Exact SDP relaxations of quadratically constrained quadratic programs with forest structures
We study the exactness of the semidefinite programming (SDP) relaxation of quadratically constrained quadratic programs (QCQPs). With the aggregate sparsity matrix from the data matrices of a QCQP with n variables, the rank and positive semidefiniteness of the matrix are examined. We prove that if t...
Uložené v:
| Vydané v: | Journal of global optimization Ročník 82; číslo 2; s. 243 - 262 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.02.2022
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We study the exactness of the semidefinite programming (SDP) relaxation of quadratically constrained quadratic programs (QCQPs). With the aggregate sparsity matrix from the data matrices of a QCQP with
n
variables, the rank and positive semidefiniteness of the matrix are examined. We prove that if the rank of the aggregate sparsity matrix is not less than
n
-
1
and the matrix remains positive semidefinite after replacing some off-diagonal nonzero elements with zeros, then the standard SDP relaxation provides an exact optimal solution for the QCQP under feasibility assumptions. In particular, we demonstrate that QCQPs with forest-structured aggregate sparsity matrix, such as the tridiagonal or arrow-type matrix, satisfy the exactness condition on the rank. The exactness is attained by considering the feasibility of the dual SDP relaxation, the strong duality of SDPs, and a sequence of QCQPs with perturbed objective functions, under the assumption that the feasible region is compact. We generalize our result for a wider class of QCQPs by applying simultaneous tridiagonalization on the data matrices. Moreover, simultaneous tridiagonalization is applied to a matrix pencil so that QCQPs with two constraints can be solved exactly by the SDP relaxation. |
|---|---|
| AbstractList | We study the exactness of the semidefinite programming (SDP) relaxation of quadratically constrained quadratic programs (QCQPs). With the aggregate sparsity matrix from the data matrices of a QCQP with n variables, the rank and positive semidefiniteness of the matrix are examined. We prove that if the rank of the aggregate sparsity matrix is not less than n-1 and the matrix remains positive semidefinite after replacing some off-diagonal nonzero elements with zeros, then the standard SDP relaxation provides an exact optimal solution for the QCQP under feasibility assumptions. In particular, we demonstrate that QCQPs with forest-structured aggregate sparsity matrix, such as the tridiagonal or arrow-type matrix, satisfy the exactness condition on the rank. The exactness is attained by considering the feasibility of the dual SDP relaxation, the strong duality of SDPs, and a sequence of QCQPs with perturbed objective functions, under the assumption that the feasible region is compact. We generalize our result for a wider class of QCQPs by applying simultaneous tridiagonalization on the data matrices. Moreover, simultaneous tridiagonalization is applied to a matrix pencil so that QCQPs with two constraints can be solved exactly by the SDP relaxation. We study the exactness of the semidefinite programming (SDP) relaxation of quadratically constrained quadratic programs (QCQPs). With the aggregate sparsity matrix from the data matrices of a QCQP with n variables, the rank and positive semidefiniteness of the matrix are examined. We prove that if the rank of the aggregate sparsity matrix is not less than n - 1 and the matrix remains positive semidefinite after replacing some off-diagonal nonzero elements with zeros, then the standard SDP relaxation provides an exact optimal solution for the QCQP under feasibility assumptions. In particular, we demonstrate that QCQPs with forest-structured aggregate sparsity matrix, such as the tridiagonal or arrow-type matrix, satisfy the exactness condition on the rank. The exactness is attained by considering the feasibility of the dual SDP relaxation, the strong duality of SDPs, and a sequence of QCQPs with perturbed objective functions, under the assumption that the feasible region is compact. We generalize our result for a wider class of QCQPs by applying simultaneous tridiagonalization on the data matrices. Moreover, simultaneous tridiagonalization is applied to a matrix pencil so that QCQPs with two constraints can be solved exactly by the SDP relaxation. We study the exactness of the semidefinite programming (SDP) relaxation of quadratically constrained quadratic programs (QCQPs). With the aggregate sparsity matrix from the data matrices of a QCQP with n variables, the rank and positive semidefiniteness of the matrix are examined. We prove that if the rank of the aggregate sparsity matrix is not less than [Formula omitted] and the matrix remains positive semidefinite after replacing some off-diagonal nonzero elements with zeros, then the standard SDP relaxation provides an exact optimal solution for the QCQP under feasibility assumptions. In particular, we demonstrate that QCQPs with forest-structured aggregate sparsity matrix, such as the tridiagonal or arrow-type matrix, satisfy the exactness condition on the rank. The exactness is attained by considering the feasibility of the dual SDP relaxation, the strong duality of SDPs, and a sequence of QCQPs with perturbed objective functions, under the assumption that the feasible region is compact. We generalize our result for a wider class of QCQPs by applying simultaneous tridiagonalization on the data matrices. Moreover, simultaneous tridiagonalization is applied to a matrix pencil so that QCQPs with two constraints can be solved exactly by the SDP relaxation. |
| Audience | Academic |
| Author | Fukuda, Mituhiro Yamashita, Makoto Kim, Sunyoung Azuma, Godai |
| Author_xml | – sequence: 1 givenname: Godai surname: Azuma fullname: Azuma, Godai organization: Department of Mathematical and Computing Science, Tokyo Institute of Technology – sequence: 2 givenname: Mituhiro surname: Fukuda fullname: Fukuda, Mituhiro organization: Department of Mathematical and Computing Science, Tokyo Institute of Technology – sequence: 3 givenname: Sunyoung surname: Kim fullname: Kim, Sunyoung email: skim@ewha.ac.kr organization: Department of Mathematics, Ewha W. University – sequence: 4 givenname: Makoto surname: Yamashita fullname: Yamashita, Makoto organization: Department of Mathematical and Computing Science, Tokyo Institute of Technology |
| BookMark | eNp9kE1LAzEQhoNUsFb_gKeA59VJsh_JUbR-QEFBvQkhm03qynbXJrvY_nunrlDwIHNIMplnZt73mEzarnWEnDG4YADFZWQglUyAswQYFCzJD8iUZYVIuGL5hExB8SzJANgROY7xAwCUzPiUvM03xvb0-eaJBteYjenrro2083Q9mCrg05qm2VKL2T6YunXV_od-hm4ZzCrSr7p_p74LLvYU6wbbD3g_IYfeNNGd_p4z8no7f7m-TxaPdw_XV4vEikz2iU8FqJILDgK8SktQyjDpDUCVc1txo0BgxjBR5pksJPfSKeGgqMqyEtKIGTkf--I-6wF30B_dEFocqXnOUwmpygVWXYxVS9M4Xbe-Q0EWo3KrGvU5X2P-qgCMIhU5AnwEbOhiDM7rz1CvTNhqBnpnux5t12i7_rFd7yD5B7J1_-Pqzr7mf1SMaMQ57dKFvYx_qG_EP5mJ |
| CitedBy_id | crossref_primary_10_3390_s23125585 crossref_primary_10_1007_s10898_022_01268_3 crossref_primary_10_1007_s10898_022_01255_8 crossref_primary_10_1007_s10898_024_01407_y crossref_primary_10_1007_s40305_023_00506_z crossref_primary_10_1007_s10898_025_01478_5 crossref_primary_10_1007_s10898_023_01305_9 |
| Cites_doi | 10.1007/s12532-015-0082-6 10.1007/s10107-010-0402-6 10.1016/j.disopt.2009.01.002 10.1287/moor.23.2.339 10.1137/14099379X 10.1145/1149283.1149286 10.1016/S0024-3795(01)00589-4 10.1007/s10107-013-0648-x 10.1007/s10107-002-0351-9 10.1007/978-1-4615-4381-7 10.1137/S003614450444614X 10.1137/130915261 10.1007/s10107-019-01367-2 10.2307/1907742 10.1080/03081089908818608 10.1137/S1052623400366218 10.1109/TCNS.2015.2401172 10.1016/j.dam.2019.04.032 10.1002/nme.733 10.1016/j.disc.2005.04.025 10.1007/s00211-010-0357-9 10.1007/s10107-011-0462-2 10.1145/3309988 10.1007/s10107-017-1206-8 10.1109/TPWRS.2011.2160974 10.1023/A:1025794313696 10.1007/978-1-4615-4381-7_13 10.1007/978-1-4614-0769-0 10.1007/s10107-020-01560-8 10.1007/s10107-020-01589-9 10.1109/CDC40024.2019.9029827 10.1080/10556788.2020.1827256 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2022 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2022 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10898-021-01071-6 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM - ProQuest ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection (ProQuest) Computing Database Research Library (ProQuest) Science Database (ProQuest) Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Sciences (General) Computer Science |
| EISSN | 1573-2916 |
| EndPage | 262 |
| ExternalDocumentID | A707077436 10_1007_s10898_021_01071_6 |
| GrantInformation_xml | – fundername: Ministry of Education, Science and Technology grantid: NRF 2017-R1A2B2005119 funderid: http://dx.doi.org/10.13039/501100004085 – fundername: Japan Society for the Promotion of Science grantid: KAKENHI 20H04145 funderid: Japan Society for the Promotion of Science |
| GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c358t-f4309b232030f94b099a18fa00d62cd2a9039a1a13b658782f8e93e07dbbd38a3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000691952800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-5001 |
| IngestDate | Wed Nov 05 00:59:17 EST 2025 Sat Nov 29 10:36:05 EST 2025 Tue Nov 18 22:44:09 EST 2025 Sat Nov 29 01:59:36 EST 2025 Fri Feb 21 02:46:10 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Exact semidefinite relaxations Quadratically constrained quadratic programs The rank of aggregated sparsity matrix Forest graph |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-f4309b232030f94b099a18fa00d62cd2a9039a1a13b658782f8e93e07dbbd38a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2624804963 |
| PQPubID | 29930 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2624804963 gale_infotracacademiconefile_A707077436 crossref_primary_10_1007_s10898_021_01071_6 crossref_citationtrail_10_1007_s10898_021_01071_6 springer_journals_10_1007_s10898_021_01071_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20220200 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
| PublicationTitle | Journal of global optimization |
| PublicationTitleAbbrev | J Glob Optim |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Kim, Kojima (CR15) 2003; 26 Adachi, Nakatsukasa (CR1) 2019; 173 Laurent, Varvitsiotis (CR18) 2014; 145 Ito, Kim, Kojima, Takeda, Toh (CR11) 2019; 45 Safarina, Moriguchi, Mullin, Yamashita (CR26) 2020; 275 Bose, Gayme, Chandy, Low (CR6) 2015; 2 Povh, Rendl (CR25) 2009; 6 Johnson, Leal Duarte (CR12) 1999; 46 Pataki (CR23) 1998; 23 CR35 Fukuda, Kojima, Murota, Nakata (CR9) 2001; 11 CR32 CR31 Pólik, Terlaky (CR24) 2007; 49 Safarina, Mullin, Yamashita (CR27) 2019; 62 Burer, Ye (CR7) 2020; 181 Lavaei, Low (CR19) 2012; 27 Kim, Kojima, Mevissen, Yamashita (CR16) 2011; 129 Nakata, Fujisawa, Fukuda, Kojima, Murota (CR21) 2003; 95 CR2 Johnson, Leal-Duarte (CR13) 2006; 306 Koopmans, Beckmann (CR17) 1957; 25 CR3 Yang, Sun, Toh (CR34) 2015; 7 Madani, Sojoudi, Fazelnia, Lavaei (CR20) 2017; 27 CR28 Sojoudi, Lavaei (CR30) 2014; 24 CR22 Wolkowicz, Saigal, Vandenberghe (CR33) 2000 Sidje (CR29) 2011; 118 Bao, Sahinidis, Tawarmalani (CR4) 2011; 129 Garvey, Tisseur, Friswell, Penny, Prells (CR10) 2003; 57 Biswas, Lian, Wang, Ye (CR5) 2006; 2 Johnson, Leal Duarte, Saiago, Sutton, Witt (CR14) 2003; 363 El-Mikkawy (CR8) 2003; 139 S Burer (1071_CR7) 2020; 181 SD Garvey (1071_CR10) 2003; 57 S Kim (1071_CR16) 2011; 129 K Nakata (1071_CR21) 2003; 95 S Kim (1071_CR15) 2003; 26 S Safarina (1071_CR26) 2020; 275 CR Johnson (1071_CR12) 1999; 46 TC Koopmans (1071_CR17) 1957; 25 X Bao (1071_CR4) 2011; 129 1071_CR31 1071_CR32 1071_CR35 S Adachi (1071_CR1) 2019; 173 J Povh (1071_CR25) 2009; 6 M Laurent (1071_CR18) 2014; 145 S Bose (1071_CR6) 2015; 2 1071_CR2 S Safarina (1071_CR27) 2019; 62 1071_CR3 M Fukuda (1071_CR9) 2001; 11 R Madani (1071_CR20) 2017; 27 N Ito (1071_CR11) 2019; 45 J Lavaei (1071_CR19) 2012; 27 I Pólik (1071_CR24) 2007; 49 LQ Yang (1071_CR34) 2015; 7 RB Sidje (1071_CR29) 2011; 118 S Sojoudi (1071_CR30) 2014; 24 M El-Mikkawy (1071_CR8) 2003; 139 P Biswas (1071_CR5) 2006; 2 1071_CR22 H Wolkowicz (1071_CR33) 2000 CR Johnson (1071_CR14) 2003; 363 CR Johnson (1071_CR13) 2006; 306 1071_CR28 G Pataki (1071_CR23) 1998; 23 |
| References_xml | – ident: CR22 – volume: 7 start-page: 331 issue: 3 year: 2015 end-page: 366 ident: CR34 article-title: SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints publication-title: Math. Program. Comput. doi: 10.1007/s12532-015-0082-6 – volume: 62 start-page: 133 issue: 4 year: 2019 end-page: 151 ident: CR27 article-title: Polyhedral-based methods for mixed-integer socp in tree breeding publication-title: J. Oper. Res. Soc. Jpn – volume: 129 start-page: 33 issue: 1 year: 2011 end-page: 68 ident: CR16 article-title: Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion publication-title: Math. Program. doi: 10.1007/s10107-010-0402-6 – ident: CR2 – volume: 139 start-page: 503 issue: 2 year: 2003 end-page: 511 ident: CR8 article-title: A note on a three-term recurrence for a tridiagonal matrix publication-title: Appl. Math. Comput. – volume: 6 start-page: 231 issue: 3 year: 2009 end-page: 241 ident: CR25 article-title: Copositive and semidefinite relaxations of the quadratic assignment problem publication-title: Discret. Optim. doi: 10.1016/j.disopt.2009.01.002 – volume: 23 start-page: 339 issue: 2 year: 1998 end-page: 358 ident: CR23 article-title: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues publication-title: Math. Oper. Res. doi: 10.1287/moor.23.2.339 – volume: 27 start-page: 725 issue: 2 year: 2017 end-page: 758 ident: CR20 article-title: Finding low-rank solutions of sparse linear matrix inequalities using convex optimization publication-title: SIAM J. Optim. doi: 10.1137/14099379X – volume: 2 start-page: 188 issue: 2 year: 2006 end-page: 220 ident: CR5 article-title: Semidefinite programming based algorithms for sensor network localization publication-title: ACM Trans. Sens. Netw. doi: 10.1145/1149283.1149286 – volume: 363 start-page: 147 year: 2003 end-page: 159 ident: CR14 article-title: On the relative position of multiple eigenvalues in the spectrum of an hermitian matrix with a given graph publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(01)00589-4 – volume: 145 start-page: 291 issue: 1 year: 2014 end-page: 325 ident: CR18 article-title: A new graph parameter related to bounded rank positive semidefinite matrix completions publication-title: Math. Program. doi: 10.1007/s10107-013-0648-x – ident: CR35 – volume: 95 start-page: 303 issue: 2 year: 2003 end-page: 327 ident: CR21 article-title: Exploiting sparsity in semidefinite programming via matrix completion II: Implementation and numerical results publication-title: Math. Program. doi: 10.1007/s10107-002-0351-9 – year: 2000 ident: CR33 publication-title: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications doi: 10.1007/978-1-4615-4381-7 – volume: 49 start-page: 371 issue: 3 year: 2007 end-page: 418 ident: CR24 article-title: A survey of the s-lemma publication-title: SIAM Rev. doi: 10.1137/S003614450444614X – volume: 24 start-page: 1746 issue: 4 year: 2014 end-page: 1778 ident: CR30 article-title: Exactness of semidefinite relaxations for nonlinear optimization problems with underlying graph structure publication-title: SIAM J. Optim. doi: 10.1137/130915261 – volume: 181 start-page: 1 issue: 1 year: 2020 end-page: 17 ident: CR7 article-title: Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs publication-title: Math. Program. doi: 10.1007/s10107-019-01367-2 – volume: 25 start-page: 53 issue: 1 year: 1957 end-page: 76 ident: CR17 article-title: Assignment problems and the location of economic activities publication-title: Econometrica doi: 10.2307/1907742 – volume: 46 start-page: 139 issue: 1–2 year: 1999 end-page: 144 ident: CR12 article-title: The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree publication-title: Linear Multilinear Algebra doi: 10.1080/03081089908818608 – volume: 11 start-page: 647 issue: 3 year: 2001 end-page: 674 ident: CR9 article-title: Exploiting sparsity in semidefinite programming via matrix completion I: General framework publication-title: SIAM J. Optim. doi: 10.1137/S1052623400366218 – ident: CR3 – volume: 2 start-page: 278 issue: 3 year: 2015 end-page: 287 ident: CR6 article-title: Quadratically constrained quadratic programs on acyclic graphs with application to power flow publication-title: IEEE Trans. Netw. Syst. doi: 10.1109/TCNS.2015.2401172 – volume: 275 start-page: 111 year: 2020 end-page: 125 ident: CR26 article-title: Conic relaxation approaches for equal deployment problems publication-title: Discret. Appl. Math. doi: 10.1016/j.dam.2019.04.032 – ident: CR31 – volume: 57 start-page: 1643 issue: 12 year: 2003 end-page: 1660 ident: CR10 article-title: Simultaneous tridiagonalization of two symmetric matrices publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.733 – volume: 306 start-page: 3125 issue: 23 year: 2006 end-page: 3129 ident: CR13 article-title: Converse to the parter-wiener theorem: the case of non-trees publication-title: Discret. Math. doi: 10.1016/j.disc.2005.04.025 – volume: 118 start-page: 549 issue: 3 year: 2011 end-page: 566 ident: CR29 article-title: On the simultaneous tridiagonalization of two symmetric matrices publication-title: Numer. Math. doi: 10.1007/s00211-010-0357-9 – ident: CR32 – volume: 129 start-page: 129 issue: 1 year: 2011 ident: CR4 article-title: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons publication-title: Math. Program. doi: 10.1007/s10107-011-0462-2 – volume: 45 start-page: 34 issue: 3 year: 2019 ident: CR11 article-title: BBCPOP: a sparse doubly nonnegative relaxation of polynomial optimization problems with binary, box and complementarity constraints publication-title: ACM Trans. Math. Softw. doi: 10.1145/3309988 – volume: 173 start-page: 79 issue: 1 year: 2019 end-page: 116 ident: CR1 article-title: Eigenvalue-based algorithm and analysis for nonconvex qcqp with one constraint publication-title: Math. Program. doi: 10.1007/s10107-017-1206-8 – ident: CR28 – volume: 27 start-page: 92 issue: 1 year: 2012 end-page: 107 ident: CR19 article-title: Zero duality gap in optimal power flow problem publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2011.2160974 – volume: 26 start-page: 143 issue: 2 year: 2003 end-page: 154 ident: CR15 article-title: Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations publication-title: Comput. Optim. Appl. doi: 10.1023/A:1025794313696 – volume: 173 start-page: 79 issue: 1 year: 2019 ident: 1071_CR1 publication-title: Math. Program. doi: 10.1007/s10107-017-1206-8 – volume: 95 start-page: 303 issue: 2 year: 2003 ident: 1071_CR21 publication-title: Math. Program. doi: 10.1007/s10107-002-0351-9 – ident: 1071_CR22 doi: 10.1007/978-1-4615-4381-7_13 – volume: 6 start-page: 231 issue: 3 year: 2009 ident: 1071_CR25 publication-title: Discret. Optim. doi: 10.1016/j.disopt.2009.01.002 – volume-title: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications year: 2000 ident: 1071_CR33 doi: 10.1007/978-1-4615-4381-7 – volume: 145 start-page: 291 issue: 1 year: 2014 ident: 1071_CR18 publication-title: Math. Program. doi: 10.1007/s10107-013-0648-x – volume: 363 start-page: 147 year: 2003 ident: 1071_CR14 publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(01)00589-4 – volume: 118 start-page: 549 issue: 3 year: 2011 ident: 1071_CR29 publication-title: Numer. Math. doi: 10.1007/s00211-010-0357-9 – volume: 57 start-page: 1643 issue: 12 year: 2003 ident: 1071_CR10 publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.733 – volume: 49 start-page: 371 issue: 3 year: 2007 ident: 1071_CR24 publication-title: SIAM Rev. doi: 10.1137/S003614450444614X – volume: 129 start-page: 33 issue: 1 year: 2011 ident: 1071_CR16 publication-title: Math. Program. doi: 10.1007/s10107-010-0402-6 – volume: 7 start-page: 331 issue: 3 year: 2015 ident: 1071_CR34 publication-title: Math. Program. Comput. doi: 10.1007/s12532-015-0082-6 – ident: 1071_CR3 – volume: 25 start-page: 53 issue: 1 year: 1957 ident: 1071_CR17 publication-title: Econometrica doi: 10.2307/1907742 – volume: 27 start-page: 92 issue: 1 year: 2012 ident: 1071_CR19 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2011.2160974 – volume: 129 start-page: 129 issue: 1 year: 2011 ident: 1071_CR4 publication-title: Math. Program. doi: 10.1007/s10107-011-0462-2 – ident: 1071_CR2 doi: 10.1007/978-1-4614-0769-0 – volume: 23 start-page: 339 issue: 2 year: 1998 ident: 1071_CR23 publication-title: Math. Oper. Res. doi: 10.1287/moor.23.2.339 – volume: 139 start-page: 503 issue: 2 year: 2003 ident: 1071_CR8 publication-title: Appl. Math. Comput. – volume: 62 start-page: 133 issue: 4 year: 2019 ident: 1071_CR27 publication-title: J. Oper. Res. Soc. Jpn – ident: 1071_CR31 doi: 10.1007/s10107-020-01560-8 – volume: 275 start-page: 111 year: 2020 ident: 1071_CR26 publication-title: Discret. Appl. Math. doi: 10.1016/j.dam.2019.04.032 – volume: 2 start-page: 188 issue: 2 year: 2006 ident: 1071_CR5 publication-title: ACM Trans. Sens. Netw. doi: 10.1145/1149283.1149286 – volume: 27 start-page: 725 issue: 2 year: 2017 ident: 1071_CR20 publication-title: SIAM J. Optim. doi: 10.1137/14099379X – ident: 1071_CR32 doi: 10.1007/s10107-020-01589-9 – volume: 45 start-page: 34 issue: 3 year: 2019 ident: 1071_CR11 publication-title: ACM Trans. Math. Softw. doi: 10.1145/3309988 – ident: 1071_CR35 doi: 10.1109/CDC40024.2019.9029827 – volume: 26 start-page: 143 issue: 2 year: 2003 ident: 1071_CR15 publication-title: Comput. Optim. Appl. doi: 10.1023/A:1025794313696 – ident: 1071_CR28 doi: 10.1080/10556788.2020.1827256 – volume: 46 start-page: 139 issue: 1–2 year: 1999 ident: 1071_CR12 publication-title: Linear Multilinear Algebra doi: 10.1080/03081089908818608 – volume: 11 start-page: 647 issue: 3 year: 2001 ident: 1071_CR9 publication-title: SIAM J. Optim. doi: 10.1137/S1052623400366218 – volume: 24 start-page: 1746 issue: 4 year: 2014 ident: 1071_CR30 publication-title: SIAM J. Optim. doi: 10.1137/130915261 – volume: 181 start-page: 1 issue: 1 year: 2020 ident: 1071_CR7 publication-title: Math. Program. doi: 10.1007/s10107-019-01367-2 – volume: 306 start-page: 3125 issue: 23 year: 2006 ident: 1071_CR13 publication-title: Discret. Math. doi: 10.1016/j.disc.2005.04.025 – volume: 2 start-page: 278 issue: 3 year: 2015 ident: 1071_CR6 publication-title: IEEE Trans. Netw. Syst. doi: 10.1109/TCNS.2015.2401172 |
| SSID | ssj0009852 |
| Score | 2.3745208 |
| Snippet | We study the exactness of the semidefinite programming (SDP) relaxation of quadratically constrained quadratic programs (QCQPs). With the aggregate sparsity... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 243 |
| SubjectTerms | Computer Science Constraints Feasibility Mathematical analysis Mathematics Mathematics and Statistics Matrices (mathematics) Operations Research/Decision Theory Optimization Real Functions Semidefinite programming Sparsity |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSywxEC7cDnpwGRXHjRwEn2hDT9JL-igueFFEfQ8PQkhnAWEYlx5F_71VPWnH5wZ66-4snaUq-bLUVwAbRvsyM0USIZbmEQlFVLoC9cpZnXKvbZqVtbOJ_OREXl4Wp8EorGpuuzdHkvVI_cbYTZI5GKflL06MUTYK4zjdSXLYcHb-b0i1K2s_O3HB0yjFUTiYynyex3_T0ftB-cPpaD3pHM78rrizMB1AJtsdSMUcjLheC2YaBw4s6HMLpt6wEeLb8SuFa9WCuRCrYn8CNfXWPFwdPGnTZ-f7p4yMYJ4G233sxrO7B21JmLDLu8_MEOok5xPODkNYuAtWMdr8ZYiWsfJsQGD7gM8L8Pfw4GLvKAr-GSIjUtmPfCLiokRIhgOFL5ISwabuSK_j2GbcWK6LWOAX3REl4hyEIl66Qrg4t2VphdRiEcZ6Nz23RBesOC7FuTe50AkmkWnuTKw999zazJg2dJpuUiaQl1M1umpIu0ztrbC9Vd3eKmvD9mua2wF1x7exN6n3Fek15mx0ME_A8hFDltrNiRgJ8RbGXG0ERAWFrxTPeCJxtZWJNuw0AjEM_vq_yz-LvgKTnAww6nvjqzCGfeTWYMI89q-r-_VaEV4AP4cBPw priority: 102 providerName: Springer Nature |
| Title | Exact SDP relaxations of quadratically constrained quadratic programs with forest structures |
| URI | https://link.springer.com/article/10.1007/s10898-021-01071-6 https://www.proquest.com/docview/2624804963 |
| Volume | 82 |
| WOSCitedRecordID | wos000691952800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEK7w8KAHEZS4iqQPJGC0w2z3PHpOBHGJiWGZsD7QmHR6-pGYkF1wFgP_nqrZXkcxcvFSmdl59ebrrv6mp-orgC1rQp3bMuXIpQWnTsFrX-K48s5kIhiX5XVbbKIYDtXpaVnFBbcmhlXOfWLrqN3E0hr5rshFqpDO5nLv_IJT1Sj6uhpLaCzCMjKbPoV0HYmqE91VbcWdpBQZz9Afx6SZmDqnKLlM0Ms0TrM8_2Niuu2e__pO2k4_hyv_2_BH8DAST7Y_6ymrsODHa_DgNznCNViNA71hO1GN-uVj-Da4MnbKRm8rRnkvV7MVPjYJ7OLSOOo_iPLZNbNENKnehHfdERbDvxpG670MCTK2m800ay9x-wl8PBx8OHjHY0kGbmWmpjykMilrZGHoG0KZ1sgvTV8FkyQuF9YJUyYSfzF9WSO1QfYRlC-lTwpX104qI9dhaTwZ-6cUUyXw7VsEW0iT4iUqK7xNTBBBOJdb24P-HA9to145_Y0z3SktE4YaMdQthjrvwatf15zP1DruPHubYNY0lPHO1sSMBGwfiWLp_YK0kJBi4Zkbc2x1HOON7oDtwet57-gO__u5z-6-23O4LyjHog0N34AlxMS_gHv25_R782MTFovPXzZh-c1gWJ3g3vuCoz1KDsiK49ZWZIsR2ir7ivZk9OkGLf8IwQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ9AC1UbCngAwgQWM3aeTgHhCraqlXLaiWK1EMl4_ghIVW7Ldm-_hS_kZnEITxEbz1wixLHefjzPOyZbwCeWxOq3JYpR1tacAIFr3yJ88o7k4lgXJZXTbGJYjRSBwfleA6-d7kwFFbZycRGULuppTXyNZGLVKE5m8v3xyecqkbR7mpXQqOFxa6_PEeXrX63s4Hj-0KIrc39D9s8VhXgVmZqxkMqk7JCQwLhHcq0QhPJDFUwSeJyYZ0wZSLxjBnKCrUzKtCgfCl9UriqclIZif3egJspMYtRqKAY9yS_qqnwk5Qi4xnK_5ikE1P1FCWzCXLeUa3z_DdF-Kc6-GtftlF3W_f-tx91H-5Gw5qttzNhEeb8ZAkWfqFbXILFKMhq9iqybb9-AIebF8bO2KeNMaO8not2BZNNAzs5NY7mB6L46JJZMqSpnoZ3_RUWw9tqRuvZDB0A_E-s5eQ9xeOH8PlavnkZ5ifTiX9EMWNCofsSbCFNireorPA2MUEE4Vxu7QCG3fhrG_nY6TOOdM8kTZjRiBndYEbnA3jz857jlo3kytYvCVaaRBX2bE3MuMD3I9IvvV4Q1xOakNhytcOSjjKs1j2QBvC2Q2N_-d_PXbm6t2dwe3v_457e2xntPoY7gvJJmjD4VZjH8fFP4JY9m32tvz1tZheDL9eN0h_RwVvB |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UKqIPaqvi1qrzoKjo0OxMLpMHKcXtYqksCyoUKYyTuYBQdluzre1f89d5TjJpvGDf-uBbSCaTZOabc5mc8x2Ap9aEKrdlytGWFpxAwStf4rryzmQiGJflVVNsophM1N5eOV2CH10uDIVVdjKxEdRubmmPfEPkIlVozuZyI8SwiOlovHl4xKmCFP1p7cpptBDZ9Wff0X2r3-yMcK6fCTHe_vj2HY8VBriVmVrwkMqkrNCoQKiHMq3QXDJDFUySuFxYJ0yZSDxjhrJCTY3KNChfSp8UrqqcVEZiv1fgaoE-JoUTTrPPPeGvaqr9JKXIeIa6ICbsxLQ9RYltghx5VPE8_00p_qka_vpH26i-8e3_edDuwK1ocLOtdoWswJKfrcLNX2gYV2ElCriavYgs3C_vwv72qbEL9mE0ZZTvc9rubLJ5YEfHxtG6QXQfnDFLBjbV2fCuv8Ji2FvNaJ-boWOAY8Zart5jPL4Hny7lm-_D8mw-8w8olkwodGuCLaRJ8RaVFd4mJoggnMutHcCww4K2kaedPuNA9wzThB-N-NENfnQ-gFfn9xy2LCUXtn5OENMkwrBna2ImBr4fkYHprYI4oNC0xJbrHa50lG217kE1gNcdMvvL_37u2sW9PYHrCE79fmey-xBuCEozaaLj12EZp8c_gmv2ZPG1_va4WWgMvlw2SH8Ctt1krQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+SDP+relaxations+of+quadratically+constrained+quadratic+programs+with+forest+structures&rft.jtitle=Journal+of+global+optimization&rft.au=Azuma+Godai&rft.au=Fukuda+Mituhiro&rft.au=Kim%2C+Sunyoung&rft.au=Yamashita+Makoto&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=82&rft.issue=2&rft.spage=243&rft.epage=262&rft_id=info:doi/10.1007%2Fs10898-021-01071-6&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |