Numerical analysis of nonlinear fractional Klein–Fock–Gordon equation arising in quantum field theory via Caputo–Fabrizio fractional operator

The present article deals with the solution of nonlinear fractional Klein–Fock–Gordon equation which involved the newly developed Caputo–Fabrizio fractional derivative with non-singular kernel. We adopt fractional homotopy perturbation transform method in order to find the approximate solution of fr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical sciences (Karaj, Iran) Ročník 15; číslo 3; s. 269 - 281
Hlavní autori: Prakash, Amit, Kumar, Ajay, Baskonus, Haci Mehmet, Kumar, Ashok
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Predmet:
ISSN:2008-1359, 2251-7456
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The present article deals with the solution of nonlinear fractional Klein–Fock–Gordon equation which involved the newly developed Caputo–Fabrizio fractional derivative with non-singular kernel. We adopt fractional homotopy perturbation transform method in order to find the approximate solution of fractional Klein–Fock–Gordon equation in the form of rapidly convergent series. Existence and uniqueness analysis of the considered model is provided. We consider few numerical examples to validate the projected technique. The obtained results shows that this method is very efficient, simple in implementation and that it can be applied to solve other nonlinear problems.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2008-1359
2251-7456
DOI:10.1007/s40096-020-00365-2