Ensemble Encoder-Decoder Models for Predicting Land Transformation
Land development is a dynamic and complex processinfluenced by a system of interconnected driving variables. Predicting such a process is important in mitigating severe climate situations and improving the resiliency of communities. Current predictive models in land transformation have not paid a se...
Uloženo v:
| Vydáno v: | IEEE journal of selected topics in applied earth observations and remote sensing Ročník 14; s. 11429 - 11438 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1939-1404, 2151-1535 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Land development is a dynamic and complex processinfluenced by a system of interconnected driving variables. Predicting such a process is important in mitigating severe climate situations and improving the resiliency of communities. Current predictive models in land transformation have not paid a serious attention to capturing and exploiting the interchannel relationships. Moreover, these models often have problems with generalization, which results in poor performance during testing. In this study, we use a novel multichannel data cube, constructed from socioeconomic attributes, terrain characteristics, and landscape traits, to predict land transformation in a watershed in the US. In particular, we introduce methods for projecting impervious land transformations using these data cubes, using 2-D and 3-D convolutional neural networks (CNNs) and their ensembles. We apply fusion at decision, score, and feature levels to improve the generalization ability and robustness of the proposed predictive models. Performance is assessed using the Dice coefficient, receiver operating characteristic curves, data visualization, and running time. Our study shows that the use of 2-D and 3-D CNN ensembles improved the performance of the models in terms of model stability, precision and recall, and Dice coefficient. |
|---|---|
| AbstractList | Land development is a dynamic and complex processinfluenced by a system of interconnected driving variables. Predicting such a process is important in mitigating severe climate situations and improving the resiliency of communities. Current predictive models in land transformation have not paid a serious attention to capturing and exploiting the interchannel relationships. Moreover, these models often have problems with generalization, which results in poor performance during testing. In this study, we use a novel multichannel data cube, constructed from socioeconomic attributes, terrain characteristics, and landscape traits, to predict land transformation in a watershed in the US. In particular, we introduce methods for projecting impervious land transformations using these data cubes, using 2-D and 3-D convolutional neural networks (CNNs) and their ensembles. We apply fusion at decision, score, and feature levels to improve the generalization ability and robustness of the proposed predictive models. Performance is assessed using the Dice coefficient, receiver operating characteristic curves, data visualization, and running time. Our study shows that the use of 2-D and 3-D CNN ensembles improved the performance of the models in terms of model stability, precision and recall, and Dice coefficient. |
| Author | Pourmohammadi, Pariya Adjeroh, Donald A. Strager, Michael P. |
| Author_xml | – sequence: 1 givenname: Pariya orcidid: 0000-0002-0330-2122 surname: Pourmohammadi fullname: Pourmohammadi, Pariya email: papourmohammadi@mix.wvu.edu organization: Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, USA – sequence: 2 givenname: Michael P. surname: Strager fullname: Strager, Michael P. email: mstrager@wvu.edu organization: School of Natural Resources, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV, USA – sequence: 3 givenname: Donald A. orcidid: 0000-0002-7982-4744 surname: Adjeroh fullname: Adjeroh, Donald A. email: don@csee.wvu.edu organization: Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, USA |
| BookMark | eNo9UMtOAzEMjFCRaIEv4LIS5y1xsq8cC5SXikBQzpE38VZbtQkky4G_J7CIi8cae8bWzNjEeUeMnQGfA3B18fC6Xry8zgUXMJcgeFWqAzYVUEIOpSwnbApKqhwKXhyxWYxbzitRKzlll0sXad_uKFs64y2F_Jp-MXtMdRezzofsOZDtzdC7TbZCZ7N1QBfTYI9D790JO-xwF-n0D4_Z281yfXWXr55u768Wq9zIshlyqshS2wlJVWW4AmGqFnkhpRVGoGmkKlTb8q6xypZCSAUoqWgSaXidxPKY3Y--1uNWv4d-j-FLe-z1L-HDRmMYerMj3WItsEBjsW2LOvVgC4TOdIA1SlUnr_PR6z34j0-Kg976z-DS-1qUSgmoFEDakuOWCT7GQN3_VeD6J3g9Bq9_gtd_wSfV2ajqiehfocqGV5zLb8XUgQ8 |
| CODEN | IJSTHZ |
| Cites_doi | 10.1109/CVPR.2018.00675 10.1109/TPAMI.2012.59 10.1093/bib/bbaa021 10.1007/s12517-018-3397-6 10.1155/2015/258619 10.1109/MCSE.2014.80 10.3390/rs11172065 10.1109/TPAMI.2016.2644615 10.1109/TGRS.2020.3032475 10.3390/su5083302 10.1016/j.rse.2013.01.012 10.1109/MSP.2012.2205597 10.1016/j.compenvurbsys.2003.07.001 10.1109/TGRS.2021.3050824 10.1109/JSTARS.2020.2983224 10.1016/S0198-9715(01)00015-1 10.1109/IGARSS.2019.8899234 10.3390/ijgi4020447 10.1016/j.patrec.2005.10.010 10.1109/IGARSS.2018.8518701 10.3390/rs11121409 10.1007/s10584-009-9789-6 10.2747/1539-7216.51.1.80 10.1016/j.envsoft.2020.104751 10.3133/pp964 10.1109/CVPRW.2016.90 10.1109/TGRS.2021.3085870 10.1016/j.envsoft.2013.09.015 10.1016/j.ecolmodel.2009.03.008 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2021.3120659 |
| DatabaseName | IEEE Xplore (IEEE) Open Access资源_IEL Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 11438 |
| ExternalDocumentID | oai_doaj_org_article_ba72a4acdabb4772a1d4a1fcf1a7a397 10_1109_JSTARS_2021_3120659 9580600 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: OIA-1458952 funderid: 10.13039/501100008982 – fundername: West Virginia Agricultural and Forestry Experiment Station Scientific grantid: 3415 – fundername: National Institute of Food and Agriculture grantid: 1015648 funderid: 10.13039/100005825 – fundername: National Science Foundation grantid: ACI-1548562 funderid: 10.13039/501100008982 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c358t-e6edebf23e66c0912c6ba0433d2c2ac83949bb0f8d9d522391a3e4849bc07e6e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720519100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:51:01 EDT 2025 Fri Jul 25 10:13:51 EDT 2025 Sat Nov 29 04:51:10 EST 2025 Wed Aug 27 02:27:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-e6edebf23e66c0912c6ba0433d2c2ac83949bb0f8d9d522391a3e4849bc07e6e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0330-2122 0000-0002-7982-4744 |
| OpenAccessLink | https://doaj.org/article/ba72a4acdabb4772a1d4a1fcf1a7a397 |
| PQID | 2599216911 |
| PQPubID | 75722 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_JSTARS_2021_3120659 ieee_primary_9580600 doaj_primary_oai_doaj_org_article_ba72a4acdabb4772a1d4a1fcf1a7a397 proquest_journals_2599216911 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 ref31 pijanowski (ref4) 2009; 3 ref33 ref11 ref32 ref10 ref2 sherrah (ref30) 2016 ref1 ref39 census (ref34) 2019 ref17 ref38 ref16 (ref15) 2020 ref19 ref18 pijanowski (ref8) 2001 ref24 ref23 ref26 ruder (ref36) 2016 ref20 ronneberger (ref25) 2015 ref21 castelluccio (ref14) 2015 hinton (ref37) 2015 ref28 ref27 ref29 ref7 ref9 krizhevsky (ref22) 2012; 25 ref3 ref6 ref5 |
| References_xml | – ident: ref33 doi: 10.1109/CVPR.2018.00675 – year: 2015 ident: ref14 article-title: Land use classification in remote sensing images by convolutional neural networks – ident: ref20 doi: 10.1109/TPAMI.2012.59 – ident: ref23 doi: 10.1093/bib/bbaa021 – year: 2020 ident: ref15 publication-title: United States Geological Survey (USGS) – ident: ref7 doi: 10.1007/s12517-018-3397-6 – ident: ref13 doi: 10.1155/2015/258619 – start-page: 1 year: 2001 ident: ref8 article-title: The application of the land transformation, groundwater flow and solute transport models for Michigan's grand traverse bay watershed publication-title: Proc Nat Amer Plann Assoc Meeting – volume: 25 start-page: 1097 year: 2012 ident: ref22 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Int Conf Neural Inf Process – ident: ref39 doi: 10.1109/MCSE.2014.80 – ident: ref31 doi: 10.3390/rs11172065 – start-page: 234 year: 2015 ident: ref25 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervention – volume: 3 start-page: 493 year: 2009 ident: ref4 article-title: Urban expansion simulation using geospatial information system and artificial neural networks publication-title: Int J Environ Res – ident: ref21 doi: 10.1109/TPAMI.2016.2644615 – ident: ref28 doi: 10.1109/TGRS.2020.3032475 – ident: ref2 doi: 10.3390/su5083302 – ident: ref5 doi: 10.1016/j.rse.2013.01.012 – ident: ref24 doi: 10.1109/MSP.2012.2205597 – ident: ref17 doi: 10.1016/j.compenvurbsys.2003.07.001 – ident: ref19 doi: 10.1109/TGRS.2021.3050824 – ident: ref26 doi: 10.1109/JSTARS.2020.2983224 – ident: ref9 doi: 10.1016/S0198-9715(01)00015-1 – year: 2016 ident: ref30 article-title: Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery – year: 2019 ident: ref34 – ident: ref11 doi: 10.1109/IGARSS.2019.8899234 – ident: ref6 doi: 10.3390/ijgi4020447 – ident: ref38 doi: 10.1016/j.patrec.2005.10.010 – ident: ref32 doi: 10.1109/IGARSS.2018.8518701 – ident: ref12 doi: 10.3390/rs11121409 – ident: ref3 doi: 10.1007/s10584-009-9789-6 – ident: ref1 doi: 10.2747/1539-7216.51.1.80 – ident: ref18 doi: 10.1016/j.envsoft.2020.104751 – year: 2016 ident: ref36 article-title: An overview of gradient descent optimization algorithms – ident: ref35 doi: 10.3133/pp964 – ident: ref29 doi: 10.1109/CVPRW.2016.90 – year: 2015 ident: ref37 article-title: Distilling the knowledge in a neural network – ident: ref27 doi: 10.1109/TGRS.2021.3085870 – ident: ref10 doi: 10.1016/j.envsoft.2013.09.015 – ident: ref16 doi: 10.1016/j.ecolmodel.2009.03.008 |
| SSID | ssj0062793 |
| Score | 2.237073 |
| Snippet | Land development is a dynamic and complex processinfluenced by a system of interconnected driving variables. Predicting such a process is important in... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 11429 |
| SubjectTerms | Artificial neural networks Biological system modeling Climate models Coders Computational modeling Convolutional neural networks Convolutional neural networks (CNNs) Cubes Data models developed land expansion evidence fusion Genetic transformation Land development land transformation prediction Neural networks Performance prediction Prediction models Predictive models Scientific visualization Solid modeling Stability Three-dimensional displays Transformations Two dimensional models Watersheds |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4F1EpcWgpFNQ2VDxzjYu9u9nGEkpQDiiKgEjdrH2OpEjgoCZX675ldO1Gr9sLJ1sperb59zDezu98AnMawgkFuC8mdLgTHqnAKZYHEtZEIu0QRUrIJNZvp-3szH8BoexcGEdPhM_waX9Neflj45xgqOzNjXZKB3oEdpWR3V2uz6kqmksAu8RFTRMmYXmGoKs0ZDfHzm1vyBVlFLiqLO4l_WaEk1t9nV_lnSU52Zvr-dS3ch3c9n8zPuwHwAQbYHsDb7ylf7-9DuJi0K3x0D5hP2nh7fVlcYnrmMQnawyonzprPl3G3Jp5_zq9tG_K7P8jsov0IP6aTu29XRZ82ofB8rNcEMwZ0DeMopSc6wLx0NuqUBeaZ9cSIhHGubHQwgdgXN5XlKDQV-pK6CfkR7LaLFj9BLpBLQQRJl0EKbRoTlHNeqBI911RnBqMNjPVTp45RJ6-iNHWHeh1Rr3vUM7iIUG8_jdLWqYAwrPuZQtZbMSusD9Y5QdzfVkHYqvFNZZUl9pTBYcR9W0kPeQbDTcfV_TRc1eTbGRblgKrj___1GfZiA7uYyhB218tnPIE3_tf652r5JY2wF3UmzT4 priority: 102 providerName: IEEE |
| Title | Ensemble Encoder-Decoder Models for Predicting Land Transformation |
| URI | https://ieeexplore.ieee.org/document/9580600 https://www.proquest.com/docview/2599216911 https://doaj.org/article/ba72a4acdabb4772a1d4a1fcf1a7a397 |
| Volume | 14 |
| WOSCitedRecordID | wos000720519100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yFLyIOsXpHD14tKxNsjQ5-rHpQcbQCbuFfLyCoFW2Kfjf-5J2Q_HgxVMhlLT9vde838vH7xFyFqYVFDCTCmZlyhnkqS1ApIBcG5CwC-A-FpsoxmM5m6nJt1JfYU9YLQ9cA9e3pqCGG-eNtRypoMk9N3npytwUBoNpGH2zQq2SqXoMFhTdrtEYyjPVRye_uH_AbJDmmKTSsJb4Iw5Fuf6mvsqvQTlGmtEu2WkoYnJRv9oe2YBqn2zdxBK8n21yOawW8GKfIRlW4UD6PL2GeE1CXbPnRYI0NJnMwwJM2NKc3JnKJ9Nv_PS1OiCPo-H06jZtKiGkjg3kEpEDD7akDIRwGOGpE9YE6TFPHTUOSQ5X1mal9MojoWIqNwy4xEaXIfLADkmreq3giCQcmODIeWTmBZeqVL6w1vEiA8ck9tkh5ytc9FsteKFjopApXcOoA4y6gbFDLgN261uDWnVsQBvqxob6Lxt2SDsgv-5EDWSGRKxDuitL6ObPWmhM1xQNCj_58X88-oRsh8-pJ1W6pLWcv8Mp2XQfy6fFvBedqhcPBX4BcEHRJA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BLWovfQAV29I2B44EEtvr2Edol4JYVggWiZvlx0SqtM2i3aVS_33HTnYFopeeElmJZX1-zDdj-xuA_RhW0MhtLrlTueBY5q5CmSNxbSTCLlGElGyiGo3U3Z2-WoOD1V0YREyHz_Awvqa9_DD1DzFUdqT7qiADvQ4v-oL8nva21nLdlaxKErvESHQeRWM6jaGy0Ec0yI-vb8gbZCU5qSzuJT6xQ0muv8uv8mxRTpbm9O3_tfEdvOkYZXbcDoH3sIbNFmz-SBl7_2zDyaCZ4y83wWzQxPvrs_w7pmcW06BN5hmx1uxqFvdr4gnobGibkI0f0dlpswO3p4Pxt7O8S5yQe95XCwIaA7qacZTSEyFgXjoblcoC88x64kRCO1fUKuhA_Ivr0nIUigp9QR2F_ANsNNMGdyETyKUgiqSKIIXStQ6Vc15UBXquqM4eHCxhNPetPoZJfkWhTYu6iaibDvUenESoV59GcetUQBiabq6Q_a6YFdYH65wg9m_LIGxZ-7q0lSX-1IPtiPuqkg7yHuwtO850E3FuyLvTLAoClR___ddXeHU2vhya4fno4hO8jo1tIyx7sLGYPeBneOl_L37OZ1_SaPsLTBvQhQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+Encoder-Decoder+Models+for+Predicting+Land+Transformation&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Pourmohammadi%2C+Pariya&rft.au=Strager%2C+Michael+P.&rft.au=Adjeroh%2C+Donald+A.&rft.date=2021&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=14&rft.spage=11429&rft.epage=11438&rft_id=info:doi/10.1109%2FJSTARS.2021.3120659&rft.externalDocID=9580600 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |