Exact SDP relaxations of quadratically constrained quadratic programs with forest structures

We study the exactness of the semidefinite programming (SDP) relaxation of quadratically constrained quadratic programs (QCQPs). With the aggregate sparsity matrix from the data matrices of a QCQP with n variables, the rank and positive semidefiniteness of the matrix are examined. We prove that if t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of global optimization Vol. 82; no. 2; pp. 243 - 262
Main Authors: Azuma, Godai, Fukuda, Mituhiro, Kim, Sunyoung, Yamashita, Makoto
Format: Journal Article
Language:English
Published: New York Springer US 01.02.2022
Springer
Springer Nature B.V
Subjects:
ISSN:0925-5001, 1573-2916
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study the exactness of the semidefinite programming (SDP) relaxation of quadratically constrained quadratic programs (QCQPs). With the aggregate sparsity matrix from the data matrices of a QCQP with n variables, the rank and positive semidefiniteness of the matrix are examined. We prove that if the rank of the aggregate sparsity matrix is not less than n - 1 and the matrix remains positive semidefinite after replacing some off-diagonal nonzero elements with zeros, then the standard SDP relaxation provides an exact optimal solution for the QCQP under feasibility assumptions. In particular, we demonstrate that QCQPs with forest-structured aggregate sparsity matrix, such as the tridiagonal or arrow-type matrix, satisfy the exactness condition on the rank. The exactness is attained by considering the feasibility of the dual SDP relaxation, the strong duality of SDPs, and a sequence of QCQPs with perturbed objective functions, under the assumption that the feasible region is compact. We generalize our result for a wider class of QCQPs by applying simultaneous tridiagonalization on the data matrices. Moreover, simultaneous tridiagonalization is applied to a matrix pencil so that QCQPs with two constraints can be solved exactly by the SDP relaxation.
AbstractList We study the exactness of the semidefinite programming (SDP) relaxation of quadratically constrained quadratic programs (QCQPs). With the aggregate sparsity matrix from the data matrices of a QCQP with n variables, the rank and positive semidefiniteness of the matrix are examined. We prove that if the rank of the aggregate sparsity matrix is not less than n-1 and the matrix remains positive semidefinite after replacing some off-diagonal nonzero elements with zeros, then the standard SDP relaxation provides an exact optimal solution for the QCQP under feasibility assumptions. In particular, we demonstrate that QCQPs with forest-structured aggregate sparsity matrix, such as the tridiagonal or arrow-type matrix, satisfy the exactness condition on the rank. The exactness is attained by considering the feasibility of the dual SDP relaxation, the strong duality of SDPs, and a sequence of QCQPs with perturbed objective functions, under the assumption that the feasible region is compact. We generalize our result for a wider class of QCQPs by applying simultaneous tridiagonalization on the data matrices. Moreover, simultaneous tridiagonalization is applied to a matrix pencil so that QCQPs with two constraints can be solved exactly by the SDP relaxation.
We study the exactness of the semidefinite programming (SDP) relaxation of quadratically constrained quadratic programs (QCQPs). With the aggregate sparsity matrix from the data matrices of a QCQP with n variables, the rank and positive semidefiniteness of the matrix are examined. We prove that if the rank of the aggregate sparsity matrix is not less than n - 1 and the matrix remains positive semidefinite after replacing some off-diagonal nonzero elements with zeros, then the standard SDP relaxation provides an exact optimal solution for the QCQP under feasibility assumptions. In particular, we demonstrate that QCQPs with forest-structured aggregate sparsity matrix, such as the tridiagonal or arrow-type matrix, satisfy the exactness condition on the rank. The exactness is attained by considering the feasibility of the dual SDP relaxation, the strong duality of SDPs, and a sequence of QCQPs with perturbed objective functions, under the assumption that the feasible region is compact. We generalize our result for a wider class of QCQPs by applying simultaneous tridiagonalization on the data matrices. Moreover, simultaneous tridiagonalization is applied to a matrix pencil so that QCQPs with two constraints can be solved exactly by the SDP relaxation.
We study the exactness of the semidefinite programming (SDP) relaxation of quadratically constrained quadratic programs (QCQPs). With the aggregate sparsity matrix from the data matrices of a QCQP with n variables, the rank and positive semidefiniteness of the matrix are examined. We prove that if the rank of the aggregate sparsity matrix is not less than [Formula omitted] and the matrix remains positive semidefinite after replacing some off-diagonal nonzero elements with zeros, then the standard SDP relaxation provides an exact optimal solution for the QCQP under feasibility assumptions. In particular, we demonstrate that QCQPs with forest-structured aggregate sparsity matrix, such as the tridiagonal or arrow-type matrix, satisfy the exactness condition on the rank. The exactness is attained by considering the feasibility of the dual SDP relaxation, the strong duality of SDPs, and a sequence of QCQPs with perturbed objective functions, under the assumption that the feasible region is compact. We generalize our result for a wider class of QCQPs by applying simultaneous tridiagonalization on the data matrices. Moreover, simultaneous tridiagonalization is applied to a matrix pencil so that QCQPs with two constraints can be solved exactly by the SDP relaxation.
Audience Academic
Author Fukuda, Mituhiro
Yamashita, Makoto
Kim, Sunyoung
Azuma, Godai
Author_xml – sequence: 1
  givenname: Godai
  surname: Azuma
  fullname: Azuma, Godai
  organization: Department of Mathematical and Computing Science, Tokyo Institute of Technology
– sequence: 2
  givenname: Mituhiro
  surname: Fukuda
  fullname: Fukuda, Mituhiro
  organization: Department of Mathematical and Computing Science, Tokyo Institute of Technology
– sequence: 3
  givenname: Sunyoung
  surname: Kim
  fullname: Kim, Sunyoung
  email: skim@ewha.ac.kr
  organization: Department of Mathematics, Ewha W. University
– sequence: 4
  givenname: Makoto
  surname: Yamashita
  fullname: Yamashita, Makoto
  organization: Department of Mathematical and Computing Science, Tokyo Institute of Technology
BookMark eNp9kE1LAzEQhoNUsFb_gKeA59VJsh_JUbR-QEFBvQkhm03qynbXJrvY_nunrlDwIHNIMplnZt73mEzarnWEnDG4YADFZWQglUyAswQYFCzJD8iUZYVIuGL5hExB8SzJANgROY7xAwCUzPiUvM03xvb0-eaJBteYjenrro2083Q9mCrg05qm2VKL2T6YunXV_od-hm4ZzCrSr7p_p74LLvYU6wbbD3g_IYfeNNGd_p4z8no7f7m-TxaPdw_XV4vEikz2iU8FqJILDgK8SktQyjDpDUCVc1txo0BgxjBR5pksJPfSKeGgqMqyEtKIGTkf--I-6wF30B_dEFocqXnOUwmpygVWXYxVS9M4Xbe-Q0EWo3KrGvU5X2P-qgCMIhU5AnwEbOhiDM7rz1CvTNhqBnpnux5t12i7_rFd7yD5B7J1_-Pqzr7mf1SMaMQ57dKFvYx_qG_EP5mJ
CitedBy_id crossref_primary_10_3390_s23125585
crossref_primary_10_1007_s10898_022_01268_3
crossref_primary_10_1007_s10898_022_01255_8
crossref_primary_10_1007_s10898_024_01407_y
crossref_primary_10_1007_s40305_023_00506_z
crossref_primary_10_1007_s10898_025_01478_5
crossref_primary_10_1007_s10898_023_01305_9
Cites_doi 10.1007/s12532-015-0082-6
10.1007/s10107-010-0402-6
10.1016/j.disopt.2009.01.002
10.1287/moor.23.2.339
10.1137/14099379X
10.1145/1149283.1149286
10.1016/S0024-3795(01)00589-4
10.1007/s10107-013-0648-x
10.1007/s10107-002-0351-9
10.1007/978-1-4615-4381-7
10.1137/S003614450444614X
10.1137/130915261
10.1007/s10107-019-01367-2
10.2307/1907742
10.1080/03081089908818608
10.1137/S1052623400366218
10.1109/TCNS.2015.2401172
10.1016/j.dam.2019.04.032
10.1002/nme.733
10.1016/j.disc.2005.04.025
10.1007/s00211-010-0357-9
10.1007/s10107-011-0462-2
10.1145/3309988
10.1007/s10107-017-1206-8
10.1109/TPWRS.2011.2160974
10.1023/A:1025794313696
10.1007/978-1-4615-4381-7_13
10.1007/978-1-4614-0769-0
10.1007/s10107-020-01560-8
10.1007/s10107-020-01589-9
10.1109/CDC40024.2019.9029827
10.1080/10556788.2020.1827256
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2022 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-021-01071-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/Inform Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database (subscription)
Research Library (Corporate)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 262
ExternalDocumentID A707077436
10_1007_s10898_021_01071_6
GrantInformation_xml – fundername: Ministry of Education, Science and Technology
  grantid: NRF 2017-R1A2B2005119
  funderid: http://dx.doi.org/10.13039/501100004085
– fundername: Japan Society for the Promotion of Science
  grantid: KAKENHI 20H04145
  funderid: Japan Society for the Promotion of Science
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-f4309b232030f94b099a18fa00d62cd2a9039a1a13b658782f8e93e07dbbd38a3
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000691952800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-5001
IngestDate Wed Nov 05 00:59:17 EST 2025
Sat Nov 29 10:36:05 EST 2025
Tue Nov 18 22:44:09 EST 2025
Sat Nov 29 01:59:36 EST 2025
Fri Feb 21 02:46:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Exact semidefinite relaxations
Quadratically constrained quadratic programs
The rank of aggregated sparsity matrix
Forest graph
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-f4309b232030f94b099a18fa00d62cd2a9039a1a13b658782f8e93e07dbbd38a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2624804963
PQPubID 29930
PageCount 20
ParticipantIDs proquest_journals_2624804963
gale_infotracacademiconefile_A707077436
crossref_primary_10_1007_s10898_021_01071_6
crossref_citationtrail_10_1007_s10898_021_01071_6
springer_journals_10_1007_s10898_021_01071_6
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Kim, Kojima (CR15) 2003; 26
Adachi, Nakatsukasa (CR1) 2019; 173
Laurent, Varvitsiotis (CR18) 2014; 145
Ito, Kim, Kojima, Takeda, Toh (CR11) 2019; 45
Safarina, Moriguchi, Mullin, Yamashita (CR26) 2020; 275
Bose, Gayme, Chandy, Low (CR6) 2015; 2
Povh, Rendl (CR25) 2009; 6
Johnson, Leal Duarte (CR12) 1999; 46
Pataki (CR23) 1998; 23
CR35
Fukuda, Kojima, Murota, Nakata (CR9) 2001; 11
CR32
CR31
Pólik, Terlaky (CR24) 2007; 49
Safarina, Mullin, Yamashita (CR27) 2019; 62
Burer, Ye (CR7) 2020; 181
Lavaei, Low (CR19) 2012; 27
Kim, Kojima, Mevissen, Yamashita (CR16) 2011; 129
Nakata, Fujisawa, Fukuda, Kojima, Murota (CR21) 2003; 95
CR2
Johnson, Leal-Duarte (CR13) 2006; 306
Koopmans, Beckmann (CR17) 1957; 25
CR3
Yang, Sun, Toh (CR34) 2015; 7
Madani, Sojoudi, Fazelnia, Lavaei (CR20) 2017; 27
CR28
Sojoudi, Lavaei (CR30) 2014; 24
CR22
Wolkowicz, Saigal, Vandenberghe (CR33) 2000
Sidje (CR29) 2011; 118
Bao, Sahinidis, Tawarmalani (CR4) 2011; 129
Garvey, Tisseur, Friswell, Penny, Prells (CR10) 2003; 57
Biswas, Lian, Wang, Ye (CR5) 2006; 2
Johnson, Leal Duarte, Saiago, Sutton, Witt (CR14) 2003; 363
El-Mikkawy (CR8) 2003; 139
S Burer (1071_CR7) 2020; 181
SD Garvey (1071_CR10) 2003; 57
S Kim (1071_CR16) 2011; 129
K Nakata (1071_CR21) 2003; 95
S Kim (1071_CR15) 2003; 26
S Safarina (1071_CR26) 2020; 275
CR Johnson (1071_CR12) 1999; 46
TC Koopmans (1071_CR17) 1957; 25
X Bao (1071_CR4) 2011; 129
1071_CR31
1071_CR32
1071_CR35
S Adachi (1071_CR1) 2019; 173
J Povh (1071_CR25) 2009; 6
M Laurent (1071_CR18) 2014; 145
S Bose (1071_CR6) 2015; 2
1071_CR2
S Safarina (1071_CR27) 2019; 62
1071_CR3
M Fukuda (1071_CR9) 2001; 11
R Madani (1071_CR20) 2017; 27
N Ito (1071_CR11) 2019; 45
J Lavaei (1071_CR19) 2012; 27
I Pólik (1071_CR24) 2007; 49
LQ Yang (1071_CR34) 2015; 7
RB Sidje (1071_CR29) 2011; 118
S Sojoudi (1071_CR30) 2014; 24
M El-Mikkawy (1071_CR8) 2003; 139
P Biswas (1071_CR5) 2006; 2
1071_CR22
H Wolkowicz (1071_CR33) 2000
CR Johnson (1071_CR14) 2003; 363
CR Johnson (1071_CR13) 2006; 306
1071_CR28
G Pataki (1071_CR23) 1998; 23
References_xml – ident: CR22
– volume: 7
  start-page: 331
  issue: 3
  year: 2015
  end-page: 366
  ident: CR34
  article-title: SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-015-0082-6
– volume: 62
  start-page: 133
  issue: 4
  year: 2019
  end-page: 151
  ident: CR27
  article-title: Polyhedral-based methods for mixed-integer socp in tree breeding
  publication-title: J. Oper. Res. Soc. Jpn
– volume: 129
  start-page: 33
  issue: 1
  year: 2011
  end-page: 68
  ident: CR16
  article-title: Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0402-6
– ident: CR2
– volume: 139
  start-page: 503
  issue: 2
  year: 2003
  end-page: 511
  ident: CR8
  article-title: A note on a three-term recurrence for a tridiagonal matrix
  publication-title: Appl. Math. Comput.
– volume: 6
  start-page: 231
  issue: 3
  year: 2009
  end-page: 241
  ident: CR25
  article-title: Copositive and semidefinite relaxations of the quadratic assignment problem
  publication-title: Discret. Optim.
  doi: 10.1016/j.disopt.2009.01.002
– volume: 23
  start-page: 339
  issue: 2
  year: 1998
  end-page: 358
  ident: CR23
  article-title: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.23.2.339
– volume: 27
  start-page: 725
  issue: 2
  year: 2017
  end-page: 758
  ident: CR20
  article-title: Finding low-rank solutions of sparse linear matrix inequalities using convex optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/14099379X
– volume: 2
  start-page: 188
  issue: 2
  year: 2006
  end-page: 220
  ident: CR5
  article-title: Semidefinite programming based algorithms for sensor network localization
  publication-title: ACM Trans. Sens. Netw.
  doi: 10.1145/1149283.1149286
– volume: 363
  start-page: 147
  year: 2003
  end-page: 159
  ident: CR14
  article-title: On the relative position of multiple eigenvalues in the spectrum of an hermitian matrix with a given graph
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(01)00589-4
– volume: 145
  start-page: 291
  issue: 1
  year: 2014
  end-page: 325
  ident: CR18
  article-title: A new graph parameter related to bounded rank positive semidefinite matrix completions
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0648-x
– ident: CR35
– volume: 95
  start-page: 303
  issue: 2
  year: 2003
  end-page: 327
  ident: CR21
  article-title: Exploiting sparsity in semidefinite programming via matrix completion II: Implementation and numerical results
  publication-title: Math. Program.
  doi: 10.1007/s10107-002-0351-9
– year: 2000
  ident: CR33
  publication-title: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications
  doi: 10.1007/978-1-4615-4381-7
– volume: 49
  start-page: 371
  issue: 3
  year: 2007
  end-page: 418
  ident: CR24
  article-title: A survey of the s-lemma
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450444614X
– volume: 24
  start-page: 1746
  issue: 4
  year: 2014
  end-page: 1778
  ident: CR30
  article-title: Exactness of semidefinite relaxations for nonlinear optimization problems with underlying graph structure
  publication-title: SIAM J. Optim.
  doi: 10.1137/130915261
– volume: 181
  start-page: 1
  issue: 1
  year: 2020
  end-page: 17
  ident: CR7
  article-title: Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs
  publication-title: Math. Program.
  doi: 10.1007/s10107-019-01367-2
– volume: 25
  start-page: 53
  issue: 1
  year: 1957
  end-page: 76
  ident: CR17
  article-title: Assignment problems and the location of economic activities
  publication-title: Econometrica
  doi: 10.2307/1907742
– volume: 46
  start-page: 139
  issue: 1–2
  year: 1999
  end-page: 144
  ident: CR12
  article-title: The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081089908818608
– volume: 11
  start-page: 647
  issue: 3
  year: 2001
  end-page: 674
  ident: CR9
  article-title: Exploiting sparsity in semidefinite programming via matrix completion I: General framework
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400366218
– ident: CR3
– volume: 2
  start-page: 278
  issue: 3
  year: 2015
  end-page: 287
  ident: CR6
  article-title: Quadratically constrained quadratic programs on acyclic graphs with application to power flow
  publication-title: IEEE Trans. Netw. Syst.
  doi: 10.1109/TCNS.2015.2401172
– volume: 275
  start-page: 111
  year: 2020
  end-page: 125
  ident: CR26
  article-title: Conic relaxation approaches for equal deployment problems
  publication-title: Discret. Appl. Math.
  doi: 10.1016/j.dam.2019.04.032
– ident: CR31
– volume: 57
  start-page: 1643
  issue: 12
  year: 2003
  end-page: 1660
  ident: CR10
  article-title: Simultaneous tridiagonalization of two symmetric matrices
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.733
– volume: 306
  start-page: 3125
  issue: 23
  year: 2006
  end-page: 3129
  ident: CR13
  article-title: Converse to the parter-wiener theorem: the case of non-trees
  publication-title: Discret. Math.
  doi: 10.1016/j.disc.2005.04.025
– volume: 118
  start-page: 549
  issue: 3
  year: 2011
  end-page: 566
  ident: CR29
  article-title: On the simultaneous tridiagonalization of two symmetric matrices
  publication-title: Numer. Math.
  doi: 10.1007/s00211-010-0357-9
– ident: CR32
– volume: 129
  start-page: 129
  issue: 1
  year: 2011
  ident: CR4
  article-title: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0462-2
– volume: 45
  start-page: 34
  issue: 3
  year: 2019
  ident: CR11
  article-title: BBCPOP: a sparse doubly nonnegative relaxation of polynomial optimization problems with binary, box and complementarity constraints
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/3309988
– volume: 173
  start-page: 79
  issue: 1
  year: 2019
  end-page: 116
  ident: CR1
  article-title: Eigenvalue-based algorithm and analysis for nonconvex qcqp with one constraint
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1206-8
– ident: CR28
– volume: 27
  start-page: 92
  issue: 1
  year: 2012
  end-page: 107
  ident: CR19
  article-title: Zero duality gap in optimal power flow problem
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2011.2160974
– volume: 26
  start-page: 143
  issue: 2
  year: 2003
  end-page: 154
  ident: CR15
  article-title: Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1025794313696
– volume: 173
  start-page: 79
  issue: 1
  year: 2019
  ident: 1071_CR1
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1206-8
– volume: 95
  start-page: 303
  issue: 2
  year: 2003
  ident: 1071_CR21
  publication-title: Math. Program.
  doi: 10.1007/s10107-002-0351-9
– ident: 1071_CR22
  doi: 10.1007/978-1-4615-4381-7_13
– volume: 6
  start-page: 231
  issue: 3
  year: 2009
  ident: 1071_CR25
  publication-title: Discret. Optim.
  doi: 10.1016/j.disopt.2009.01.002
– volume-title: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications
  year: 2000
  ident: 1071_CR33
  doi: 10.1007/978-1-4615-4381-7
– volume: 145
  start-page: 291
  issue: 1
  year: 2014
  ident: 1071_CR18
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0648-x
– volume: 363
  start-page: 147
  year: 2003
  ident: 1071_CR14
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(01)00589-4
– volume: 118
  start-page: 549
  issue: 3
  year: 2011
  ident: 1071_CR29
  publication-title: Numer. Math.
  doi: 10.1007/s00211-010-0357-9
– volume: 57
  start-page: 1643
  issue: 12
  year: 2003
  ident: 1071_CR10
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.733
– volume: 49
  start-page: 371
  issue: 3
  year: 2007
  ident: 1071_CR24
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450444614X
– volume: 129
  start-page: 33
  issue: 1
  year: 2011
  ident: 1071_CR16
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0402-6
– volume: 7
  start-page: 331
  issue: 3
  year: 2015
  ident: 1071_CR34
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-015-0082-6
– ident: 1071_CR3
– volume: 25
  start-page: 53
  issue: 1
  year: 1957
  ident: 1071_CR17
  publication-title: Econometrica
  doi: 10.2307/1907742
– volume: 27
  start-page: 92
  issue: 1
  year: 2012
  ident: 1071_CR19
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2011.2160974
– volume: 129
  start-page: 129
  issue: 1
  year: 2011
  ident: 1071_CR4
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0462-2
– ident: 1071_CR2
  doi: 10.1007/978-1-4614-0769-0
– volume: 23
  start-page: 339
  issue: 2
  year: 1998
  ident: 1071_CR23
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.23.2.339
– volume: 139
  start-page: 503
  issue: 2
  year: 2003
  ident: 1071_CR8
  publication-title: Appl. Math. Comput.
– volume: 62
  start-page: 133
  issue: 4
  year: 2019
  ident: 1071_CR27
  publication-title: J. Oper. Res. Soc. Jpn
– ident: 1071_CR31
  doi: 10.1007/s10107-020-01560-8
– volume: 275
  start-page: 111
  year: 2020
  ident: 1071_CR26
  publication-title: Discret. Appl. Math.
  doi: 10.1016/j.dam.2019.04.032
– volume: 2
  start-page: 188
  issue: 2
  year: 2006
  ident: 1071_CR5
  publication-title: ACM Trans. Sens. Netw.
  doi: 10.1145/1149283.1149286
– volume: 27
  start-page: 725
  issue: 2
  year: 2017
  ident: 1071_CR20
  publication-title: SIAM J. Optim.
  doi: 10.1137/14099379X
– ident: 1071_CR32
  doi: 10.1007/s10107-020-01589-9
– volume: 45
  start-page: 34
  issue: 3
  year: 2019
  ident: 1071_CR11
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/3309988
– ident: 1071_CR35
  doi: 10.1109/CDC40024.2019.9029827
– volume: 26
  start-page: 143
  issue: 2
  year: 2003
  ident: 1071_CR15
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1025794313696
– ident: 1071_CR28
  doi: 10.1080/10556788.2020.1827256
– volume: 46
  start-page: 139
  issue: 1–2
  year: 1999
  ident: 1071_CR12
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081089908818608
– volume: 11
  start-page: 647
  issue: 3
  year: 2001
  ident: 1071_CR9
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400366218
– volume: 24
  start-page: 1746
  issue: 4
  year: 2014
  ident: 1071_CR30
  publication-title: SIAM J. Optim.
  doi: 10.1137/130915261
– volume: 181
  start-page: 1
  issue: 1
  year: 2020
  ident: 1071_CR7
  publication-title: Math. Program.
  doi: 10.1007/s10107-019-01367-2
– volume: 306
  start-page: 3125
  issue: 23
  year: 2006
  ident: 1071_CR13
  publication-title: Discret. Math.
  doi: 10.1016/j.disc.2005.04.025
– volume: 2
  start-page: 278
  issue: 3
  year: 2015
  ident: 1071_CR6
  publication-title: IEEE Trans. Netw. Syst.
  doi: 10.1109/TCNS.2015.2401172
SSID ssj0009852
Score 2.3744323
Snippet We study the exactness of the semidefinite programming (SDP) relaxation of quadratically constrained quadratic programs (QCQPs). With the aggregate sparsity...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 243
SubjectTerms Computer Science
Constraints
Feasibility
Mathematical analysis
Mathematics
Mathematics and Statistics
Matrices (mathematics)
Operations Research/Decision Theory
Optimization
Real Functions
Semidefinite programming
Sparsity
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB21hQMcCtuC2FIqH5AAUYskzodzQhVt1QurlQCph0rWxHakSqvdLdmi9t93JnEIpWovvUWxYzt69vj5Y94AvC8wTuIaM6ltTAsUzCpZ2dLLPGI2oeoUfdUGmygmE316Wk7DhlsTrlX2NrE11G5heY_8S5InqSY6m6uvywvJUaP4dDWE0FiHJ8RsYr7S9T2ZDqK7uo24Q9VmMiN7HJxmguucZueyhBfTNM3K_NbE9L95vnNO2k4_xy8e2_CXsBmIpzjoesoI1vx8C57_I0e4BaMw0BvxMahRf9qGs6MrtCvx43Aq2O_lqtvhE4taXFyi4_5DKM-uhWWiyfEmvBtSRLj-1Qje7xVEkKndotOsvaTnV_Dr-OjntxMZQjJIqzK9knWqorIiFka2oS7TivglxrrGKHJ5Yl2CZaToDcaqImpD7KPWvlQ-KlxVOaVRvYaN-WLu34DIXIEZapuqwtKqyWGNOvZ8cKzz0kU4hrjHw9igV86_MTOD0jJjaAhD02Jo8jF8_vvNslPreDD3B4bZ8FCmki0GjwRqH4timYOCtZCIYlHO3R5bE8Z4YwZgx7Df944h-f56dx4u7S08S9jHor0avgsbhIl_B0_tn9V583uv7eE30VP_tQ
  priority: 102
  providerName: ProQuest
Title Exact SDP relaxations of quadratically constrained quadratic programs with forest structures
URI https://link.springer.com/article/10.1007/s10898-021-01071-6
https://www.proquest.com/docview/2624804963
Volume 82
WOSCitedRecordID wos000691952800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB6apA_tQ9NsW7o5Fj0E2tIKbMu25MccGwolW5PtkZaCkCUZCmFzeFOSf58Zr5xN0gOal8G2ZN3Hp2O-AdiUJk7i2mRc2RgXKCareGULz_OI0ISoU-Or1tiEHI3U4WFRBqWwprvt3h1JtiP1DWU3RepgCS1_cWLk-QIs4XSnyGDDwfjLnGpXtXZ2MLKMZzgKB1WZP4dxazq6Oyj_djraTjp7y_dL7lN4EkAm25q1ihV44Cc9WO4MOLDQn3vw-AYbIb7tX1O4Nj1YCb4a9jpQU795Bj-GF8ZO2Xi3ZKQEczHb7mPHNTs9N44aE1b50SWzhDrJ-IR3cxcW7oI1jDZ_GaJlzDybEdie4_Nz-Lw3_LTzngf7DNyKTE15nYqoqBCS4UBRF2mFYNPEqjZR5PLEusQUkcAvJhYV4hyEIrXyhfCRdFXlhDLiBSxOjif-JbDMSZMZZVMhLS6hnKmNij2dIqu8cJHpQ9xVk7aBvJyycaTntMtU3hrLW7flrfM-vL3-52RG3fFP36-o9jX1awzZmqCegOkjhiy9JYkYCfEW-lzvGogOHb7RSZ6kCldbuejDu65BzJ3_Hu_q_3lfg0cJKWC098bXYRHryG_AQ_tr-rM5G8CC_PptAEvbw1F5gG8fJEe5H-2QTD62siQpxyjL7Pug7TpXmtYIwg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9UwFD9BNFEfFFDiVZA-YNRgw9buo3swhAgEAt7cREx4ICld2yUm5F5wF4V_yr_Rc7bO-RF544G3Zeu6tf31fLQ9vwOwmptYxJVJubIxOigmLXlpC8-ziKwJWSXGl02yiXw4VEdHxWgGfnSxMHSsspOJjaB2E0tr5OsiE4lCczaTG2fnnLJG0e5ql0KjhcW-v_qOLlv9fm8Lx_eVEDvbhx92ecgqwK1M1ZRXiYyKEg0JhHdVJCWaSCZWlYkilwnrhCkiiXdMLEvUzqhAK-UL6aPclaWTykis9w7cTYhZjI4KilFP8quaDD_YzJSnKP9DkE4I1VMUzCbIeUe1zrM_FOHf6uCffdlG3e08vm0dNQePgmHNNtuZMA8zfrwAD3-jW1yA-SDIavYmsG2_fQLH25fGTtmnrRGjuJ7LdgWTTSp2fmEczQ9E8ekVs2RIUz4N7_onLBxvqxmtZzN0ALCfWMvJe4HXT-HzjbR5EWbHk7F_Bix1uUmNsonMLXqFzlRGxZ42xlVWuMgMIO7GX9vAx07NONU9kzRhRiNmdIMZnQ1g7dc7Zy0bybWlXxOsNIkqrNmaEHGB_0ekX3ozJ64nNCGx5FKHJR1kWK17IA3gXYfG_vH_v_v8-tpW4P7u4ccDfbA33H8BDwTFkzTH4JdgFsfHL8M9-236pf76spldDE5uGqU_AcF9Wxo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UKqIPaqviatV5UFR0aDKTy-RBpLhdLJVlQYUihXEyFxDKbmu22v41f53nJBPjBfvWB99CMplkkm_OZeac7wA8Kk0q0mByrmyKDorJa17byvMiIWtChsz4ui02UU6nam-vmq3A9z4XhsIqe5nYCmq3sLRGvikKkSk0Zwu5GWJYxGw8eXV4xKmCFO209uU0Oojs-tNv6L41L3fG-K8fCzHZfv_6DY8VBriVuVrykMmkqtGoQKiHKqvRXDKpCiZJXCGsE6ZKJJ4xqaxRU6MyDcpX0ielq2snlZHY7wW4WKKPSeGEs_zjQPir2mo_OOSc56gLYsJOTNtTlNgmyJFHFc-L35Tin6rhrz3aVvVNrv_PH-0GXIsGN9vqZsgarPj5Olz9hYZxHdaigGvY08jC_ewm7G-fGLtk78YzRvk-J93KJlsEdnRsHM0bRPfBKbNkYFOdDe-GKyyGvTWM1rkZOgb4zVjH1XuMx7fgw7mM-TaszhdzfwdY7kqTG2UzWVr0Fp0JRqWeNsxVUbnEjCDtsaBt5GmnYRzogWGa8KMRP7rFjy5G8PznPYcdS8mZrZ8QxDSJMOzZmpiJge9HZGB6qyQOKDQtseVGjysdZVujB1CN4EWPzOHyv5979-zeHsJlBKd-uzPdvQdXBKWZtNHxG7CKv8ffh0v26_Jz8-VBO9EYfDpvkP4AntBkBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+SDP+relaxations+of+quadratically+constrained+quadratic+programs+with+forest+structures&rft.jtitle=Journal+of+global+optimization&rft.au=Azuma%2C+Godai&rft.au=Fukuda%2C+Mituhiro&rft.au=Kim%2C+Sunyoung&rft.au=Yamashita%2C+Makoto&rft.date=2022-02-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=82&rft.issue=2&rft.spage=243&rft_id=info:doi/10.1007%2Fs10898-021-01071-6&rft.externalDocID=A707077436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon