The computational complexity of the backbone coloring problem for bounded-degree graphs with connected backbones

Given a graph G, a spanning subgraph H of G and an integer λ≥2, a λ-backbone coloring of G with backbone H is a proper vertex coloring of G using colors 1,2,…, in which the color difference between vertices adjacent in H is greater than or equal to λ. The backbone coloring problem is that of finding...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information processing letters Ročník 115; číslo 2; s. 232 - 236
Hlavní autori: Janczewski, Robert, Turowski, Krzysztof
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.02.2015
Elsevier Sequoia S.A
Predmet:
ISSN:0020-0190, 1872-6119
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Given a graph G, a spanning subgraph H of G and an integer λ≥2, a λ-backbone coloring of G with backbone H is a proper vertex coloring of G using colors 1,2,…, in which the color difference between vertices adjacent in H is greater than or equal to λ. The backbone coloring problem is that of finding such a coloring whose maximum color does not exceed a given limit k. In this paper, we study the backbone coloring problem for bounded-degree graphs with connected backbones and we give a complete computational complexity classification of this problem. We present a polynomial algorithm for optimal backbone coloring for subcubic graphs with arbitrary backbones. We also prove that the backbone coloring problem for graphs with arbitrary backbones and with fixed maximum degree (at least 4) is NP-complete. Furthermore, we show that for the special case of graphs with fixed maximum degree at least 5 and λ≥4 the problem remains NP-complete even for spanning tree backbones. •The backbone coloring problem is solvable in quadratic time for subcubic graphs.•The backbone coloring problem is NP-hard for graphs with degree greater than 4.•The backbone coloring problem is NP-hard for tree backbones with bounded degree.
AbstractList Given a graph G, a spanning subgraph H of G and an integer λ≥2, a λ-backbone coloring of G with backbone H is a proper vertex coloring of G using colors 1,2,…, in which the color difference between vertices adjacent in H is greater than or equal to λ. The backbone coloring problem is that of finding such a coloring whose maximum color does not exceed a given limit k. In this paper, we study the backbone coloring problem for bounded-degree graphs with connected backbones and we give a complete computational complexity classification of this problem. We present a polynomial algorithm for optimal backbone coloring for subcubic graphs with arbitrary backbones. We also prove that the backbone coloring problem for graphs with arbitrary backbones and with fixed maximum degree (at least 4) is NP-complete. Furthermore, we show that for the special case of graphs with fixed maximum degree at least 5 and λ≥4 the problem remains NP-complete even for spanning tree backbones. •The backbone coloring problem is solvable in quadratic time for subcubic graphs.•The backbone coloring problem is NP-hard for graphs with degree greater than 4.•The backbone coloring problem is NP-hard for tree backbones with bounded degree.
Given a graph G , a spanning subgraph H of G and an integer lambda greater than or equal to 2 lambda greater than or equal to 2, a lambda -backbone coloring of G with backbone H is a proper vertex coloring of G using colors 1,2,...1,2,..., in which the color difference between vertices adjacent in H is greater than or equal to lambda . The backbone coloring problem is that of finding such a coloring whose maximum color does not exceed a given limit k . In this paper, we study the backbone coloring problem for bounded-degree graphs with connected backbones and we give a complete computational complexity classification of this problem. We present a polynomial algorithm for optimal backbone coloring for subcubic graphs with arbitrary backbones. We also prove that the backbone coloring problem for graphs with arbitrary backbones and with fixed maximum degree (at least 4) is NP-complete. Furthermore, we show that for the special case of graphs with fixed maximum degree at least 5 and lambda greater than or equal to 4 lambda greater than or equal to 4 the problem remains NP-complete even for spanning tree backbones.
Given a graph G , a spanning subgraph H of G and an integer ...≥2, a ... -backbone coloring of G with backbone H is a proper vertex coloring of G using colors 1,2,..., in which the color difference between vertices adjacent in H is greater than or equal to ... . The backbone coloring problem is that of finding such a coloring whose maximum color does not exceed a given limit k . This paper studies the backbone coloring problem for bounded-degree graphs with connected backbones and it gives a complete computational complexity classification of this problem. This paper presents a polynomial algorithm for optimal backbone coloring for subcubic graphs with arbitrary backbones. It also proves that the backbone coloring problem for graphs with arbitrary backbones and with fixed maximum degree (at least 4) is NP-complete. Furthermore, this paper shows that for the special case of graphs with fixed maximum degree at least 5 and ...≥4 the problem remains NP-complete even for spanning tree backbones. (ProQuest: ... denotes formulae/symbols omitted.)
Author Janczewski, Robert
Turowski, Krzysztof
Author_xml – sequence: 1
  givenname: Robert
  surname: Janczewski
  fullname: Janczewski, Robert
  email: skalar@eti.pg.gda.pl
– sequence: 2
  givenname: Krzysztof
  surname: Turowski
  fullname: Turowski, Krzysztof
  email: Krzysztof.Turowski@eti.pg.gda.pl
BookMark eNp9kUtPHDEQhK0IpCyQH5DbSLnkMkN73hYnhIAgIXGBs-VHz643XntiewL8e7zZiAMHTlarvmq3qk7IkfMOCflOoaJA-_NtZWZb1UDbClgFdPxCVnQc6rKnlB2RFUANJVAGX8lJjFsA6NtmWJH5cYOF8rt5SSIZ74T9N1l8Mem18FORsi6F-i3zf1myPhi3LubgpcVdMflQSL84jbrUuA6IxTqIeROLZ5M2mXcOVUL9viKekeNJ2Ijf_r-n5Onm-vHqV3n_cHt3dXlfqqYbU4mDUkxPTSvzpSC0UkPdqkbqYcABJ0klMNYjiGmCTuhRgxQtEyN0WRe0b07Jz8PefOqfBWPiOxMVWisc-iVy2ne0rXvK2oz--IBu_RJyFHuqHvuurWmTKXqgVPAxBpz4HMxOhFdOge874FueO-D7DjgwnjvInuGDR5lDzikIYz91XhycmDP6azDwqAw6hdqEnCjX3nzifgMv4KWo
CODEN IFPLAT
CitedBy_id crossref_primary_10_1016_j_ipl_2015_08_009
crossref_primary_10_1002_jgt_23108
Cites_doi 10.1016/0304-3975(76)90059-1
10.1016/j.disc.2008.04.007
10.1002/jgt.20228
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Feb 2015
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Feb 2015
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ipl.2014.09.018
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6119
EndPage 236
ExternalDocumentID 3510817741
10_1016_j_ipl_2014_09_018
S0020019014001951
Genre Feature
GrantInformation_xml – fundername: Narodowe Centrum Nauki
  grantid: DEC-2011/02/A/ST6/00201
  funderid: http://dx.doi.org/10.13039/501100004281
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSZ
T5K
TN5
UQL
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-e7cc9df34b0060adcc724c3bd77e7efb1b0996e0aff05ad8d0ba49a8057e7a163
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346225300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0190
IngestDate Thu Oct 02 12:14:40 EDT 2025
Sun Nov 09 08:35:47 EST 2025
Sat Nov 29 07:25:59 EST 2025
Tue Nov 18 22:42:16 EST 2025
Fri Feb 23 02:16:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Bounded-degree graphs
Backbone chromatic number
Graph algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-e7cc9df34b0060adcc724c3bd77e7efb1b0996e0aff05ad8d0ba49a8057e7a163
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1628654213
PQPubID 45522
PageCount 5
ParticipantIDs proquest_miscellaneous_1651426194
proquest_journals_1628654213
crossref_primary_10_1016_j_ipl_2014_09_018
crossref_citationtrail_10_1016_j_ipl_2014_09_018
elsevier_sciencedirect_doi_10_1016_j_ipl_2014_09_018
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Information processing letters
PublicationYear 2015
Publisher Elsevier B.V
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
References Broersma (br0010) 2003
Broersma, Marchal, Paulusma, Salman (br0020) 2007; vol. 4362
Broersma, Fujisawa, Marchal, Paulusma, Salman, Yoshimoto (br0040) 2009; 309
Broersma, Fomin, Golovach, Woeginger (br0030) 2007; 55
Garey, Johnson, Stockmeyer (br0050) 1976; 1
Salman (br0100) 2005
R. Janczewski, K. Turowski, The backbone coloring problem for bipartite backbones, submitted for publication.
10.1016/j.ipl.2014.09.018_br0090
Broersma (10.1016/j.ipl.2014.09.018_br0020) 2007; vol. 4362
Broersma (10.1016/j.ipl.2014.09.018_br0010) 2003
Salman (10.1016/j.ipl.2014.09.018_br0100) 2005
Broersma (10.1016/j.ipl.2014.09.018_br0040) 2009; 309
Broersma (10.1016/j.ipl.2014.09.018_br0030) 2007; 55
Garey (10.1016/j.ipl.2014.09.018_br0050) 1976; 1
References_xml – year: 2005
  ident: br0100
  article-title: Contributions to graph theory
– volume: vol. 4362
  start-page: 188
  year: 2007
  end-page: 199
  ident: br0020
  article-title: Improved upper bounds for
  publication-title: SOFSEM 2007: Theory and Practice of Computer Science, 33rd Conference on Current Trends in Theory and Practice of Computer Science
– start-page: 65
  year: 2003
  end-page: 79
  ident: br0010
  article-title: A general framework for coloring problems: old results, new results, and open problems
  publication-title: Combinatorial Geometry and Graph Theory
– volume: 309
  start-page: 5596
  year: 2009
  end-page: 5609
  ident: br0040
  article-title: -Backbone colorings along pairwise disjoint stars and matchings
  publication-title: Discrete Math.
– volume: 1
  start-page: 237
  year: 1976
  end-page: 267
  ident: br0050
  article-title: Some simplified NP-complete graph problems
  publication-title: Theor. Comput. Sci.
– reference: R. Janczewski, K. Turowski, The backbone coloring problem for bipartite backbones, submitted for publication.
– volume: 55
  start-page: 137
  year: 2007
  end-page: 152
  ident: br0030
  article-title: Backbone colorings for graphs: tree and path backbones
  publication-title: J. Graph Theory
– ident: 10.1016/j.ipl.2014.09.018_br0090
– volume: vol. 4362
  start-page: 188
  year: 2007
  ident: 10.1016/j.ipl.2014.09.018_br0020
  article-title: Improved upper bounds for λ-backbone colorings along matchings and stars
– volume: 1
  start-page: 237
  year: 1976
  ident: 10.1016/j.ipl.2014.09.018_br0050
  article-title: Some simplified NP-complete graph problems
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(76)90059-1
– volume: 309
  start-page: 5596
  issue: 18
  year: 2009
  ident: 10.1016/j.ipl.2014.09.018_br0040
  article-title: λ-Backbone colorings along pairwise disjoint stars and matchings
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2008.04.007
– start-page: 65
  year: 2003
  ident: 10.1016/j.ipl.2014.09.018_br0010
  article-title: A general framework for coloring problems: old results, new results, and open problems
– volume: 55
  start-page: 137
  issue: 2
  year: 2007
  ident: 10.1016/j.ipl.2014.09.018_br0030
  article-title: Backbone colorings for graphs: tree and path backbones
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.20228
– year: 2005
  ident: 10.1016/j.ipl.2014.09.018_br0100
SSID ssj0006437
Score 2.0540845
Snippet Given a graph G, a spanning subgraph H of G and an integer λ≥2, a λ-backbone coloring of G with backbone H is a proper vertex coloring of G using colors 1,2,…,...
Given a graph G , a spanning subgraph H of G and an integer ...≥2, a ... -backbone coloring of G with backbone H is a proper vertex coloring of G using colors...
Given a graph G , a spanning subgraph H of G and an integer lambda greater than or equal to 2 lambda greater than or equal to 2, a lambda -backbone coloring of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 232
SubjectTerms Backbone
Backbone chromatic number
Bounded-degree graphs
Classification
Coloring
Complexity
Computation
Computer science
Graph algorithms
Graph theory
Graphs
Integer programming
Mathematical problems
Optimization
Polynomials
Studies
Title The computational complexity of the backbone coloring problem for bounded-degree graphs with connected backbones
URI https://dx.doi.org/10.1016/j.ipl.2014.09.018
https://www.proquest.com/docview/1628654213
https://www.proquest.com/docview/1651426194
Volume 115
WOSCitedRecordID wos000346225300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006437
  issn: 0020-0190
  databaseCode: AIEXJ
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3qiFgozECRTkvNbOsUJFvFRxKNLeLD-lllUSbbbVsmd-OOPYTnZXtKIHDhtlE2fk3fkyHtvfzCD0JrPgg5dUJ8K6bcayInBGVFJIoa1ihjHVJ3H9Rk9P2WxWfZ9MfsdYmKs5rWu2WlXtf1U1XANlu9DZW6h7EAoX4ByUDkdQOxz_WfGqr9UQ1_l62rhZBfKF8zSlUD9lU7uGgYEXCst49qYrtWR0og1Mxs27Pqd1N5DUazCRzm0NIrpN9zYEN_WYan0IghM-72OGRrIiIG0NxtVXzPbc7pHnsWjina-L9a9uvWzs5tJEWkY282huM8d68_VAB3PrwzcDrrJN4xlWOk34Nv2riferDRfvz1u3c5T6NLXBhm-l094Z5gbyYeS1XXAQwZ0ITioOIu6g_YyWFZj3_ePPJ7Mvw4juNjc9Vcj_nLg73vMEd_pxnX-zM9L37svZQ3Q_zDvwscfLIzQx9WP0INb0wMHEP0EtwAdvwQeP8MGNxQAfHHWPI3xwgA8G9eNt-GAPH-zggwf4DCK6p-jHx5OzD5-SUJUjUXnJlomhSlXa5oUz2ERopWhWqFxqSg01VqYSJh1TQ4S1pBSaaSJFUQkGEwNDBbj_z9BeDfIPEDYmJVKDD5oTWxSsklrlelrKDD6VzPNDROJ_yVVIWe8qp8z5tTo8RG-HR1qfr-WmxkVUEA8Op3ckOYDtpseOojJ5ePE7nvYx3kWWQq9fD7fBVrsNOFGb5tK1gemJW7Iont-mmy_QvfHtOkJ7y8WleYnuqqvlebd4FcD6BwUovyI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+computational+complexity+of+the+backbone+coloring+problem+for+bounded-degree+graphs+with+connected+backbones&rft.jtitle=Information+processing+letters&rft.au=Janczewski%2C+Robert&rft.au=Turowski%2C+Krzysztof&rft.date=2015-02-01&rft.issn=0020-0190&rft.volume=115&rft.issue=2&rft.spage=232&rft.epage=236&rft_id=info:doi/10.1016%2Fj.ipl.2014.09.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ipl_2014_09_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon