Optimality conditions based on the Fréchet second-order subdifferential
This paper focuses on second-order necessary optimality conditions for constrained optimization problems on Banach spaces. For problems in the classical setting, where the objective function is C 2 -smooth, we show that strengthened second-order necessary optimality conditions are valid if the const...
Uloženo v:
| Vydáno v: | Journal of global optimization Ročník 81; číslo 2; s. 351 - 365 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2021
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper focuses on second-order necessary optimality conditions for constrained optimization problems on Banach spaces. For problems in the classical setting, where the objective function is
C
2
-smooth, we show that strengthened second-order necessary optimality conditions are valid if the constraint set is generalized polyhedral convex. For problems in a new setting, where the objective function is just assumed to be
C
1
-smooth and the constraint set is generalized polyhedral convex, we establish sharp second-order necessary optimality conditions based on the Fréchet second-order subdifferential of the objective function and the second-order tangent set to the constraint set. Three examples are given to show that the used hypotheses are essential for the new theorems. Our second-order necessary optimality conditions refine and extend several existing results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-021-01011-4 |