10.1061/(ASCE)0733-9364(1998)124:1(18)
– ident: e_1_2_5_12_1
  doi: 10.1111/mice.12217
– ident: e_1_2_5_22_1
  doi: 10.1142/S0129065713500251
– ident: e_1_2_5_43_1
  doi: 10.1016/0045-7949(95)00048-L
– ident: e_1_2_5_21_1
  doi: 10.1111/mice.12059
– ident: e_1_2_5_13_1
  doi: 10.1111/mice.12004
– volume: 26
  issue: 3
  year: 2016
  ident: e_1_2_5_26_1
  publication-title: Struct. Design Tall Spec. Build.
– ident: e_1_2_5_20_1
  doi: 10.1016/j.jsv.2005.06.016
– ident: e_1_2_5_3_1
  doi: 10.1111/mice.12147
– ident: e_1_2_5_27_1
  doi: 10.1111/mice.12198
– ident: e_1_2_5_60_1
  doi: 10.1016/j.jsv.2005.03.016
– ident: e_1_2_5_45_1
  doi: 10.1111/j.1467-8667.2012.00777.x
– ident: e_1_2_5_7_1
  doi: 10.1111/mice.12169
– ident: e_1_2_5_59_1
  doi: 10.1016/j.jneumeth.2011.01.027
– ident: e_1_2_5_29_1
  doi: 10.1111/mice.12144
– ident: e_1_2_5_38_1
  doi: 10.1088/0964-1726/24/12/125040
– ident: e_1_2_5_11_1
  doi: 10.1111/mice.12112
– ident: e_1_2_5_16_1
  doi: 10.1002/eqe.1192
– ident: e_1_2_5_14_1
  doi: 10.1111/mice.12124
– start-page: 527
  year: 1996
  ident: e_1_2_5_47_1
  publication-title: Wavelets in Medicine and Biology
– ident: e_1_2_5_17_1
  doi: 10.1111/j.1467-8667.2011.00735.x
– ident: e_1_2_5_32_1
  doi: 10.1061/(ASCE)ST.1943-541X.0000366
– ident: e_1_2_5_25_1
  doi: 10.1088/0964-1726/24/6/065034
– year: 2017
  ident: e_1_2_5_42_1
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– ident: e_1_2_5_33_1
  doi: 10.1111/j.1467-8667.2012.00766.x
– ident: e_1_2_5_15_1
  doi: 10.1111/mice.12005
– ident: e_1_2_5_51_1
  doi: 10.3233/ICA-150505
– year: 2007
  ident: e_1_2_5_41_1
  publication-title: J. Intell. Mater. Syst. Struct.
– ident: e_1_2_5_9_1
  doi: 10.1111/mice.12126
– volume: 22
  start-page: 135
  issue: 2
  year: 2015
  ident: e_1_2_5_52_1
  publication-title: Integrated Computer‐Aided Engineering
  doi: 10.3233/ICA-150482
– ident: e_1_2_5_6_1
  doi: 10.1111/mice.12122
– ident: e_1_2_5_35_1
  doi: 10.1109/IEMBS.2008.4649729
– volume: 142
  issue: 2
  year: 2015
  ident: e_1_2_5_54_1
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001047
– ident: e_1_2_5_18_1
  doi: 10.1111/j.1467-8667.2010.00686.x
– ident: e_1_2_5_36_1
  doi: 10.1190/geo2012-0199.1
– ident: e_1_2_5_28_1
  doi: 10.1007/s11831-014-9135-7
– ident: e_1_2_5_50_1
  doi: 10.1111/j.1467-8667.2006.00434.x
– ident: e_1_2_5_8_1
  doi: 10.1111/mice.12146
– ident: e_1_2_5_30_1
  doi: 10.1111/mice.12231
– ident: e_1_2_5_58_1
  doi: 10.1016/0096-3003(94)90134-1
– ident: e_1_2_5_10_1
  doi: 10.1016/j.scient.2012.09.002
– ident: e_1_2_5_4_1
  doi: 10.1111/mice.12106
– ident: e_1_2_5_57_1
  doi: 10.1201/9781315214764
– volume: 26
  issue: 3
  year: 2016
  ident: e_1_2_5_31_1
  publication-title: Int. J. Neural Syst.
– ident: e_1_2_5_19_1
  doi: 10.1111/mice.12227
– ident: e_1_2_5_23_1
  doi: 10.1061/(ASCE)0733-9445(2006)132:1(102)
– ident: e_1_2_5_24_1
  doi: 10.1111/j.1467-8667.2004.00360.x
– ident: e_1_2_5_46_1
  doi: 10.1016/j.acha.2010.08.002
– ident: e_1_2_5_49_1
  doi: 10.1111/mice.12086
– volume-title: Intelligent Infrastructure: Neural Networks, Wavelets, and Chaos Theory for Intelligent Transportation Systems and Smart Structures
  year: 2009
  ident: e_1_2_5_48_1
– volume: 21
  start-page: 1733
  issue: 6
  year: 2014
  ident: e_1_2_5_5_1
  publication-title: Sci. Iran. Trans. A
– ident: e_1_2_5_44_1
  doi: 10.1002/nme.1964
– ident: e_1_2_5_34_1
  doi: 10.1016/j.ijnonlinmec.2011.07.011
– ident: e_1_2_5_55_1
  doi: 10.14359/51689560
– ident: e_1_2_5_2_1
  doi: 10.1111/mice.12141
– ident: e_1_2_5_37_1
  doi: 10.1109/TSP.2013.2265222
SSID ssj0019053
Score 2.5704083
Snippet Summary A novel model is presented for global health monitoring of large structures such as high‐rise building structures through adroit integration of 2...
A novel model is presented for global health monitoring of large structures such as high‐rise building structures through adroit integration of 2 signal...
Summary A novel model is presented for global health monitoring of large structures such as high-rise building structures through adroit integration of 2...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial intelligence
Classification
Concrete
Concrete construction
Damage detection
Data processing
Fast Fourier transformations
Feature extraction
Fourier transforms
Global health
health monitoring
High rise buildings
high‐rise building
Information processing
Learning algorithms
Machine learning
neural dynamics model of Adeli and Park
Neural networks
Noise reduction
Reinforced concrete
Signal processing
Structural damage
tall building
Wavelet transforms
Title A novel machine learning‐based algorithm to detect damage in high‐rise building structures
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftal.1400
https://www.proquest.com/docview/1968744648
Volume 26
WOSCitedRecordID wos000419944600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1541-7808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019053
  issn: 1541-7794
  databaseCode: DRFUL
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA6yedCD3-J0SgTRU1mTNOt6HOrwMIbIBjtZ0iSdg7WVbe7sT_A3-kt806bbBAXBUy9vIOTjfZ-nSZ4HoSuhAEYzBexEKOp4ERAUAcDYiYWrAf770pMqN5vwe73WcBg82luV5i1MoQ-x_OFmdkaer80GF9GssRINNdgU2AHQ9ap5UwXEq3r31Bl0l2cIgZtrUAJGIIAhA6-UnnVpo2z7vRitEOY6Ts0LTWf3P13cQzsWXuJ2sR720YZOD9D2mujgIXpu4zRb6AlO8nuUGlvjiNHn-4epaQqLySibjucvCZ5nWGlzzICVSCDz4HGKjcAxhEJy0Diyptq4kKF9A-5-hAad-_7tg2NdFhzJeADckcdCQ5X2GSFxk0SUS8gCPqPa1b4LbEIxLiMFtC1QARecaqJ9IElNLiSVlLFjVEmzVJ8gHBAuAY4I5rHY8wCK6NgHwEig4hlvG1FDN-Vwh9JKkBsnjElYiCfT0PikmBGroctl5Gshu_FDTL2csdBuvFkICcUI-je9Vg1d53Pza_uw3-6a7-lfA8_QFjVFnVCH8jqqwMjqc7QpF_PxbHphl98XY3DemQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3IJqgPfovzM4LoU1mbNO2KT0MdE-sQmeCTJUvSOdha0blnf4K_0V_iTT-mgoLgU19uoCS5956TtOcAHAqFMJopZCdCUcvtIUERCIytWNga4b8vXakyswm_02nc3QXXM3BS_guT60NMD9xMZmT12iS4OZCuf6qGGnCK9AD5etX1mN-oQPXspnUbTi8RAjsToUSQ4CCIDNxSe9am9XLs9270CTG_AtWs07SW_vWOy7BYAEzSzHfECszoZBUWvsgOrsF9kyTpRA_JKPuSUpPCOqL__vpmupoiYthPnwbjhxEZp0Rpc9FAlBhh7SGDhBiJYwzF8qBJr7DVJrkQ7Quy93W4bZ13T9tW4bNgScYDZI88Fhr7tM8cJ_acHuUS64DPqLa1byOfUIzLnkLiFqiAC061o32kSR4XkkrK2AZUkjTRm0ACh0sEJIK5LHZdBCM69hEyOtjzjLuNqMFxOd-RLETIjRfGMMrlk2lknFLMjNXgYBr5mAtv_BCzUy5ZVKTec4QlxUj6e26jBkfZ4vw6Puo2Q_Pc-mvgPsy1u1dhFF50LrdhnpoW71CL8h2o4CzrXZiVk_Hg-Wmv2IsfujDiiQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFL1IFdGFb7FadQTRVWgyj6bBVVGLYilFKnRlmM5MaqFNilbXfoLf6Jd4J4-qoCC4yuYOhJm5956TyZwDcCw1wmimkZ1ITR3eR4IiERg7kXQNwn9fcaVTswm_3a73ekFnDs6KuzCZPsTsg5vNjLRe2wQ3Ex1VP1VDLThFeoB8fZ6LQPASzF_cNu9as0OEwE1FKBEkeAgiA15oz7q0Woz93o0-IeZXoJp2mubqv95xDVZygEka2Y5YhzkTb8DyF9nBTbhvkDh5MSMyTv-kNCS3jhi8v77ZrqaJHA2Sx-H0YUymCdHGHjQQLcdYe8gwJlbiGEOxPBjSz221SSZE-4zsfQvumpfd8ysn91lwFBMBskcRSYN92meeF9W8PhUK64DPqHGN7yKf0EyovkbiFuhASEGNZ3ykSTUhFVWUsW0oxUlsdoAEnlAISCTjLOIcwYiJfISMHvY8624jy3BazHeochFy64UxCjP5ZBpapxQ7Y2U4mkVOMuGNH2IqxZKFeeo9hVhSrKR_jdfLcJIuzq_jw26jZZ-7fw08hMXORTNsXbdv9mCJ2g7vUYeKCpRwks0-LKiX6fDp8SDfih9xDOIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+machine+learning%E2%80%90based+algorithm+to+detect+damage+in+high%E2%80%90rise+building+structures&rft.jtitle=The+structural+design+of+tall+and+special+buildings&rft.au=Rafiei%2C+Mohammad+Hossein&rft.au=Adeli%2C+Hojjat&rft.date=2017-12-25&rft.issn=1541-7794&rft.eissn=1541-7808&rft.volume=26&rft.issue=18&rft_id=info:doi/10.1002%2Ftal.1400&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tal_1400
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-7794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-7794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-7794&client=summon