A Review on the Performance of Linear and Mixed Integer Two-Stage Stochastic Programming Software

This paper presents a tutorial on the state-of-the-art software for the solution of two-stage (mixed-integer) linear stochastic programs and provides a list of software designed for this purpose. The methodologies are classified according to the decomposition alternatives and the types of the variab...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithms Ročník 15; číslo 4; s. 103
Hlavní autoři: Torres, Juan J., Li, Can, Apap, Robert M., Grossmann, Ignacio E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.04.2022
Témata:
ISSN:1999-4893, 1999-4893
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a tutorial on the state-of-the-art software for the solution of two-stage (mixed-integer) linear stochastic programs and provides a list of software designed for this purpose. The methodologies are classified according to the decomposition alternatives and the types of the variables in the problem. We review the fundamentals of Benders decomposition, dual decomposition and progressive hedging, as well as possible improvements and variants. We also present extensive numerical results to underline the properties and performance of each algorithm using software implementations, including DECIS, FORTSP, PySP, and DSP. Finally, we discuss the strengths and weaknesses of each methodology and propose future research directions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-4893
1999-4893
DOI:10.3390/a15040103