Ensemble Encoder-Decoder Models for Predicting Land Transformation

Land development is a dynamic and complex processinfluenced by a system of interconnected driving variables. Predicting such a process is important in mitigating severe climate situations and improving the resiliency of communities. Current predictive models in land transformation have not paid a se...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in applied earth observations and remote sensing Ročník 14; s. 11429 - 11438
Hlavní autoři: Pourmohammadi, Pariya, Strager, Michael P., Adjeroh, Donald A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1939-1404, 2151-1535
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Land development is a dynamic and complex processinfluenced by a system of interconnected driving variables. Predicting such a process is important in mitigating severe climate situations and improving the resiliency of communities. Current predictive models in land transformation have not paid a serious attention to capturing and exploiting the interchannel relationships. Moreover, these models often have problems with generalization, which results in poor performance during testing. In this study, we use a novel multichannel data cube, constructed from socioeconomic attributes, terrain characteristics, and landscape traits, to predict land transformation in a watershed in the US. In particular, we introduce methods for projecting impervious land transformations using these data cubes, using 2-D and 3-D convolutional neural networks (CNNs) and their ensembles. We apply fusion at decision, score, and feature levels to improve the generalization ability and robustness of the proposed predictive models. Performance is assessed using the Dice coefficient, receiver operating characteristic curves, data visualization, and running time. Our study shows that the use of 2-D and 3-D CNN ensembles improved the performance of the models in terms of model stability, precision and recall, and Dice coefficient.
AbstractList Land development is a dynamic and complex processinfluenced by a system of interconnected driving variables. Predicting such a process is important in mitigating severe climate situations and improving the resiliency of communities. Current predictive models in land transformation have not paid a serious attention to capturing and exploiting the interchannel relationships. Moreover, these models often have problems with generalization, which results in poor performance during testing. In this study, we use a novel multichannel data cube, constructed from socioeconomic attributes, terrain characteristics, and landscape traits, to predict land transformation in a watershed in the US. In particular, we introduce methods for projecting impervious land transformations using these data cubes, using 2-D and 3-D convolutional neural networks (CNNs) and their ensembles. We apply fusion at decision, score, and feature levels to improve the generalization ability and robustness of the proposed predictive models. Performance is assessed using the Dice coefficient, receiver operating characteristic curves, data visualization, and running time. Our study shows that the use of 2-D and 3-D CNN ensembles improved the performance of the models in terms of model stability, precision and recall, and Dice coefficient.
Author Pourmohammadi, Pariya
Adjeroh, Donald A.
Strager, Michael P.
Author_xml – sequence: 1
  givenname: Pariya
  orcidid: 0000-0002-0330-2122
  surname: Pourmohammadi
  fullname: Pourmohammadi, Pariya
  email: papourmohammadi@mix.wvu.edu
  organization: Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, USA
– sequence: 2
  givenname: Michael P.
  surname: Strager
  fullname: Strager, Michael P.
  email: mstrager@wvu.edu
  organization: School of Natural Resources, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV, USA
– sequence: 3
  givenname: Donald A.
  orcidid: 0000-0002-7982-4744
  surname: Adjeroh
  fullname: Adjeroh, Donald A.
  email: don@csee.wvu.edu
  organization: Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, USA
BookMark eNo9UMtOAzEMjFCRaIEv4LIS5y1xsq8cC5SXikBQzpE38VZbtQkky4G_J7CIi8cae8bWzNjEeUeMnQGfA3B18fC6Xry8zgUXMJcgeFWqAzYVUEIOpSwnbApKqhwKXhyxWYxbzitRKzlll0sXad_uKFs64y2F_Jp-MXtMdRezzofsOZDtzdC7TbZCZ7N1QBfTYI9D790JO-xwF-n0D4_Z281yfXWXr55u768Wq9zIshlyqshS2wlJVWW4AmGqFnkhpRVGoGmkKlTb8q6xypZCSAUoqWgSaXidxPKY3Y--1uNWv4d-j-FLe-z1L-HDRmMYerMj3WItsEBjsW2LOvVgC4TOdIA1SlUnr_PR6z34j0-Kg976z-DS-1qUSgmoFEDakuOWCT7GQN3_VeD6J3g9Bq9_gtd_wSfV2ajqiehfocqGV5zLb8XUgQ8
CODEN IJSTHZ
Cites_doi 10.1109/CVPR.2018.00675
10.1109/TPAMI.2012.59
10.1093/bib/bbaa021
10.1007/s12517-018-3397-6
10.1155/2015/258619
10.1109/MCSE.2014.80
10.3390/rs11172065
10.1109/TPAMI.2016.2644615
10.1109/TGRS.2020.3032475
10.3390/su5083302
10.1016/j.rse.2013.01.012
10.1109/MSP.2012.2205597
10.1016/j.compenvurbsys.2003.07.001
10.1109/TGRS.2021.3050824
10.1109/JSTARS.2020.2983224
10.1016/S0198-9715(01)00015-1
10.1109/IGARSS.2019.8899234
10.3390/ijgi4020447
10.1016/j.patrec.2005.10.010
10.1109/IGARSS.2018.8518701
10.3390/rs11121409
10.1007/s10584-009-9789-6
10.2747/1539-7216.51.1.80
10.1016/j.envsoft.2020.104751
10.3133/pp964
10.1109/CVPRW.2016.90
10.1109/TGRS.2021.3085870
10.1016/j.envsoft.2013.09.015
10.1016/j.ecolmodel.2009.03.008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2021.3120659
DatabaseName IEEE Xplore (IEEE)
Open Access资源_IEL Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 11438
ExternalDocumentID oai_doaj_org_article_ba72a4acdabb4772a1d4a1fcf1a7a397
10_1109_JSTARS_2021_3120659
9580600
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: OIA-1458952
  funderid: 10.13039/501100008982
– fundername: West Virginia Agricultural and Forestry Experiment Station Scientific
  grantid: 3415
– fundername: National Institute of Food and Agriculture
  grantid: 1015648
  funderid: 10.13039/100005825
– fundername: National Science Foundation
  grantid: ACI-1548562
  funderid: 10.13039/501100008982
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c358t-e6edebf23e66c0912c6ba0433d2c2ac83949bb0f8d9d522391a3e4849bc07e6e3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720519100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:51:01 EDT 2025
Fri Jul 25 10:13:51 EDT 2025
Sat Nov 29 04:51:10 EST 2025
Wed Aug 27 02:27:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-e6edebf23e66c0912c6ba0433d2c2ac83949bb0f8d9d522391a3e4849bc07e6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0330-2122
0000-0002-7982-4744
OpenAccessLink https://doaj.org/article/ba72a4acdabb4772a1d4a1fcf1a7a397
PQID 2599216911
PQPubID 75722
PageCount 10
ParticipantIDs crossref_primary_10_1109_JSTARS_2021_3120659
ieee_primary_9580600
doaj_primary_oai_doaj_org_article_ba72a4acdabb4772a1d4a1fcf1a7a397
proquest_journals_2599216911
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref31
pijanowski (ref4) 2009; 3
ref33
ref11
ref32
ref10
ref2
sherrah (ref30) 2016
ref1
ref39
census (ref34) 2019
ref17
ref38
ref16
(ref15) 2020
ref19
ref18
pijanowski (ref8) 2001
ref24
ref23
ref26
ruder (ref36) 2016
ref20
ronneberger (ref25) 2015
ref21
castelluccio (ref14) 2015
hinton (ref37) 2015
ref28
ref27
ref29
ref7
ref9
krizhevsky (ref22) 2012; 25
ref3
ref6
ref5
References_xml – ident: ref33
  doi: 10.1109/CVPR.2018.00675
– year: 2015
  ident: ref14
  article-title: Land use classification in remote sensing images by convolutional neural networks
– ident: ref20
  doi: 10.1109/TPAMI.2012.59
– ident: ref23
  doi: 10.1093/bib/bbaa021
– year: 2020
  ident: ref15
  publication-title: United States Geological Survey (USGS)
– ident: ref7
  doi: 10.1007/s12517-018-3397-6
– ident: ref13
  doi: 10.1155/2015/258619
– start-page: 1
  year: 2001
  ident: ref8
  article-title: The application of the land transformation, groundwater flow and solute transport models for Michigan's grand traverse bay watershed
  publication-title: Proc Nat Amer Plann Assoc Meeting
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref22
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref39
  doi: 10.1109/MCSE.2014.80
– ident: ref31
  doi: 10.3390/rs11172065
– start-page: 234
  year: 2015
  ident: ref25
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervention
– volume: 3
  start-page: 493
  year: 2009
  ident: ref4
  article-title: Urban expansion simulation using geospatial information system and artificial neural networks
  publication-title: Int J Environ Res
– ident: ref21
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref28
  doi: 10.1109/TGRS.2020.3032475
– ident: ref2
  doi: 10.3390/su5083302
– ident: ref5
  doi: 10.1016/j.rse.2013.01.012
– ident: ref24
  doi: 10.1109/MSP.2012.2205597
– ident: ref17
  doi: 10.1016/j.compenvurbsys.2003.07.001
– ident: ref19
  doi: 10.1109/TGRS.2021.3050824
– ident: ref26
  doi: 10.1109/JSTARS.2020.2983224
– ident: ref9
  doi: 10.1016/S0198-9715(01)00015-1
– year: 2016
  ident: ref30
  article-title: Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery
– year: 2019
  ident: ref34
– ident: ref11
  doi: 10.1109/IGARSS.2019.8899234
– ident: ref6
  doi: 10.3390/ijgi4020447
– ident: ref38
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref32
  doi: 10.1109/IGARSS.2018.8518701
– ident: ref12
  doi: 10.3390/rs11121409
– ident: ref3
  doi: 10.1007/s10584-009-9789-6
– ident: ref1
  doi: 10.2747/1539-7216.51.1.80
– ident: ref18
  doi: 10.1016/j.envsoft.2020.104751
– year: 2016
  ident: ref36
  article-title: An overview of gradient descent optimization algorithms
– ident: ref35
  doi: 10.3133/pp964
– ident: ref29
  doi: 10.1109/CVPRW.2016.90
– year: 2015
  ident: ref37
  article-title: Distilling the knowledge in a neural network
– ident: ref27
  doi: 10.1109/TGRS.2021.3085870
– ident: ref10
  doi: 10.1016/j.envsoft.2013.09.015
– ident: ref16
  doi: 10.1016/j.ecolmodel.2009.03.008
SSID ssj0062793
Score 2.237073
Snippet Land development is a dynamic and complex processinfluenced by a system of interconnected driving variables. Predicting such a process is important in...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 11429
SubjectTerms Artificial neural networks
Biological system modeling
Climate models
Coders
Computational modeling
Convolutional neural networks
Convolutional neural networks (CNNs)
Cubes
Data models
developed land expansion
evidence fusion
Genetic transformation
Land development
land transformation prediction
Neural networks
Performance prediction
Prediction models
Predictive models
Scientific visualization
Solid modeling
Stability
Three-dimensional displays
Transformations
Two dimensional models
Watersheds
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4F1EpcWgpFNQ2VDxzjYu9u9nGEkpQDiiKgEjdrH2OpEjgoCZX675ldO1Gr9sLJ1sperb59zDezu98AnMawgkFuC8mdLgTHqnAKZYHEtZEIu0QRUrIJNZvp-3szH8BoexcGEdPhM_waX9Neflj45xgqOzNjXZKB3oEdpWR3V2uz6kqmksAu8RFTRMmYXmGoKs0ZDfHzm1vyBVlFLiqLO4l_WaEk1t9nV_lnSU52Zvr-dS3ch3c9n8zPuwHwAQbYHsDb7ylf7-9DuJi0K3x0D5hP2nh7fVlcYnrmMQnawyonzprPl3G3Jp5_zq9tG_K7P8jsov0IP6aTu29XRZ82ofB8rNcEMwZ0DeMopSc6wLx0NuqUBeaZ9cSIhHGubHQwgdgXN5XlKDQV-pK6CfkR7LaLFj9BLpBLQQRJl0EKbRoTlHNeqBI911RnBqMNjPVTp45RJ6-iNHWHeh1Rr3vUM7iIUG8_jdLWqYAwrPuZQtZbMSusD9Y5QdzfVkHYqvFNZZUl9pTBYcR9W0kPeQbDTcfV_TRc1eTbGRblgKrj___1GfZiA7uYyhB218tnPIE3_tf652r5JY2wF3UmzT4
  priority: 102
  providerName: IEEE
Title Ensemble Encoder-Decoder Models for Predicting Land Transformation
URI https://ieeexplore.ieee.org/document/9580600
https://www.proquest.com/docview/2599216911
https://doaj.org/article/ba72a4acdabb4772a1d4a1fcf1a7a397
Volume 14
WOSCitedRecordID wos000720519100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yFLyIOsXpHD14tKxNsjQ5-rHpQcbQCbuFfLyCoFW2Kfjf-5J2Q_HgxVMhlLT9vde838vH7xFyFqYVFDCTCmZlyhnkqS1ApIBcG5CwC-A-FpsoxmM5m6nJt1JfYU9YLQ9cA9e3pqCGG-eNtRypoMk9N3npytwUBoNpGH2zQq2SqXoMFhTdrtEYyjPVRye_uH_AbJDmmKTSsJb4Iw5Fuf6mvsqvQTlGmtEu2WkoYnJRv9oe2YBqn2zdxBK8n21yOawW8GKfIRlW4UD6PL2GeE1CXbPnRYI0NJnMwwJM2NKc3JnKJ9Nv_PS1OiCPo-H06jZtKiGkjg3kEpEDD7akDIRwGOGpE9YE6TFPHTUOSQ5X1mal9MojoWIqNwy4xEaXIfLADkmreq3giCQcmODIeWTmBZeqVL6w1vEiA8ck9tkh5ytc9FsteKFjopApXcOoA4y6gbFDLgN261uDWnVsQBvqxob6Lxt2SDsgv-5EDWSGRKxDuitL6ObPWmhM1xQNCj_58X88-oRsh8-pJ1W6pLWcv8Mp2XQfy6fFvBedqhcPBX4BcEHRJA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BLWovfQAV29I2B44EEtvr2Edol4JYVggWiZvlx0SqtM2i3aVS_33HTnYFopeeElmJZX1-zDdj-xuA_RhW0MhtLrlTueBY5q5CmSNxbSTCLlGElGyiGo3U3Z2-WoOD1V0YREyHz_Awvqa9_DD1DzFUdqT7qiADvQ4v-oL8nva21nLdlaxKErvESHQeRWM6jaGy0Ec0yI-vb8gbZCU5qSzuJT6xQ0muv8uv8mxRTpbm9O3_tfEdvOkYZXbcDoH3sIbNFmz-SBl7_2zDyaCZ4y83wWzQxPvrs_w7pmcW06BN5hmx1uxqFvdr4gnobGibkI0f0dlpswO3p4Pxt7O8S5yQe95XCwIaA7qacZTSEyFgXjoblcoC88x64kRCO1fUKuhA_Ivr0nIUigp9QR2F_ANsNNMGdyETyKUgiqSKIIXStQ6Vc15UBXquqM4eHCxhNPetPoZJfkWhTYu6iaibDvUenESoV59GcetUQBiabq6Q_a6YFdYH65wg9m_LIGxZ-7q0lSX-1IPtiPuqkg7yHuwtO850E3FuyLvTLAoClR___ddXeHU2vhya4fno4hO8jo1tIyx7sLGYPeBneOl_L37OZ1_SaPsLTBvQhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+Encoder-Decoder+Models+for+Predicting+Land+Transformation&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Pourmohammadi%2C+Pariya&rft.au=Strager%2C+Michael+P.&rft.au=Adjeroh%2C+Donald+A.&rft.date=2021&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=14&rft.spage=11429&rft.epage=11438&rft_id=info:doi/10.1109%2FJSTARS.2021.3120659&rft.externalDocID=9580600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon