Autonomous Obstacle Avoidance and Target Tracking of UAV Based on Deep Reinforcement Learning

When using deep reinforcement learning algorithm to complete Unmanned Aerial Vehicle (UAV) autonomous obstacle avoidance and target tracking tasks, there are often some problems such as slow convergence speed and low success rate. Therefore, this paper proposes a new deep reinforcement learning algo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of intelligent & robotic systems Ročník 104; číslo 4; s. 60
Hlavní autoři: Xu, Guoqiang, Jiang, Weilai, Wang, Zhaolei, Wang, Yaonan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.04.2022
Springer
Springer Nature B.V
Témata:
ISSN:0921-0296, 1573-0409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract When using deep reinforcement learning algorithm to complete Unmanned Aerial Vehicle (UAV) autonomous obstacle avoidance and target tracking tasks, there are often some problems such as slow convergence speed and low success rate. Therefore, this paper proposes a new deep reinforcement learning algorithm, namely Multiple Pools Twin Delay Deep Deterministic Policy Gradient (MPTD3) algorithm. Firstly, the state space and action space of UAV are established as continuous models, which is closer to engineering practice than discrete models. Then, multiple experience pools mechanism and gradient truncation are designed to improve the convergence of the algorithm. Furthermore, the generalization ability of the algorithm is obtained by giving UAV environmental perception ability. Experimental results verify the effectiveness of the proposed method.
AbstractList When using deep reinforcement learning algorithm to complete Unmanned Aerial Vehicle (UAV) autonomous obstacle avoidance and target tracking tasks, there are often some problems such as slow convergence speed and low success rate. Therefore, this paper proposes a new deep reinforcement learning algorithm, namely Multiple Pools Twin Delay Deep Deterministic Policy Gradient (MPTD3) algorithm. Firstly, the state space and action space of UAV are established as continuous models, which is closer to engineering practice than discrete models. Then, multiple experience pools mechanism and gradient truncation are designed to improve the convergence of the algorithm. Furthermore, the generalization ability of the algorithm is obtained by giving UAV environmental perception ability. Experimental results verify the effectiveness of the proposed method.
When using deep reinforcement learning algorithm to complete Unmanned Aerial Vehicle (UAV) autonomous obstacle avoidance and target tracking tasks, there are often some problems such as slow convergence speed and low success rate. Therefore, this paper proposes a new deep reinforcement learning algorithm, namely Multiple Pools Twin Delay Deep Deterministic Policy Gradient (MPTD3) algorithm. Firstly, the state space and action space of UAV are established as continuous models, which is closer to engineering practice than discrete models. Then, multiple experience pools mechanism and gradient truncation are designed to improve the convergence of the algorithm. Furthermore, the generalization ability of the algorithm is obtained by giving UAV environmental perception ability. Experimental results verify the effectiveness of the proposed method. Keywords Unmanned Aerial Vehicle (UAV) * Autonomous obstacle avoidance * Target tracking * Deep reinforcement learning * Continuous control
ArticleNumber 60
Audience Academic
Author Wang, Yaonan
Xu, Guoqiang
Wang, Zhaolei
Jiang, Weilai
Author_xml – sequence: 1
  givenname: Guoqiang
  surname: Xu
  fullname: Xu, Guoqiang
  organization: College of Electrical and Information Engineering, Hunan University
– sequence: 2
  givenname: Weilai
  surname: Jiang
  fullname: Jiang, Weilai
  email: jiangweilai@hnu.edu.cn
  organization: College of Electrical and Information Engineering, Hunan University
– sequence: 3
  givenname: Zhaolei
  surname: Wang
  fullname: Wang, Zhaolei
  organization: Science and Technology on Aerospace Intelligent Control Laboratory, Beijing Aerospace Automatic Control Institute
– sequence: 4
  givenname: Yaonan
  surname: Wang
  fullname: Wang, Yaonan
  organization: College of Electrical and Information Engineering, Hunan University
BookMark eNp9kEFrHCEYhqUk0M22f6AnoedJP50ZHY_TtGkKC4Gyya2I43wupru6VbfQf1-3Eyj0EDwI-j76vc8VuQgxICHvGFwzAPkhMxg60QDnDTABrBlekRXrZdtAB-qCrEBxVq-VeE2ucn4CADX0akW-j6cSQzzEU6b3Uy7G7pGOv6KfTbBITZjp1qQdFrpNxv7wYUejow_jI_1oMs40BvoJ8Ui_oQ8uJosHDIVu0KRQs2_IpTP7jG-f9zV5uP28vblrNvdfvt6Mm8a2_VAaVE4a1aneSceHFuwklZsdM5JbmJ0UHTcKzcR6PoneoEHLQUxuruVAiqFdk_fLu8cUf54wF_0UTynULzUXHQih2p7V1PWS2pk96vO8pXaqa8aDt1Wo8_V8lFz1vIMqb02GBbAp5pzQaeuLKT6GCvq9ZqDP9vViX1f7-q99fZ6I_4cekz-Y9PtlqF2gXMNhh-lfjReoP6vOmLs
CitedBy_id crossref_primary_10_1007_s10846_024_02085_4
crossref_primary_10_1007_s10846_025_02304_6
crossref_primary_10_1017_aer_2023_43
crossref_primary_10_3390_drones9080566
crossref_primary_10_1016_j_knosys_2024_111604
crossref_primary_10_23919_JSEE_2023_000128
crossref_primary_10_1016_j_engappai_2023_106102
crossref_primary_10_3390_drones8010009
crossref_primary_10_1109_TCCN_2024_3358545
crossref_primary_10_1016_j_rineng_2025_105139
crossref_primary_10_3390_math12172672
crossref_primary_10_1007_s10846_023_01996_y
crossref_primary_10_1016_j_asoc_2025_113463
crossref_primary_10_1109_TAES_2023_3294889
crossref_primary_10_1109_TIV_2023_3342174
crossref_primary_10_3390_drones8090475
crossref_primary_10_3390_s23135896
crossref_primary_10_1016_j_cja_2024_04_028
crossref_primary_10_1155_2023_6654130
crossref_primary_10_3390_biomimetics7040197
crossref_primary_10_1016_j_robot_2023_104383
crossref_primary_10_1016_j_engappai_2025_111237
crossref_primary_10_1109_JAS_2024_124920
Cites_doi 10.1038/nature14236
10.1007/s10846-020-01212-1
10.1007/s10846-018-0891-8
10.3390/rs12040640
10.1109/ICARCV.2018.8581309
10.3390/rs12223789
10.1007/s10846-021-01462-7
10.1007/s10846-019-01073-3
10.1007/s10846-019-01045-7
10.1016/j.dt.2020.11.014
10.1007/s10846-012-9761-y
10.1007/s10846-018-0898-1
10.1016/j.ast.2018.10.027
10.1109/ACCESS.2020.3011211
10.1109/TVT.2018.2890773
10.1109/LCOMM.2016.2633248
10.1109/LWC.2018.2880467
10.1109/TVT.2021.3089158
10.1155/2021/5578490
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022
COPYRIGHT 2022 Springer
Copyright Springer Nature B.V. Apr 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022
– notice: COPYRIGHT 2022 Springer
– notice: Copyright Springer Nature B.V. Apr 2022
DBID AAYXX
CITATION
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10846-022-01601-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList

Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-0409
ExternalDocumentID A729524057
10_1007_s10846_022_01601_8
GrantInformation_xml – fundername: Key Programme
  grantid: 61733004
  funderid: http://dx.doi.org/10.13039/501100010903
– fundername: Young Scientists Fund
  grantid: 61903133
  funderid: http://dx.doi.org/10.13039/501100010909
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9P
PF0
PQQKQ
PROAC
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-e9f7a9495f7f2830cb79fdf1a72c0df7642a9eab152b65aeaec206bfd04007683
IEDL.DBID RSV
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000770755300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0921-0296
IngestDate Sat Oct 18 23:15:31 EDT 2025
Sat Nov 29 10:38:41 EST 2025
Tue Nov 18 21:06:45 EST 2025
Sat Nov 29 01:33:01 EST 2025
Fri Feb 21 02:45:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Unmanned Aerial Vehicle (UAV)
Autonomous obstacle avoidance
Deep reinforcement learning
Target tracking
Continuous control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-e9f7a9495f7f2830cb79fdf1a72c0df7642a9eab152b65aeaec206bfd04007683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2640669351
PQPubID 326251
ParticipantIDs proquest_journals_2640669351
gale_infotracacademiconefile_A729524057
crossref_citationtrail_10_1007_s10846_022_01601_8
crossref_primary_10_1007_s10846_022_01601_8
springer_journals_10_1007_s10846_022_01601_8
PublicationCentury 2000
PublicationDate 20220400
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 4
  year: 2022
  text: 20220400
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle with a special section on Unmanned Systems
PublicationTitle Journal of intelligent & robotic systems
PublicationTitleAbbrev J Intell Robot Syst
PublicationYear 2022
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Yan, Xiang, Wang (CR17) 2020; 98
Wang, Su, Xu, Li, Luan (CR6) 2021
Shirani, Najafi, Izadi (CR1) 2019; 84
Wang, Wang, Shen, Zhang (CR26) 2019; 68
CR15
Sung, Nielsen (CR3) 2020; 97
Oh, Lim, Lee, Baek (CR12) 2019
Song, Yang, McGreavy, Li (CR27) 2018
Lyu, Zeng, Zhang, Lim (CR9) 2016; 21
CR10
CR30
Umemoto, Endo, Matsuno (CR4) 2020; 100
Li, Yang, Chen, Liang, Ma (CR23) 2021; 17
Li, Gan, Chen, Sergey Aleksandrovich (CR29) 2020; 12
CR2
Liu, Ansari (CR5) 2018; 8
Dong, Ota, Dong (CR7) 2021
Chang, Jiang, Nan, Zhou, Li, Wang, He (CR14) 2021
Fujimoto, Hoof, Meger (CR28) 2018
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, Petersen, Beattie, Sadik, Antonoglou, King, Kumaran, Wierstra, Legg, Hassabis (CR16) 2015; 518
Hausknecht, Stone (CR19) 2015
Cetin, Zagli, Yilmaz (CR11) 2013; 69
Sampedro, Rodriguez-Ramos, Bavle, Carrio, de la Puente, Campoy (CR25) 2019; 95
CR21
CR20
Rodriguez-Ramos, Sampedro, Bavle, De La Puente, Campoy (CR22) 2019; 93
Yao, Zheng, Qi, Yuan, Guo, Zhao, Liu, Yang (CR18) 2020; 8
Wan, Gao, Hu, Wu (CR24) 2020; 12
Stampa, Sutorma, Jahn, Thiem, Wolff, Röhrig (CR8) 2021; 103
Huang, Zhang, Liu, Lu (CR13) 2020
I Sung (1601_CR3) 2020; 97
X Liu (1601_CR5) 2018; 8
A Chang (1601_CR14) 2021
Z Huang (1601_CR13) 2020
J Dong (1601_CR7) 2021
C Wang (1601_CR26) 2019; 68
B Li (1601_CR23) 2021; 17
C Yan (1601_CR17) 2020; 98
M Stampa (1601_CR8) 2021; 103
C Sampedro (1601_CR25) 2019; 95
B Li (1601_CR29) 2020; 12
1601_CR21
1601_CR20
K Wan (1601_CR24) 2020; 12
O Cetin (1601_CR11) 2013; 69
A Rodriguez-Ramos (1601_CR22) 2019; 93
S Fujimoto (1601_CR28) 2018
Q Yao (1601_CR18) 2020; 8
V Mnih (1601_CR16) 2015; 518
K Umemoto (1601_CR4) 2020; 100
J Lyu (1601_CR9) 2016; 21
DR Song (1601_CR27) 2018
D Oh (1601_CR12) 2019
1601_CR15
B Shirani (1601_CR1) 2019; 84
1601_CR2
Y Wang (1601_CR6) 2021
1601_CR10
M Hausknecht (1601_CR19) 2015
1601_CR30
References_xml – year: 2021
  ident: CR6
  article-title: Lifesaving with Rescuechain: Energy-Efficient and Partition-Tolerant Blockchain Based Secure Information Sharing for UAV-Aided Disaster Rescue
  publication-title: Proceeding of IEEE Conference on Computer Communications
– year: 2019
  ident: CR12
  article-title: Airborne-relay-based algorithm for locating crashed UAVs in GPS-denied environments
  publication-title: Proceeding of 2019 IEEE 10th annual ubiquitous computing, Electronics & Mobile Communication Conference (UEMCON)
– year: 2021
  ident: CR7
  article-title: UAV-Based Real-Time Survivor Detection System in Post-Disaster Search and Rescue Operations
  publication-title: Proceeding of IEEE Journal on Miniaturization for Air and Space Systems
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  end-page: 533
  ident: CR16
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: CR2
– year: 2021
  ident: CR14
  article-title: Research on the application of computer track planning algorithm in UAV power line patrol system
  publication-title: Proceeding of Conference Series (Vol. 1915, No. 3, p. 032030)
– ident: CR30
– volume: 100
  start-page: 1085
  year: 2020
  end-page: 1095
  ident: CR4
  article-title: Dynamic cooperative transportation control using friction forces of n multi-rotor unmanned aerial vehicles
  publication-title: Proc. J. Intell. Robot. Syst.
  doi: 10.1007/s10846-020-01212-1
– volume: 93
  start-page: 351
  issue: 1–2
  year: 2019
  end-page: 366
  ident: CR22
  article-title: A deep reinforcement learning strategy for UAV autonomous landing on a moving platform
  publication-title: Proc J Intel Robot Syst
  doi: 10.1007/s10846-018-0891-8
– ident: CR10
– volume: 12
  start-page: 640
  issue: 4
  year: 2020
  ident: CR24
  article-title: Robust motion control for UAV in dynamic uncertain environments using deep reinforcement learning
  publication-title: Proc. Remote Sens.
  doi: 10.3390/rs12040640
– start-page: 311
  year: 2018
  end-page: 318
  ident: CR27
  article-title: Recurrent deterministic policy gradient method for bipedal locomotion on rough terrain challenge
  publication-title: Proceeding of 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)
  doi: 10.1109/ICARCV.2018.8581309
– volume: 12
  start-page: 3789
  issue: 22
  year: 2020
  ident: CR29
  article-title: UAV maneuvering target tracking in uncertain environments based on deep reinforcement learning and meta-learning
  publication-title: Proc. Remote Sens.
  doi: 10.3390/rs12223789
– volume: 103
  start-page: 1
  issue: 1
  year: 2021
  end-page: 15
  ident: CR8
  article-title: Maturity levels of public safety applications using unmanned aerial systems: a review
  publication-title: Proc. J. Intel. Robot. Syst.
  doi: 10.1007/s10846-021-01462-7
– ident: CR21
– volume: 98
  start-page: 297
  year: 2020
  end-page: 309
  ident: CR17
  article-title: Towards real-time path planning through deep reinforcement learning for a UAV in dynamic environments
  publication-title: Proc. J. Intel. Robot. Syst.
  doi: 10.1007/s10846-019-01073-3
– volume: 97
  start-page: 719
  year: 2020
  end-page: 731
  ident: CR3
  article-title: Zoning a service area of unmanned aerial vehicles for package delivery services
  publication-title: Proc. J. Intel. Robot. Syst.
  doi: 10.1007/s10846-019-01045-7
– start-page: 1
  year: 2020
  end-page: 5
  ident: CR13
  article-title: Outdoor independent charging platform system for power patrol UAV
  publication-title: Proceeding of 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)
– year: 2015
  ident: CR19
  article-title: Deep Recurrent Q-Learning for Partially Observable MDPs
  publication-title: Proceeding of AAAI Fall Symposium Series
– volume: 17
  start-page: 457
  issue: 2
  year: 2021
  end-page: 466
  ident: CR23
  article-title: Maneuvering target tracking of UAV based on MN-DDPG and transfer learning
  publication-title: Proc. Defence Technol.
  doi: 10.1016/j.dt.2020.11.014
– volume: 69
  start-page: 361
  issue: 1
  year: 2013
  end-page: 372
  ident: CR11
  article-title: Establishing obstacle and collision free communication relay for UAVs with artificial potential fields
  publication-title: Proc. J. Intel. Robot. Syst.
  doi: 10.1007/s10846-012-9761-y
– volume: 95
  start-page: 601
  issue: 2
  year: 2019
  end-page: 627
  ident: CR25
  article-title: A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques
  publication-title: Proc. J. Intel. Robot. Syst.
  doi: 10.1007/s10846-018-0898-1
– ident: CR15
– volume: 84
  start-page: 158
  year: 2019
  end-page: 169
  ident: CR1
  article-title: Cooperative load transportation using multiple UAVs
  publication-title: Proc. Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2018.10.027
– volume: 8
  start-page: 135513
  year: 2020
  end-page: 135523
  ident: CR18
  article-title: Path planning method with improved artificial potential field—a reinforcement learning perspective
  publication-title: Proc. IEEE Access
  doi: 10.1109/ACCESS.2020.3011211
– volume: 68
  start-page: 2124
  issue: 3
  year: 2019
  end-page: 2136
  ident: CR26
  article-title: Autonomous navigation of UAVs in large-scale complex environments: a deep reinforcement learning approach
  publication-title: Proc. IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2890773
– volume: 21
  start-page: 604
  issue: 3
  year: 2016
  end-page: 607
  ident: CR9
  article-title: Placement optimization of UAV-mounted mobile base stations
  publication-title: Proc. IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2016.2633248
– volume: 8
  start-page: 580
  issue: 2
  year: 2018
  end-page: 583
  ident: CR5
  article-title: Resource allocation in UAV-assisted M2M communications for disaster rescue
  publication-title: Proc. IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2018.2880467
– ident: CR20
– start-page: 1587
  year: 2018
  end-page: 1596
  ident: CR28
  article-title: Addressing function approximation error in actor-critic methods
  publication-title: Proceeding of International Conference on Machine Learning
– volume: 98
  start-page: 297
  year: 2020
  ident: 1601_CR17
  publication-title: Proc. J. Intel. Robot. Syst.
  doi: 10.1007/s10846-019-01073-3
– ident: 1601_CR15
– volume: 8
  start-page: 135513
  year: 2020
  ident: 1601_CR18
  publication-title: Proc. IEEE Access
  doi: 10.1109/ACCESS.2020.3011211
– volume: 21
  start-page: 604
  issue: 3
  year: 2016
  ident: 1601_CR9
  publication-title: Proc. IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2016.2633248
– volume: 12
  start-page: 640
  issue: 4
  year: 2020
  ident: 1601_CR24
  publication-title: Proc. Remote Sens.
  doi: 10.3390/rs12040640
– volume-title: Proceeding of 2019 IEEE 10th annual ubiquitous computing, Electronics & Mobile Communication Conference (UEMCON)
  year: 2019
  ident: 1601_CR12
– volume: 17
  start-page: 457
  issue: 2
  year: 2021
  ident: 1601_CR23
  publication-title: Proc. Defence Technol.
  doi: 10.1016/j.dt.2020.11.014
– start-page: 311
  volume-title: Proceeding of 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)
  year: 2018
  ident: 1601_CR27
  doi: 10.1109/ICARCV.2018.8581309
– volume: 68
  start-page: 2124
  issue: 3
  year: 2019
  ident: 1601_CR26
  publication-title: Proc. IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2890773
– ident: 1601_CR30
– ident: 1601_CR21
– volume: 103
  start-page: 1
  issue: 1
  year: 2021
  ident: 1601_CR8
  publication-title: Proc. J. Intel. Robot. Syst.
  doi: 10.1007/s10846-021-01462-7
– volume-title: Proceeding of IEEE Conference on Computer Communications
  year: 2021
  ident: 1601_CR6
– ident: 1601_CR10
  doi: 10.1109/TVT.2021.3089158
– volume: 69
  start-page: 361
  issue: 1
  year: 2013
  ident: 1601_CR11
  publication-title: Proc. J. Intel. Robot. Syst.
  doi: 10.1007/s10846-012-9761-y
– volume-title: Proceeding of Conference Series (Vol. 1915, No. 3, p. 032030)
  year: 2021
  ident: 1601_CR14
– volume-title: Proceeding of AAAI Fall Symposium Series
  year: 2015
  ident: 1601_CR19
– volume: 84
  start-page: 158
  year: 2019
  ident: 1601_CR1
  publication-title: Proc. Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2018.10.027
– start-page: 1587
  volume-title: Proceeding of International Conference on Machine Learning
  year: 2018
  ident: 1601_CR28
– volume: 97
  start-page: 719
  year: 2020
  ident: 1601_CR3
  publication-title: Proc. J. Intel. Robot. Syst.
  doi: 10.1007/s10846-019-01045-7
– ident: 1601_CR2
  doi: 10.1155/2021/5578490
– volume: 100
  start-page: 1085
  year: 2020
  ident: 1601_CR4
  publication-title: Proc. J. Intell. Robot. Syst.
  doi: 10.1007/s10846-020-01212-1
– volume: 93
  start-page: 351
  issue: 1–2
  year: 2019
  ident: 1601_CR22
  publication-title: Proc J Intel Robot Syst
  doi: 10.1007/s10846-018-0891-8
– ident: 1601_CR20
– volume: 95
  start-page: 601
  issue: 2
  year: 2019
  ident: 1601_CR25
  publication-title: Proc. J. Intel. Robot. Syst.
  doi: 10.1007/s10846-018-0898-1
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 1601_CR16
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 12
  start-page: 3789
  issue: 22
  year: 2020
  ident: 1601_CR29
  publication-title: Proc. Remote Sens.
  doi: 10.3390/rs12223789
– start-page: 1
  volume-title: Proceeding of 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)
  year: 2020
  ident: 1601_CR13
– volume-title: Proceeding of IEEE Journal on Miniaturization for Air and Space Systems
  year: 2021
  ident: 1601_CR7
– volume: 8
  start-page: 580
  issue: 2
  year: 2018
  ident: 1601_CR5
  publication-title: Proc. IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2018.2880467
SSID ssj0009859
Score 2.4305558
Snippet When using deep reinforcement learning algorithm to complete Unmanned Aerial Vehicle (UAV) autonomous obstacle avoidance and target tracking tasks, there are...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 60
SubjectTerms Algorithms
Analysis
Artificial Intelligence
Control
Convergence
Data mining
Deep learning
Drone aircraft
Electrical Engineering
Engineering
label V
Machine learning
Mechanical Engineering
Mechatronics
Obstacle avoidance
Pools
Regular Paper
Robotics
Topical collection on Robotics Vision and Intelligent Control
Tracking
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEO9AEVCwX5UIkDWGweTuITCo-KU0HQol6Q5djjqlKVLN3d_n5mvE63gOiFc_yKZjwvz3wDcKDKTKMvallXqpCl90o2pZ5K2zQ-twp1UfrYbKI-OmpOT_WXFHCbp7TKUSZGQe0HxzHyN6S4STvqQmVvZz8ld43i19XUQuMubDJKQhZT976tQXcbtcLay8llznWVimZS6RxpXsm57IyxlsnmN8X0p3j-6500qp_Drf89-DY8TIanaFecsgN3sN-FrbGpg0h3fBce3EAofAQ_2uWCyx6G5Vx87siSpLmivRrOPXOLsL0XxzGXXJDScxx2F0MQJ-138Y7UoxdDLz4gzsRXjAitLgYjRQJ1PXsMJ4cfj99_kqkjg3SFahYSdaitJp8q1IGRw1xX6-BDZuvcTX2oyZmxGm1HRkFXKYsWXT6tuuBZVJBjU-zBRj_0-ARE6PKy8tiVUySniYa6ijybokMkC8dhNoFsJIdxCa6cu2ZcmDXQMpPQEAlNJKFpJvDqes5sBdZx6-iXTGXD_08rO5sKEuh8jIllWvI7VM4G7QT2R9KadMXnZk3XCbwemWP9-d_7Pr19tWdwP49sydlB-7CxuFzic7jnrhbn88sXkcF_AU4n_qg
  priority: 102
  providerName: ProQuest
Title Autonomous Obstacle Avoidance and Target Tracking of UAV Based on Deep Reinforcement Learning
URI https://link.springer.com/article/10.1007/s10846-022-01601-8
https://www.proquest.com/docview/2640669351
Volume 104
WOSCitedRecordID wos000770755300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: P5Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: K7-
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6apIf20LRpQ7dNFx0COaSC9UOWdHTahEBhs2wehEIRsh4hEOyQ3c3v70grZ9MntBdfLMmyRtJ8I818A7DLykw6W3DKK1bQ0lpGRSlHVAthc82cLEobk03w8VhcXspJCgqb9d7u_ZVk3KkfBbuhrqTB-zywomVUrMEGqjsREjZMTy9WVLuCLRn2cjSUc1mlUJnft_GDOvp5U_7ldjQqnaPN_-vuS3iRQCapl7PiFTxx7RZs9gkcSFrPW_D8ERvha_hWL-YhxKFbzMhJg6gR65L6vru2YWYQ3VpyFv3GCSo4E47YSefJeX1BDlAVWtK15LNzt2TqIhuriQePJBG4Xr2B86PDs0_HNGVfoKZgYk6d9FxLtJ8894ElzDRceuszzXMzsp6j4aKl0w0CgKZi2mln8lHVeBu2BTRiim1Yb7vWvQXim7ysrGvKkUMDCYuaCq2YonEO0Yxx2QCyXgjKJGrykCHjRq1IlcNoKhxNFUdTiQHsP9S5XRJz_LX0XpCtCv-PLRudgg-wf4H_StVoY7A8gNcB7PTiV2k5zxSiRoRmsmDY1Y-9uFev__zdd_9W_D08y-OMCZ5BO7A-v1u4D_DU3M-vZ3dD2Dg4HE-mQ1j7wukweKme4nPCvg7jAvgOIS748Q
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcKBQQCwV8AHEAi43zsH1AKFCqVlsWhLaoF2Qc20GVULJ0d4v4U_xGZrIOy0P01gPnOM7D3_ibsT3fADzIs0QHn0ouizzlmfc5V5kecquUFzYPOs18V2xCjsfq8FC_XYPvfS4MHavs58RuovatozXyp0jcyI46zZPn0y-cqkbR7mpfQmMJi1H49hVDttmzvW0c34dC7LyavNzlsaoAd2mu5jzoWlqNcUEta1K_cpXUta8TK4Ub-lqiQ251sBUSW1XkNtjgxLCoak9wR-c8xX7PwfksVZLsaiT5SuRX5UttP4EhutBFTNKJqXrI9JzOzpOmW8LVb0T4Jx38tS_b0d3Oxv_2o67ClehYs3JpCddgLTSbsNEXrWBxDtuEy78oMF6HD-ViTmkd7WLG3lToKeO9rDxpjzxZA7ONZ5PurDxDUne0rcDamh2U79kLpH_P2oZthzBl70KnQOu6xVYWRWs_3YCDM_nkm7DetE24BayuRFb4UGXDgEEhNnUFRm5pFQJ6cC4kA0j64TcuyrFTVZDPZiUkTZAxCBnTQcaoATz-ec90KUZyautHhCpD3489OxsTLvD9SPPLlBhX5YIc9gFs9VAycQqbmRWOBvCkB-Pq8r-fe_v03u7Dxd3J632zvzce3YFLojMJOgm1Bevz40W4CxfcyfxodnyvMy4GH88apD8A6Bpc2g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAcKBRQFwr4AOIAVjdOnMQHhBaWFVXRskItqpCQcfyoKqFk6e4W8df4dcxkHZaH6K0HzrGd1zcve-YbgIcyS5R3acGLXKY8c07yMlN9bsrSCSO9SjPXNpsoxuPy8FBN1uB7VwtDaZWdTmwVtWss7ZHvoOFG66hSmeyEmBYxGY6eT79w6iBFJ61dO40lRPb8t68Yvs2e7Q7xXz8SYvRq_-VrHjsMcJvKcs69CoVRGCOEIhATlq0KFVxITCFs34UCnXOjvKnQyFW5NN54K_p5FRxBHx31FNe9ABcLjDEpnXAiP6wIf0u55PkTGK4LlceCnVi2h1afUx498bslvPzNKP5pGv46o21N32jjf_5o1-FadLjZYCkhN2DN15uw0TWzYFG3bcLVX5gZb8LHwWJO5R7NYsbeVuhB41w2OG2OHUkJM7Vj-20OPUNjb-m4gTWBHQzesxfoFjjW1Gzo_ZS98y0zrW03YVkksz26BQfn8sq3Yb1uar8FLFQiy52vsr7HYBGH2hwjurTyHj0765MeJB0UtI007dQt5LNeEUwTfDTCR7fw0WUPnvycM12SlJw5-jEhTNP748rWxEIMfD7iAtMDjLekIEe-B9sdrHRUbTO9wlQPnnbAXF3-933vnL3aA7iM2NRvdsd7d-GKaKWDEqS2YX1-svD34JI9nR_PTu63csbg03lj9Acf5GX-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+Obstacle+Avoidance+and+Target+Tracking+of+UAV+Based+on+Deep+Reinforcement+Learning&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Xu%2C+Guoqiang&rft.au=Jiang%2C+Weilai&rft.au=Wang%2C+Zhaolei&rft.au=Wang%2C+Yaonan&rft.date=2022-04-01&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=104&rft.issue=4&rft_id=info:doi/10.1007%2Fs10846-022-01601-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10846_022_01601_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon