Numerical analysis of nonlinear fractional Klein–Fock–Gordon equation arising in quantum field theory via Caputo–Fabrizio fractional operator

The present article deals with the solution of nonlinear fractional Klein–Fock–Gordon equation which involved the newly developed Caputo–Fabrizio fractional derivative with non-singular kernel. We adopt fractional homotopy perturbation transform method in order to find the approximate solution of fr...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical sciences (Karaj, Iran) Vol. 15; no. 3; pp. 269 - 281
Main Authors: Prakash, Amit, Kumar, Ajay, Baskonus, Haci Mehmet, Kumar, Ashok
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Subjects:
ISSN:2008-1359, 2251-7456
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The present article deals with the solution of nonlinear fractional Klein–Fock–Gordon equation which involved the newly developed Caputo–Fabrizio fractional derivative with non-singular kernel. We adopt fractional homotopy perturbation transform method in order to find the approximate solution of fractional Klein–Fock–Gordon equation in the form of rapidly convergent series. Existence and uniqueness analysis of the considered model is provided. We consider few numerical examples to validate the projected technique. The obtained results shows that this method is very efficient, simple in implementation and that it can be applied to solve other nonlinear problems.
AbstractList The present article deals with the solution of nonlinear fractional Klein–Fock–Gordon equation which involved the newly developed Caputo–Fabrizio fractional derivative with non-singular kernel. We adopt fractional homotopy perturbation transform method in order to find the approximate solution of fractional Klein–Fock–Gordon equation in the form of rapidly convergent series. Existence and uniqueness analysis of the considered model is provided. We consider few numerical examples to validate the projected technique. The obtained results shows that this method is very efficient, simple in implementation and that it can be applied to solve other nonlinear problems.
Author Prakash, Amit
Kumar, Ashok
Baskonus, Haci Mehmet
Kumar, Ajay
Author_xml – sequence: 1
  givenname: Amit
  orcidid: 0000-0003-0963-4651
  surname: Prakash
  fullname: Prakash, Amit
  email: amitmath@nitkkr.ac.in
  organization: Department of Mathematics, National Institute of Technology
– sequence: 2
  givenname: Ajay
  surname: Kumar
  fullname: Kumar, Ajay
  organization: Department of Mathematics, H. N. B. Garhwal University (A Central University)
– sequence: 3
  givenname: Haci Mehmet
  surname: Baskonus
  fullname: Baskonus, Haci Mehmet
  organization: Department of Mathematics and Science Education, Faculty of Education, Harran University
– sequence: 4
  givenname: Ashok
  surname: Kumar
  fullname: Kumar, Ashok
  organization: Department of Mathematics, H. N. B. Garhwal University (A Central University)
BookMark eNp9kU1uFDEQhS0UpISQC2RliXWDf9p29xKNSEBEsEnWVk3bDg499qTsRpqsuENuyEnwZJBALOJNWa73PVfpvSJHKSdPyDlnbzlj5l3pGRt1xwTrGJNadeIFORFC8c70Sh-1O2NDx6Uaj8lZKXesHWNG1qsT8vhl2XiME8wUEsy7EgvNgbYf5pg8IA0IU4259ejn2cf06-fjRZ6-t3KZ0eVE_f0CewEFjCWmWxoTbU-pLhsaop8drd98xh39EYGuYLvUvPeANcaHmP_1z1uPUDO-Ji8DzMWf_amn5Obiw_XqY3f19fLT6v1VN0k11C544RhorgzXA5cucLcGPY5O8RD8CJMeeej5sDbGKL3WSkrHnQzO9X4wzshT8ubgu8V8v_hS7V1esE1SrFBqELpnQjXVcFBNmEtBH-wU69PGFSHOljO7T8EeUrAtBfuUghUNFf-hW4wbwN3zkDxApYnTrce_Uz1D_QbplqJJ
CitedBy_id crossref_primary_10_1007_s12043_023_02589_y
crossref_primary_10_1007_s11082_023_06123_7
crossref_primary_10_1007_s12043_024_02728_z
crossref_primary_10_1007_s11082_023_05416_1
crossref_primary_10_5269_bspm_76928
crossref_primary_10_3390_sym16121606
crossref_primary_10_1080_17455030_2022_2075954
Cites_doi 10.1002/mma.6886
10.1142/S0217979220502264
10.1142/S0217979220501490
10.1108/ec-02-2020-0091
10.1002/num.22476
10.3390/math8060908
10.1016/j.jppr.2018.07.005
10.1515/phys-2016-0021
10.1016/j.joes.2019.06.001
10.3844/jmssp.2016.23.33
10.1016/j.chaos.2005.08.178
10.1016/j.aej.2015.05.004
10.1016/S0045-7825(99)00018-3
10.1016/j.chaos.2016.03.026
10.3934/math.2020068
10.1016/j.aej.2014.02.001
10.1016/j.amc.2019.124637
10.1016/j.camwa.2010.10.045
10.1016/j.matcom.2020.09.016
10.1016/j.amc.2013.07.088
10.1016/j.aej.2019.12.022
10.1016/j.physleta.2005.10.099
10.1142/S0217979219503508
10.3390/math8030341
10.1016/S0375-9601(00)00330-3
10.1016/j.chaos.2007.02.012
10.1016/j.cnsns.2013.10.001
10.1016/j.matcom.2019.10.010
10.1016/j.aml.2007.07.023
10.1016/j.camwa.2011.03.057
10.1016/j.aml.2013.05.010
10.1016/j.camwa.2010.08.022
10.1007/s40009-013-0209-0
10.1016/j.physleta.2007.01.046
10.1016/j.aej.2020.05.007
10.1016/j.amc.2015.03.037
10.1016/j.aej.2020.02.008
10.1016/j.jde.2004.07.026
10.1016/j.chaos.2020.110096
10.1016/j.cpc.2008.11.012
10.1016/j.aej.2020.01.032
10.1515/nleng-2018-0001
ContentType Journal Article
Copyright Islamic Azad University 2021
Islamic Azad University 2021.
Copyright_xml – notice: Islamic Azad University 2021
– notice: Islamic Azad University 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s40096-020-00365-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2251-7456
EndPage 281
ExternalDocumentID 10_1007_s40096_020_00365_2
GroupedDBID -A0
0R~
2VQ
406
40G
5VS
8FE
8FG
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABJCF
ABJNI
ABMQK
ABSXP
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACGFS
ACHSB
ACIPV
ACOKC
ACPIV
ACZOJ
ADBBV
ADINQ
ADKNI
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AHBYD
AHSBF
AHYZX
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
DPUIP
EBLON
FIGPU
FNLPD
GGCAI
GROUPED_DOAJ
H13
HCIFZ
HG6
IAO
IKXTQ
IPNFZ
ITC
IWAJR
J9A
JZLTJ
KQ8
L6V
LLZTM
M7S
M~E
NPVJJ
NQJWS
OK1
PIMPY
PROAC
PT4
PTHSS
RIG
ROL
RSV
SJYHP
SMT
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c358t-fe2d0a615716813df1dba699d51ffe9ac691f418b77756b6533d1d3fdd4e87d73
IEDL.DBID BENPR
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604458600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2008-1359
IngestDate Wed Nov 05 00:58:25 EST 2025
Tue Nov 18 21:59:33 EST 2025
Sat Nov 29 07:47:54 EST 2025
Fri Feb 21 02:47:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Caputo–Fabrizio fractional operator
Fractional Klein–Fock–Gordon equation
Laplace transform
Fractional Homotopy perturbation transform method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-fe2d0a615716813df1dba699d51ffe9ac691f418b77756b6533d1d3fdd4e87d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0963-4651
OpenAccessLink https://www.proquest.com/docview/2558264025?pq-origsite=%requestingapplication%
PQID 2558264025
PQPubID 2034691
PageCount 13
ParticipantIDs proquest_journals_2558264025
crossref_citationtrail_10_1007_s40096_020_00365_2
crossref_primary_10_1007_s40096_020_00365_2
springer_journals_10_1007_s40096_020_00365_2
PublicationCentury 2000
PublicationDate 20210900
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Mathematical sciences (Karaj, Iran)
PublicationTitleAbbrev Math Sci
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Podlubny (CR57) 1999
Guirao, Baskonus, Kumar (CR11) 2020; 8
Craddock, Platen (CR38) 2004; 207
Yusufoglu (CR45) 2008; 21
Prakash, Kumar (CR27) 2019; 9
Aruna, Ravi Kanth (CR48) 2014; 37
Fainberg, Pimentel (CR55) 2000; 271
He (CR28) 1999; 178
Yokus, Durur, Ahmad, Yao (CR42) 2020; 8
Goyal, Baskonus, Prakash (CR20) 2020; 139
Gupta, Singh (CR30) 2011; 61
Yokus, Kuzu, Demiroglu (CR41) 2019; 33
Veeresha, Prakasha, Kumar (CR50) 2020; 364
Caputo (CR56) 1969
Saelao, Yokchoo (CR35) 2020; 171
Shirkhani, Hoshyara, Rahimipetroudi, Akhavan, Ganji (CR8) 2018; 7
Yokus (CR40) 2020; 2050149
Algahtani (CR31) 2016; 89
Gong, Khan (CR33) 2020; 59
Kochetov (CR53) 2014; 19
Assas (CR18) 2008; 38
Ravi Kanth, Aruna (CR47) 2009; 180
Yépez-Martínez, Gómez-Aguilar (CR34) 2020; 346
Guirao, Baskonus, Kumar, Rawat, Yel (CR9) 2020; 12
Verma, Prakash, Kumar, Singh (CR23) 2019; 4
Gupta (CR13) 2011; 61
Momani, Odibat (CR29) 2007; 365
Prakash, Kumar (CR21) 2016; 14
Khan, Wu (CR1) 2011; 61
Gupta, Kumar, Singh (CR2) 2015; 54
Kumar, Singh, Kumar (CR49) 2014; 53
Yavuz, Yokus (CR44) 2020; 5
Zhenga, Wanga, Fu (CR32) 2020; 138
Prakash, Goyal, Gupta (CR17) 2019; 8
Baskonus, Kumar, Gao (CR12) 2020; 2050152
Jleli, Kumar, Kumar, Samet (CR4) 2020; 59
Prakash, Verma (CR15) 2020
Padmavathi, Prakash, Alagesan, Magesh (CR26) 2020
Singh, Kumar, Singh, Singh (CR51) 2019; 67
Aero, Bulygin, Pavlov (CR54) 2013; 223
Chen, Tian, Qu, Li, Zhao, Tian, Wang (CR43) 2020; 2050226
Khan, Rasheed (CR46) 2015; 4
Prakash, Goyal, Baskonus, Gupta (CR14) 2020; 5
Abuteen, Freihat, Al-Smadi, Khalil, Khan (CR52) 2016; 12
Prakash, Kaur (CR3) 2021; 181
Baleanu, Aydogn, Mohammadi, Rezapour (CR36) 2020; 59
Golshan, Nourazar, Fard, Yildirim, Campo (CR7) 2013; 26
Prakash (CR6) 2016; 5
Abbasbandy (CR5) 2006; 30
Prakash, Kumar, Sharma (CR22) 2015; 260
Prakash, Kaur (CR25) 2018; 9
Prakash, Verma (CR24) 2019; 93
Gupta, Goyal, Prakash (CR19) 2020; 10
Yokus, Durur, Ahmad, Thounthong, Zhang (CR39) 2020; 103409
Diethelm (CR58) 2004
Zhang, Wang, Feng (CR37) 2006; 350
Guirao, Baskonus, Kumar, Causanilles, Bermudez (CR10) 2020; 59
Goyal, Baskonus, Prakash (CR16) 2019; 134
Caputo, Fabrizio (CR59) 2015; 1
A Prakash (365_CR22) 2015; 260
PK Gupta (365_CR30) 2011; 61
Y Chen (365_CR43) 2020; 2050226
H Singh (365_CR51) 2019; 67
JLG Guirao (365_CR10) 2020; 59
A Yokus (365_CR42) 2020; 8
Y Khan (365_CR1) 2011; 61
NA Khan (365_CR46) 2015; 4
A Prakash (365_CR24) 2019; 93
M Craddock (365_CR38) 2004; 207
A Yokus (365_CR41) 2019; 33
M Yavuz (365_CR44) 2020; 5
S Gupta (365_CR19) 2020; 10
S Abbasbandy (365_CR5) 2006; 30
OJJ Algahtani (365_CR31) 2016; 89
E Yusufoglu (365_CR45) 2008; 21
K Diethelm (365_CR58) 2004
JLG Guirao (365_CR9) 2020; 12
HM Baskonus (365_CR12) 2020; 2050152
M Jleli (365_CR4) 2020; 59
A Prakash (365_CR14) 2020; 5
M Caputo (365_CR59) 2015; 1
E Abuteen (365_CR52) 2016; 12
A Prakash (365_CR25) 2018; 9
D Baleanu (365_CR36) 2020; 59
X Gong (365_CR33) 2020; 59
H Yépez-Martínez (365_CR34) 2020; 346
A Yokus (365_CR40) 2020; 2050149
A Prakash (365_CR3) 2021; 181
S Gupta (365_CR2) 2015; 54
A Prakash (365_CR6) 2016; 5
PK Gupta (365_CR13) 2011; 61
JL Zhang (365_CR37) 2006; 350
JLG Guirao (365_CR11) 2020; 8
A Prakash (365_CR17) 2019; 8
A Prakash (365_CR15) 2020
EL Aero (365_CR54) 2013; 223
ASV Ravi Kanth (365_CR47) 2009; 180
AN Golshan (365_CR7) 2013; 26
M Caputo (365_CR56) 1969
V Verma (365_CR23) 2019; 4
BA Kochetov (365_CR53) 2014; 19
M Goyal (365_CR16) 2019; 134
D Kumar (365_CR49) 2014; 53
J Saelao (365_CR35) 2020; 171
A Yokus (365_CR39) 2020; 103409
X Zhenga (365_CR32) 2020; 138
S Momani (365_CR29) 2007; 365
JH He (365_CR28) 1999; 178
MR Shirkhani (365_CR8) 2018; 7
LMB Assas (365_CR18) 2008; 38
V Padmavathi (365_CR26) 2020
K Aruna (365_CR48) 2014; 37
A Prakash (365_CR27) 2019; 9
A Prakash (365_CR21) 2016; 14
VY Fainberg (365_CR55) 2000; 271
I Podlubny (365_CR57) 1999
P Veeresha (365_CR50) 2020; 364
M Goyal (365_CR20) 2020; 139
References_xml – volume: 59
  start-page: 2859
  issue: 5
  year: 2020
  end-page: 2863
  ident: CR4
  article-title: Analytical approach for time fractional wave equations in the sense of Yang–Abdel-Aty–Cattani via the homotopy perturbation transform method
  publication-title: Alex. Eng. J.
– volume: 67
  start-page: 21
  issue: 1
  year: 2019
  end-page: 34
  ident: CR51
  article-title: A reliable numerical algorithm for the fractional Klein–Gordon equation
  publication-title: Eng. Trans.
– volume: 33
  start-page: 1
  issue: 29
  year: 2019
  end-page: 19
  ident: CR41
  article-title: Investigation of solitary wave solutions for the (3 + 1)-dimensional Zakharov–Kuznetsov equation
  publication-title: Int. J. Mod. Phys. B
– volume: 181
  start-page: 298
  year: 2021
  end-page: 315
  ident: CR3
  article-title: Analysis and numerical simulation of fractional Biswas–Milovic model
  publication-title: Math. Comput. Simul.
– volume: 61
  start-page: 250
  issue: 2
  year: 2011
  end-page: 254
  ident: CR30
  article-title: Homotopy perturbation method for fractional Fornberg–Whitham equation
  publication-title: Comput. Math Appl.
– volume: 207
  start-page: 285
  issue: 2
  year: 2004
  end-page: 302
  ident: CR38
  article-title: Symmetry group methods for fundamental solutions
  publication-title: J. Differ. Equ.
– volume: 37
  start-page: 163
  issue: 2
  year: 2014
  end-page: 171
  ident: CR48
  article-title: Two-dimensional differential transform method and modified differential transform method for solving nonlinear fractional Klein–Gordon equation
  publication-title: Nat. Acad. Sci. Lett.
– volume: 5
  start-page: 979
  issue: 2
  year: 2020
  end-page: 1000
  ident: CR14
  article-title: A reliable hybrid numerical method for a time-dependent vibration model of arbitrary order
  publication-title: AIMS Math.
– volume: 4
  start-page: 338
  year: 2019
  end-page: 351
  ident: CR23
  article-title: Numerical study of fractional model of multi-dimensional dispersive partial differential equation
  publication-title: J. Ocean Eng. Sci.
– volume: 271
  start-page: 16
  year: 2000
  end-page: 25
  ident: CR55
  article-title: Duffin–Kemmer–Petiau and Klein–Gordon–Fock equations for electromagnetic, Yang–Mills and external gravitational field interactions: proof of equivalence
  publication-title: Phys. Lett. A
– volume: 4
  start-page: 43
  issue: 1
  year: 2015
  end-page: 48
  ident: CR46
  article-title: Analytical solutions of linear and nonlinear Klein–Fock–Gordon equation
  publication-title: Nonlinear Eng.-Model. Appl.
– volume: 8
  start-page: 164
  year: 2019
  end-page: 171
  ident: CR17
  article-title: Fractional variational iteration method for solving time-fractional Newell–Whitehead–Segel equation
  publication-title: Nonlinear Eng.-Model. Appl.
– volume: 7
  start-page: 247
  issue: 3
  year: 2018
  end-page: 256
  ident: CR8
  article-title: Unsteady time dependent incompressible Newtonian fluid flow between two parallel plates by homotopy analysis method (HAM), homotopy perturbation method (HPM) and collocation method (CM)
  publication-title: Propuls. Power Res.
– volume: 61
  start-page: 2829
  issue: 9
  year: 2011
  end-page: 2842
  ident: CR13
  article-title: Approximate analytical solutions of fractional Benney-Lin equation by reduced differential transform method and the homotopy perturbation method
  publication-title: Comput. Math Appl.
– volume: 139
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR20
  article-title: Regarding new positive, bounded and convergent numerical solution of nonlinear time fractional HIV/AIDS transmission model
  publication-title: Chaos Solitons Fract.
– volume: 14
  start-page: 177
  year: 2016
  end-page: 186
  ident: CR21
  article-title: Numerical solution of two-dimensional time fractional order biological population model
  publication-title: Open Phys.
– volume: 93
  start-page: 1
  issue: 66
  year: 2019
  end-page: 19
  ident: CR24
  article-title: Numerical solution of nonlinear fractional Zakharov–Kuznetsov equation arising in ion-acoustic waves
  publication-title: Pramana-J. Phys.
– volume: 59
  start-page: 2251
  issue: 4
  year: 2020
  end-page: 2259
  ident: CR33
  article-title: A new numerical solution of the competition model among bank data in Caputo–Fabrizio derivative
  publication-title: Alex. Eng. J.
– volume: 12
  start-page: 1
  issue: 17
  year: 2020
  end-page: 10
  ident: CR9
  article-title: Complex patterns to the (3 + 1)-dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation
  publication-title: Symmetry.
– volume: 10
  start-page: 312
  issue: 2
  year: 2020
  end-page: 320
  ident: CR19
  article-title: Numerical treatment of Newell–Whitehead–Segel equation
  publication-title: TWMS J. App. Eng. Math.
– volume: 103409
  start-page: 1
  issue: 19
  year: 2020
  end-page: 8
  ident: CR39
  article-title: Construction of exact traveling wave solutions of the Bogoyavlenskii equation by (G′/G, 1/G)-expansion and (1/G′)-expansion techniques
  publication-title: Results Phys.
– volume: 260
  start-page: 314
  year: 2015
  end-page: 320
  ident: CR22
  article-title: Numerical method for solving coupled Burgers equation
  publication-title: Appl. Math. Comput.
– volume: 171
  start-page: 94
  year: 2020
  end-page: 102
  ident: CR35
  article-title: The solution of Klein–Gordon equation by using modified Adomian decomposition method
  publication-title: Math. Comput. Simul.
– volume: 346
  start-page: 247
  issue: 15
  year: 2020
  end-page: 260
  ident: CR34
  article-title: A new modified definition of Caputo–Fabrizio fractional order derivative and their applications to the multi-step homotopy analysis method
  publication-title: J. Comput. Appl. Math.
– volume: 59
  start-page: 3029
  issue: 5
  year: 2020
  end-page: 3039
  ident: CR36
  article-title: On modelling of epidemic childhood diseases with the Caputo–Fabrizio derivative by using the Laplace Adomian decomposition method
  publication-title: Alex. Eng. J.
– year: 2004
  ident: CR58
  publication-title: The Analysis of Fractional Differential Equations
– volume: 178
  start-page: 257
  issue: 3–4
  year: 1999
  end-page: 262
  ident: CR28
  article-title: Homotopy perturbation technique
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 223
  start-page: 160
  issue: 15
  year: 2013
  end-page: 166
  ident: CR54
  article-title: Functionally invariant solutions of nonlinear Klein–Fock–Gordon equation
  publication-title: Appl. Math. Comput.
– volume: 26
  start-page: 1018
  issue: 10
  year: 2013
  end-page: 1025
  ident: CR7
  article-title: A modified homotopy perturbation method coupled with the Fourier transform for nonlinear and singular Lane–Emden equations
  publication-title: Appl. Math. Lett.
– volume: 59
  start-page: 2149
  issue: 4
  year: 2020
  end-page: 2160
  ident: CR10
  article-title: Complex mixed dark bright wave patterns to the modified and modified Vakhnenko–Parkes equations
  publication-title: Alex. Eng. J.
– volume: 8
  start-page: 341
  issue: 3
  year: 2020
  ident: CR11
  article-title: Regarding new wave patterns of the newly extended nonlinear (2 + 1)-dimensional Boussinesq equation with fourth order
  publication-title: Mathematics.
– volume: 180
  start-page: 708
  year: 2009
  end-page: 711
  ident: CR47
  article-title: Differential transform method for solving the linear and nonlinear Klein–Gordon equation
  publication-title: Comput. Phys. Commun.
– volume: 30
  start-page: 1206
  year: 2006
  end-page: 1212
  ident: CR5
  article-title: Application of He’s homotopy perturbation method for Laplace transform
  publication-title: Chaos Solitons Fract.
– volume: 5
  start-page: 123
  issue: 2
  year: 2016
  end-page: 128
  ident: CR6
  article-title: Analytical method for space-fractional telegraph equation by Homotopy perturbation transform method
  publication-title: Nonlinear Eng.-Model. Appl.
– volume: 9
  start-page: 446
  issue: 3
  year: 2019
  end-page: 454
  ident: CR27
  article-title: Numerical solution of time-fractional order Fokker–Planck equation
  publication-title: TWMS J. App. Eng. Math.
– year: 2020
  ident: CR26
  article-title: Analysis and numerical simulation of novel coronavirus (COVID-19) model with Mittag–Leffler Kernel
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6886
– volume: 2050226
  start-page: 1
  year: 2020
  end-page: 8
  ident: CR43
  article-title: Ablowitz–Kaup Newell–Segur system, conservation laws and Backlund transformation of a variable-coefficient Korteweg-de Vries equation in plasma physics, fluid dynamics or atmospheric science
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979220502264
– volume: 38
  start-page: 1225
  issue: 4
  year: 2008
  end-page: 1228
  ident: CR18
  article-title: Variational iteration method for solving coupled-KdV equations
  publication-title: Chaos Solitons Fract.
– volume: 89
  start-page: 552
  year: 2016
  end-page: 559
  ident: CR31
  article-title: Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model
  publication-title: Chaos Solitons Fract.
– volume: 12
  start-page: 23
  issue: 1
  year: 2016
  end-page: 33
  ident: CR52
  article-title: Approximate series solution of nonlinear fractional Klein–Gordon equations using fractional reduced differential transform method
  publication-title: J. Math. Stat.
– volume: 2050149
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR40
  article-title: On the exact and numerical solutions to the FitzHugh-Nagumo equation
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979220501490
– volume: 2050152
  start-page: 1
  year: 2020
  end-page: 16
  ident: CR12
  article-title: Deeper investigations of the (4 + 1)-dimensional Fokas and (2 + 1)-dimensional Breaking soliton equations
  publication-title: Int. J. Mod. Phys. B
– volume: 19
  start-page: 1723
  issue: 6
  year: 2014
  end-page: 1728
  ident: CR53
  article-title: Lie group symmetries and Riemann function of Klein–Gordon–Fock equation with central symmetry
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– year: 1969
  ident: CR56
  publication-title: Elasticita e Dissipazione
– volume: 53
  start-page: 469
  year: 2014
  end-page: 474
  ident: CR49
  article-title: Numerical computation of Klein–Gordon equations arising in quantum field theory by using homotopy analysis transform method
  publication-title: Alex. Eng. J.
– volume: 134
  start-page: 1
  issue: 482
  year: 2019
  end-page: 10
  ident: CR16
  article-title: An efficient technique for a time fractional model of lassa hemorrhagic fever spreading in pregnant women
  publication-title: Eur. Phys. J. Plus.
– volume: 365
  start-page: 345
  issue: 5–6
  year: 2007
  end-page: 350
  ident: CR29
  article-title: Homotopy perturbation method for nonlinear partial differential equations of fractional order
  publication-title: Phys. Lett. A
– volume: 364
  start-page: 124637
  issue: 1
  year: 2020
  ident: CR50
  article-title: An efficient technique for nonlinear time-fractional Klein–Fock–Gordon equation
  publication-title: Appl. Math. Comput.
– year: 1999
  ident: CR57
  publication-title: Fractional Differential Equations
– year: 2020
  ident: CR15
  article-title: Two efficient computational technique for fractional nonlinear Hirota–Satsuma coupled KdV equations
  publication-title: Eng. Comput.
  doi: 10.1108/ec-02-2020-0091
– volume: 350
  start-page: 103
  issue: 1–2
  year: 2006
  end-page: 109
  ident: CR37
  article-title: The improved F-expansion method and its applications
  publication-title: Phys. Lett. A
– volume: 61
  start-page: 1963
  issue: 8
  year: 2011
  end-page: 1967
  ident: CR1
  article-title: Homotopy perturbation transform method for nonlinear equations using He’s polynomials
  publication-title: Comput. Math Appl.
– volume: 54
  start-page: 645
  issue: 3
  year: 2015
  end-page: 651
  ident: CR2
  article-title: Analytical solutions of convection-diffusion problems by combining Laplace transform method and homotopy perturbation method
  publication-title: Alex. Eng. J.
– volume: 9
  start-page: 44
  issue: 1
  year: 2018
  end-page: 61
  ident: CR25
  article-title: q-homotopy analysis transform method for space and time-fractional KdV-Burgers equation
  publication-title: Nonlinear Sci. Lett. A.
– volume: 21
  start-page: 669
  year: 2008
  end-page: 674
  ident: CR45
  article-title: The variational iteration method for studying the Klein–Gordon equation
  publication-title: Appl. Math. Lett.
– volume: 5
  start-page: 1
  year: 2020
  end-page: 21
  ident: CR44
  article-title: Analytical and numerical approaches to nerve impulse model of fractional-order
  publication-title: Numer Methods Partial Differ. Equ.
  doi: 10.1002/num.22476
– volume: 138
  start-page: 1
  issue: 109966
  year: 2020
  end-page: 7
  ident: CR32
  article-title: Well-posedness of fractional differential equations with variable-order Caputo–Fabrizio derivative
  publication-title: Chaos Solitons Fract.
– volume: 8
  start-page: 1
  issue: 908
  year: 2020
  end-page: 16
  ident: CR42
  article-title: Construction of different types analytic solutions for the Zhiber–Shabat equation
  publication-title: Mathematics.
  doi: 10.3390/math8060908
– volume: 1
  start-page: 73
  year: 2015
  end-page: 85
  ident: CR59
  article-title: A new definition of fractional derivative without singular kernel
  publication-title: Prog. Fract. Differ. Appl.
– volume: 103409
  start-page: 1
  issue: 19
  year: 2020
  ident: 365_CR39
  publication-title: Results Phys.
– volume: 7
  start-page: 247
  issue: 3
  year: 2018
  ident: 365_CR8
  publication-title: Propuls. Power Res.
  doi: 10.1016/j.jppr.2018.07.005
– volume: 9
  start-page: 44
  issue: 1
  year: 2018
  ident: 365_CR25
  publication-title: Nonlinear Sci. Lett. A.
– volume: 5
  start-page: 1
  year: 2020
  ident: 365_CR44
  publication-title: Numer Methods Partial Differ. Equ.
  doi: 10.1002/num.22476
– volume: 14
  start-page: 177
  year: 2016
  ident: 365_CR21
  publication-title: Open Phys.
  doi: 10.1515/phys-2016-0021
– volume: 4
  start-page: 43
  issue: 1
  year: 2015
  ident: 365_CR46
  publication-title: Nonlinear Eng.-Model. Appl.
– volume: 4
  start-page: 338
  year: 2019
  ident: 365_CR23
  publication-title: J. Ocean Eng. Sci.
  doi: 10.1016/j.joes.2019.06.001
– volume: 138
  start-page: 1
  issue: 109966
  year: 2020
  ident: 365_CR32
  publication-title: Chaos Solitons Fract.
– volume: 2050152
  start-page: 1
  year: 2020
  ident: 365_CR12
  publication-title: Int. J. Mod. Phys. B
– volume: 67
  start-page: 21
  issue: 1
  year: 2019
  ident: 365_CR51
  publication-title: Eng. Trans.
– volume: 12
  start-page: 23
  issue: 1
  year: 2016
  ident: 365_CR52
  publication-title: J. Math. Stat.
  doi: 10.3844/jmssp.2016.23.33
– volume: 30
  start-page: 1206
  year: 2006
  ident: 365_CR5
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2005.08.178
– volume: 54
  start-page: 645
  issue: 3
  year: 2015
  ident: 365_CR2
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2015.05.004
– volume: 178
  start-page: 257
  issue: 3–4
  year: 1999
  ident: 365_CR28
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00018-3
– year: 2020
  ident: 365_CR26
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6886
– volume: 9
  start-page: 446
  issue: 3
  year: 2019
  ident: 365_CR27
  publication-title: TWMS J. App. Eng. Math.
– volume: 89
  start-page: 552
  year: 2016
  ident: 365_CR31
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2016.03.026
– volume: 5
  start-page: 979
  issue: 2
  year: 2020
  ident: 365_CR14
  publication-title: AIMS Math.
  doi: 10.3934/math.2020068
– volume: 53
  start-page: 469
  year: 2014
  ident: 365_CR49
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2014.02.001
– volume: 364
  start-page: 124637
  issue: 1
  year: 2020
  ident: 365_CR50
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2019.124637
– volume: 61
  start-page: 250
  issue: 2
  year: 2011
  ident: 365_CR30
  publication-title: Comput. Math Appl.
  doi: 10.1016/j.camwa.2010.10.045
– volume-title: Fractional Differential Equations
  year: 1999
  ident: 365_CR57
– volume: 181
  start-page: 298
  year: 2021
  ident: 365_CR3
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2020.09.016
– volume: 223
  start-page: 160
  issue: 15
  year: 2013
  ident: 365_CR54
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.07.088
– volume: 59
  start-page: 2859
  issue: 5
  year: 2020
  ident: 365_CR4
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2019.12.022
– volume: 350
  start-page: 103
  issue: 1–2
  year: 2006
  ident: 365_CR37
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2005.10.099
– volume: 33
  start-page: 1
  issue: 29
  year: 2019
  ident: 365_CR41
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979219503508
– volume-title: The Analysis of Fractional Differential Equations
  year: 2004
  ident: 365_CR58
– volume: 8
  start-page: 1
  issue: 908
  year: 2020
  ident: 365_CR42
  publication-title: Mathematics.
  doi: 10.3390/math8060908
– volume: 8
  start-page: 341
  issue: 3
  year: 2020
  ident: 365_CR11
  publication-title: Mathematics.
  doi: 10.3390/math8030341
– volume-title: Elasticita e Dissipazione
  year: 1969
  ident: 365_CR56
– volume: 271
  start-page: 16
  year: 2000
  ident: 365_CR55
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(00)00330-3
– volume: 38
  start-page: 1225
  issue: 4
  year: 2008
  ident: 365_CR18
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2007.02.012
– volume: 19
  start-page: 1723
  issue: 6
  year: 2014
  ident: 365_CR53
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2013.10.001
– volume: 2050226
  start-page: 1
  year: 2020
  ident: 365_CR43
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979220502264
– volume: 171
  start-page: 94
  year: 2020
  ident: 365_CR35
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2019.10.010
– year: 2020
  ident: 365_CR15
  publication-title: Eng. Comput.
  doi: 10.1108/ec-02-2020-0091
– volume: 10
  start-page: 312
  issue: 2
  year: 2020
  ident: 365_CR19
  publication-title: TWMS J. App. Eng. Math.
– volume: 21
  start-page: 669
  year: 2008
  ident: 365_CR45
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2007.07.023
– volume: 61
  start-page: 2829
  issue: 9
  year: 2011
  ident: 365_CR13
  publication-title: Comput. Math Appl.
  doi: 10.1016/j.camwa.2011.03.057
– volume: 26
  start-page: 1018
  issue: 10
  year: 2013
  ident: 365_CR7
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2013.05.010
– volume: 134
  start-page: 1
  issue: 482
  year: 2019
  ident: 365_CR16
  publication-title: Eur. Phys. J. Plus.
– volume: 61
  start-page: 1963
  issue: 8
  year: 2011
  ident: 365_CR1
  publication-title: Comput. Math Appl.
  doi: 10.1016/j.camwa.2010.08.022
– volume: 37
  start-page: 163
  issue: 2
  year: 2014
  ident: 365_CR48
  publication-title: Nat. Acad. Sci. Lett.
  doi: 10.1007/s40009-013-0209-0
– volume: 93
  start-page: 1
  issue: 66
  year: 2019
  ident: 365_CR24
  publication-title: Pramana-J. Phys.
– volume: 365
  start-page: 345
  issue: 5–6
  year: 2007
  ident: 365_CR29
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2007.01.046
– volume: 59
  start-page: 3029
  issue: 5
  year: 2020
  ident: 365_CR36
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.05.007
– volume: 260
  start-page: 314
  year: 2015
  ident: 365_CR22
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.03.037
– volume: 59
  start-page: 2251
  issue: 4
  year: 2020
  ident: 365_CR33
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.02.008
– volume: 5
  start-page: 123
  issue: 2
  year: 2016
  ident: 365_CR6
  publication-title: Nonlinear Eng.-Model. Appl.
– volume: 207
  start-page: 285
  issue: 2
  year: 2004
  ident: 365_CR38
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2004.07.026
– volume: 12
  start-page: 1
  issue: 17
  year: 2020
  ident: 365_CR9
  publication-title: Symmetry.
– volume: 139
  start-page: 1
  year: 2020
  ident: 365_CR20
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2020.110096
– volume: 1
  start-page: 73
  year: 2015
  ident: 365_CR59
  publication-title: Prog. Fract. Differ. Appl.
– volume: 180
  start-page: 708
  year: 2009
  ident: 365_CR47
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.11.012
– volume: 346
  start-page: 247
  issue: 15
  year: 2020
  ident: 365_CR34
  publication-title: J. Comput. Appl. Math.
– volume: 2050149
  start-page: 1
  year: 2020
  ident: 365_CR40
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979220501490
– volume: 59
  start-page: 2149
  issue: 4
  year: 2020
  ident: 365_CR10
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.01.032
– volume: 8
  start-page: 164
  year: 2019
  ident: 365_CR17
  publication-title: Nonlinear Eng.-Model. Appl.
  doi: 10.1515/nleng-2018-0001
SSID ssj0000779045
Score 2.2523892
Snippet The present article deals with the solution of nonlinear fractional Klein–Fock–Gordon equation which involved the newly developed Caputo–Fabrizio fractional...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 269
SubjectTerms Applications of Mathematics
Field theory
Mathematics
Mathematics and Statistics
Numerical analysis
Operators (mathematics)
Original Research
Perturbation
Quantum field theory
Quantum theory
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yetCDb3F1lRy8aaHdJn0cZXEVxEV8sbeSNAkU1nbtPkBP_of9h_4SJ-ljVVTQU6GdDmke8-jMfIPQUSg9LmwVWrbLYotQm8CZozrtj3EmCRWeEqbZhN_rBf1-eF0WhY2qbPcqJGkkdV3sRrS5bWl3R4OoUAsE7yKou0Afx5vbh_rPiq0h9Ex3YhPbd1waltUy37P5rJHmZuaXyKhRON21_w11Ha2WBiY-LXbEBlqQ6SZauarRWUdbaNabFHGaAWYlJgnOFE4L1AyWY5UX5Q5AcDmQSfr2OuuC3ITLOfiqWYrlU4EQjnULQxgZTlIMt0B_PWKTE4dNgeQzniYMd9hwMs40D8bz5CXJPvLPhtIE-rfRfffsrnNhlc0ZrNilwdhSsi1sBvYQOFyB4wrlCM68MBTUUUqGLPZCRxEn4L7vU497YFYKR7hKCCIDX_juDmrAd8ldhIkQQNcOOGeExBSEDAhdj4HlF3OwD3kTOdUCRXGJXK4baAyiGnPZTHgEEx6ZCY_aTXRcvzMscDt-pW5V6x6VZ3gUgbMFvhf417SJTqp1nj_-mdve38j30XJbJ8qYxLUWaozziTxAS_F0nIzyQ7O33wFY0fhU
  priority: 102
  providerName: Springer Nature
Title Numerical analysis of nonlinear fractional Klein–Fock–Gordon equation arising in quantum field theory via Caputo–Fabrizio fractional operator
URI https://link.springer.com/article/10.1007/s40096-020-00365-2
https://www.proquest.com/docview/2558264025
Volume 15
WOSCitedRecordID wos000604458600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2251-7456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000779045
  issn: 2008-1359
  databaseCode: M7S
  dateStart: 20120501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2251-7456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000779045
  issn: 2008-1359
  databaseCode: BENPR
  dateStart: 20120501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2251-7456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000779045
  issn: 2008-1359
  databaseCode: PIMPY
  dateStart: 20120501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2251-7456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000779045
  issn: 2008-1359
  databaseCode: RSV
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB5B2gMcCqWtSFsqH3orK_bH3p8TaqMEUJUoSikqp5W9tqWVwm66SSrBiXfoG_IkHXudBJDohdPKu15rrfGOv_HMfANwmqlYSF9nnh_xwqPMp_jPMRP2xwVXlMlYS1tsIhmN0pubbOwO3OYurHKlE62ilnVhzsjfIfRFJIzWDns_u_VM1SjjXXUlNJ7ClmEqox3YuuiPxpP1KYtv6PRspWLr5w8ilrnMGZs_Rw2C94wFZXhZmBf-uTttIOdfXlK7-Qxe_O9nv4QdBzvJebtOduGJql7B8-Gas3W-B_ejZeu9mRLumEpIrUnVcmnwhuimTYLADpdTVVa_ft4PUJvi5QNasHVF1G3LG05MYUOcBykrgrdwV_tGbKQcsWmT38ldyUmPz5aL2ozBRVP-KOvfx69nyrr_9-F60P_c--i5kg1eEbF04WkVSp8jSkIzLA0iqQMpeJxlkgVaq4wXcRZoGqQiSRIWixjBpgxkpKWkKk1kEh1AB-elXgOhUmK_MBWCU1owVD2oimOOeLAQiBpFF4KVqPLC8ZmbshrTfM3EbMWbo3hzK9487MLZ-p1Zy-bxaO_jlUxz92fP841Au_B2tSo2j_892uHjox3Bs9CEy9jwtWPoLJqlegPbxd2inDcnbl2fmNDUK2yNPw3HX7E1ufryAHA4B4k
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLtgTfqlgI-wAmi5mHncagQKixdbXe1hyKVU7BjW4q0TbbZ3VblxH_o_-iP6i_p2El2AYneeuAUKXFGivN5HvbMNwBvExUK6erEcQOeOZS5FNccM2l_XHBFmQy1tM0motEoPj5Oxmtw1dbCmLTKVidaRS3LzOyR76Lri54wRjvs4_TUMV2jzOlq20KjhsVAXZxjyDbb63_G__vO93tfjvYPnKargJMFLJ47WvnS5WjIMVKIvUBqTwoeJolkntYq4VmYeJp6sYiiiIUiRH9IejLQUlIVRzIKUO49WKcI9rgD6-P-cPx9uavjGvo-2xnZ5hV4AUuaSh1br0dNxOCYiM3wwDDH_9Marlzcv05lrbHrPfrfpukxPGzcavKpXgdPYE0VT2FzuOSknT2Dy9GiPp2aEN4wsZBSk6LmCuEV0VVd5IEDBhOVF9e_LntoLfDyFb-jLIg6rXnRiWnciPNG8oLgLbTaJ8RmAhJbFnpBznJO9vl0MS-NDC6q_Gde_i6_nCqb3vAcvt3JrLyADn6X2gJCpcRxfiwEpzRjqFrR1IQc_d1MoFcsuuC10Eizhq_dtA2ZpEumaQunFOGUWjilfhfeL9-Z1mwlt47eaTGUNpprlq4A1IUPLQpXj_8tbft2aW_gwcHR8DA97I8GL2HDN6lBNlVvBzrzaqFewf3sbJ7PqtfNmiLw467xeQNzbmF8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglB74NGHulCKD3Ci0eZh53FACLUsVAurSlCpt9SObSnSNtlmH2g58R_6b_g5_SUdO8kuRWpvPXBaKeuMFOezZyb-5huAN4kKhXR14rgBzxzKXIprjhnaHxdcUSZDLW2ziWgwiE9Pk-MV-NPWwhhaZbsn2o1alpn5Rt7F0BcjYcx2WFc3tIjjw96H0YVjOkiZk9a2nUYNkb6a_8T0bfz-6BDf9Vvf7336cfDFaToMOFnA4omjlS9djk4ds4bYC6T2pOBhkkjmaa0SnoWJp6kXiyiKWChCjI2kJwMtJVVxJKMA7T6AhxHFOMHSBr8vvu-4RsjP9ki2DAMvYElTs2Mr96jJHRyTuxlFGOb4N_3iMtj953zWur3e0_95wp7BkybYJh_r1fEcVlSxAevfFkq14024HEzrM6sh4Y0-Cyk1KWoFEV4RXdWlHzigP1R5cfX7soc-BH8-43OUBVEXtVo6Me0ccQ5JXhC8hL78nFh-ILHFonMyyzk54KPppDQ2uKjyX3n5t_1ypCzpYQtO7mVWtmEVn0vtAKFS4jg_FoJTmjHccNEBhRyj4ExgrCw64LUwSbNGxd00ExmmC_1pC60UoZVaaKV-B94t7hnVGiZ3jt5t8ZQ2-9k4XYKpA_stIpd_327txd3WXsNjBGX69WjQfwlrvuELWf7eLqxOqql6BY-y2SQfV3t2cRE4u29wXgNXOWjD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+nonlinear+fractional+Klein%E2%80%93Fock%E2%80%93Gordon+equation+arising+in+quantum+field+theory+via+Caputo%E2%80%93Fabrizio+fractional+operator&rft.jtitle=Mathematical+sciences+%28Karaj%2C+Iran%29&rft.au=Prakash%2C+Amit&rft.au=Kumar%2C+Ajay&rft.au=Baskonus%2C+Haci+Mehmet&rft.au=Kumar%2C+Ashok&rft.date=2021-09-01&rft.issn=2008-1359&rft.eissn=2251-7456&rft.volume=15&rft.issue=3&rft.spage=269&rft.epage=281&rft_id=info:doi/10.1007%2Fs40096-020-00365-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40096_020_00365_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2008-1359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2008-1359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2008-1359&client=summon