Operational benefits and challenges of shared-ride automated mobility-on-demand services
•Shared ride services with autonomous vehicles result in lower user waiting times.•Sharing also results in lower operational costs for operators than no sharing.•Trade-offs examined from perspective of operators, users and policymakers.•Benefits accrue only when demand pool is sufficiently large.•Ro...
Uložené v:
| Vydané v: | Transportation research. Part A, Policy and practice Ročník 134; s. 251 - 270 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.04.2020
|
| Predmet: | |
| ISSN: | 0965-8564, 1879-2375 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Shared ride services with autonomous vehicles result in lower user waiting times.•Sharing also results in lower operational costs for operators than no sharing.•Trade-offs examined from perspective of operators, users and policymakers.•Benefits accrue only when demand pool is sufficiently large.•Role for public sector to incentivize shared ride offering and use.
This paper presents a quantitative analysis of the operations of shared-ride automated mobility-on-demand services (SRAMODS). The study identifies (i) operational benefits of SRAMODS including improved service quality and/or lower operational costs relative to automated mobility-on-demand services (AMODS) without shared rides; and (ii) challenges associated with operating SRAMODS. The study employs an agent-based stochastic dynamic simulation framework to model the operational problems of AMODS. The agents include automated vehicles (AVs), on-demand user requests, and a central AV fleet controller that can dynamically change the plans (i.e. routes and AV-user assignments) of AVs in real-time using optimization-based control policies. The agent-based simulation tool and AV fleet control policies are used to test the operational performance of AMODS under a variety of scenarios. The first set of scenarios vary user demand and a parameter constraining the maximum user detour distance. Results indicate that even with a small maximum user detour distance parameter value, allowing shared rides significantly improves the operational efficiency of the AV fleet, where the efficiency gains stem from economies of demand density and network effects. The second set of scenarios vary the mean and coefficient of variation of the curbside pickup time parameter; i.e. how long an AV must wait curbside at a user’s pickup location before the user gets inside the AV. Results indicate that increases in mean curbside pickup time significantly degrade operational performance in terms of user in-vehicle travel time and user wait time. The study quantifies the total system (user plus fleet controller) cost as a function of mean curbside pickup time. Finally, the paper provides an extensive discussion of the implications of the quantitative analysis for public-sector transportation planners and policy-makers as well as for mobility service providers. |
|---|---|
| AbstractList | •Shared ride services with autonomous vehicles result in lower user waiting times.•Sharing also results in lower operational costs for operators than no sharing.•Trade-offs examined from perspective of operators, users and policymakers.•Benefits accrue only when demand pool is sufficiently large.•Role for public sector to incentivize shared ride offering and use.
This paper presents a quantitative analysis of the operations of shared-ride automated mobility-on-demand services (SRAMODS). The study identifies (i) operational benefits of SRAMODS including improved service quality and/or lower operational costs relative to automated mobility-on-demand services (AMODS) without shared rides; and (ii) challenges associated with operating SRAMODS. The study employs an agent-based stochastic dynamic simulation framework to model the operational problems of AMODS. The agents include automated vehicles (AVs), on-demand user requests, and a central AV fleet controller that can dynamically change the plans (i.e. routes and AV-user assignments) of AVs in real-time using optimization-based control policies. The agent-based simulation tool and AV fleet control policies are used to test the operational performance of AMODS under a variety of scenarios. The first set of scenarios vary user demand and a parameter constraining the maximum user detour distance. Results indicate that even with a small maximum user detour distance parameter value, allowing shared rides significantly improves the operational efficiency of the AV fleet, where the efficiency gains stem from economies of demand density and network effects. The second set of scenarios vary the mean and coefficient of variation of the curbside pickup time parameter; i.e. how long an AV must wait curbside at a user’s pickup location before the user gets inside the AV. Results indicate that increases in mean curbside pickup time significantly degrade operational performance in terms of user in-vehicle travel time and user wait time. The study quantifies the total system (user plus fleet controller) cost as a function of mean curbside pickup time. Finally, the paper provides an extensive discussion of the implications of the quantitative analysis for public-sector transportation planners and policy-makers as well as for mobility service providers. |
| Author | Hyland, Michael Mahmassani, Hani S. |
| Author_xml | – sequence: 1 givenname: Michael surname: Hyland fullname: Hyland, Michael email: hylandm@uci.edu organization: Department of Civil and Environmental Engineering, University of California, Irvine, Institute of Transportation Studies, 4000 Anteater Instruction and Research Bldg. (AIRB), Irvine, CA 92697-3600, United States – sequence: 2 givenname: Hani S. surname: Mahmassani fullname: Mahmassani, Hani S. email: masmah@northwestern.edu organization: Department of Civil and Environmental Engineering, Northwestern University, Northwestern University Transportation Center, 600 Foster Street, Evanston, IL 60208, United States |
| BookMark | eNp90L1OwzAQwHELFYm28ABseYGEs5PYiZhQxZdUqQtIbJZjn6mrJK5sU6lvTwpMDJ1uud9J91-Q2ehHJOSWQkGB8rtdkYIqGDAogBVAxQWZ00a0OStFPSNzaHmdNzWvrsgixh0AVFywOfnY7DGo5Pyo-qzDEa1LMVOjyfRW9T2Onxgzb7O4VQFNHpzBTH0lP6iEJht853qXjrkfc4PDiUUMB6cxXpNLq_qIN39zSd6fHt9WL_l68_y6eljnuqyblGOFlgotahCUKexMxxqGAIraVneiVZ1tFNCuprQtqa1qy7mmDedl01jQrFwS-ntXBx9jQCv3wQ0qHCUFeUojd3JKI09pJDA5pZmM-Ge0Sz8Rpk3Xn5X3vxKnlw4Og4za4ajRuIA6SePdGf0NKw2B6g |
| CitedBy_id | crossref_primary_10_1109_TEM_2025_3592031 crossref_primary_10_3390_su14053020 crossref_primary_10_1016_j_tra_2023_103819 crossref_primary_10_5507_tots_2024_008 crossref_primary_10_1016_j_cstp_2025_101462 crossref_primary_10_1177_03611981231201111 crossref_primary_10_3390_mti5050026 crossref_primary_10_1016_j_trip_2025_101630 crossref_primary_10_1016_j_trc_2023_104420 crossref_primary_10_1016_j_trip_2025_101623 crossref_primary_10_3390_futuretransp5020035 crossref_primary_10_1016_j_tranpol_2024_10_010 crossref_primary_10_1080_15472450_2021_1901225 crossref_primary_10_3390_su15043199 crossref_primary_10_3389_ffutr_2022_915219 crossref_primary_10_3390_su16114337 crossref_primary_10_3390_en17215399 crossref_primary_10_3390_a17010009 crossref_primary_10_1016_j_trd_2025_104975 crossref_primary_10_1016_j_tbs_2023_100619 crossref_primary_10_1080_21650020_2025_2539145 crossref_primary_10_1080_23249935_2023_2214968 crossref_primary_10_1016_j_tra_2021_07_005 crossref_primary_10_1177_1748006X241233863 crossref_primary_10_1177_03611981251346450 crossref_primary_10_1016_j_ijhcs_2023_103043 crossref_primary_10_1145_3721434 crossref_primary_10_1016_j_tra_2020_09_002 crossref_primary_10_1109_TITS_2023_3345174 crossref_primary_10_1177_03611981221083617 crossref_primary_10_3390_electronics11172687 crossref_primary_10_3390_app12199544 crossref_primary_10_1177_03611981211004588 crossref_primary_10_1016_j_trc_2025_105098 crossref_primary_10_1109_TITS_2021_3071512 crossref_primary_10_3390_systems11040187 crossref_primary_10_3389_ffutr_2021_681451 crossref_primary_10_1002_jtr_2449 crossref_primary_10_1016_j_tra_2021_01_001 crossref_primary_10_1177_03611981221088585 crossref_primary_10_1016_j_tra_2022_03_032 crossref_primary_10_1016_j_trc_2021_103104 crossref_primary_10_1109_TITS_2023_3268158 crossref_primary_10_1080_01441647_2025_2545224 crossref_primary_10_1080_21680566_2024_2315507 crossref_primary_10_1016_j_jclepro_2021_128172 crossref_primary_10_1016_j_tra_2023_103583 crossref_primary_10_1155_atr_3150069 crossref_primary_10_3390_su14020876 crossref_primary_10_1177_0361198121997140 |
| Cites_doi | 10.1109/IVS.2019.8814051 10.1016/j.compenvurbsys.2017.04.006 10.1016/j.scs.2015.07.006 10.1016/j.ejor.2012.05.028 10.3141/2498-12 10.1016/j.ejor.2012.08.015 10.1111/mice.12157 10.1109/ICRA.2016.7487272 10.1016/j.tra.2019.03.009 10.3141/1882-02 10.1080/00207543.2015.1043403 10.1002/net.21628 10.1016/j.trc.2018.05.003 10.1016/j.tra.2016.08.020 10.3141/2542-13 10.1016/j.trb.2013.08.012 10.1080/15568318.2015.1092057 10.1016/j.trc.2019.02.020 10.1073/pnas.1611675114 10.1109/ACC.2015.7171122 10.1287/trsc.17.3.351 10.1109/MIS.2016.2 10.1016/j.trc.2019.08.006 10.1016/j.trc.2013.12.001 10.1016/j.trb.2019.02.003 10.1016/j.ejor.2009.04.024 10.1016/j.trc.2016.12.017 10.1287/trsc.14.2.130 10.1016/j.trb.2015.02.013 10.1016/j.eswa.2015.04.060 10.1016/j.trb.2014.09.011 10.3141/2653-04 10.1016/j.ijtst.2017.05.005 10.1109/TKDE.2014.2334313 10.1016/j.trc.2019.01.019 10.1007/978-3-319-05990-7_20 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tra.2020.02.017 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-2375 |
| EndPage | 270 |
| ExternalDocumentID | 10_1016_j_tra_2020_02_017 S0965856419307888 |
| GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABFNM ABLJU ABMAC ABMMH ABTAH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSO SSS SST SSZ T5K WUQ XPP ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c358t-e4ef17c750712aebdb282e00a1f9cb79abf8a01b511931f45f66c1866388f0c23 |
| ISICitedReferencesCount | 95 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524263600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0965-8564 |
| IngestDate | Tue Nov 18 21:38:40 EST 2025 Sat Nov 29 07:05:34 EST 2025 Fri Feb 23 02:48:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dynamic vehicle routing Simulation Automated vehicles Automated mobility-on-demand Shared mobility Shared rides |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c358t-e4ef17c750712aebdb282e00a1f9cb79abf8a01b511931f45f66c1866388f0c23 |
| PageCount | 20 |
| ParticipantIDs | crossref_primary_10_1016_j_tra_2020_02_017 crossref_citationtrail_10_1016_j_tra_2020_02_017 elsevier_sciencedirect_doi_10_1016_j_tra_2020_02_017 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Transportation research. Part A, Policy and practice |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Schaller, B., 2018. The New Automobility: Lyft, Uber and the Future of American Cities. Brooklyn, NY. Dandl, Hyland, Bogenberger, Mahmassani (b0035) 2019; 1–22 Frei, Hyland, Mahmassani (b0050) 2017; 76 Figliozzi, Mahmassani, Jaillet (bib238) 2004; 1882 Lavieri, Bhat (b0115) 2019; 124 Ma, Zheng, Wolfson (b0130) 2015; 27 Martinez, Viegas (b0140) 2017; 6 Agatz, Erera, Savelsbergh, Wang (b0005) 2012; 223 Hosni, Naoum-Sawaya, Artail (b0080) 2014; 70 Levin, Kockelman, Boyles, Li (b0125) 2017; 64 Hörl, Ruch, Becker, Frazzoli, Axhausen (b0075) 2019; 102 Zhang, R., Rossi, F., Pavone, M., 2015a. Model Predictive Control of Autonomous Mobility-on-Demand Systems. https://doi.org/10.1109/ICRA.2016.7487272. Alonso-Mora, Samaranayake, Wallar, Frazzoli, Rus (b0010) 2017; 114 Jung, Jayakrishnan, Choi (b0100) 2017; 11 Koebler, J., 2016. Why Everyone Hates UberPOOL [WWW Document]. VICE. URL https://www.vice.com/en_us/article/4xaa5d/why-drivers-and-riders-hate-uberpool-and-lyft-line (accessed 7.1.19). Hawkins, A., 2019. Ford’s on-demand bus service Chariot is going out of business [WWW Document]. The Verge. URL https://www.theverge.com/2019/1/10/18177378/chariot-out-of-business-shuttle-microtransit-ford (accessed 4.18.19). Maciejewski, Bischoff, Nagel (b0135) 2016; 31 Lee, Savelsbergh (b0120) 2015; 81 Internal Revenue Service, 2018. Standard Mileage Rates [WWW Document]. URL https://www.irs.gov/tax-professionals/standard-mileage-rates (accessed 10.16.18). Fagnant, Kockelman (b0045) 2014; 40 Mahmassani (bib236) 2016 Zhang, R., Spieser, K., Frazzoli, E., Pavone, M., 2015b. Models, algorithms, and evaluation for autonomous mobility-on-demand systems. In: 2015 American Control Conference (ACC). IEEE, pp. 2573–2587. https://doi.org/10.1109/ACC.2015.7171122. Boesch, Ciari, Axhausen (b0020) 2016; 2542 Psaraftis (b0165) 1980; 14 Santos, Xavier (b0180) 2015; 42 Campbell, H., 2017. 7 Reasons Why I Hate Uberpool and Lyftline [WWW Document]. Rideshare Guy A Blog Pod. Rideshare Drivers. URL https://therideshareguy.com/7-reasons-why-i-hate-uberpool-and-lyftline/ (accessed 7.1.19). Poon, L., 2017. Bridj Closes after Losing Deal with Car Company [WWW Document]. CityLab. URL https://www.citylab.com/transportation/2017/05/bridj-collapses-after-3-years-microtransit-bus/524955/ (accessed 4.18.19). TLC, 2016. TLC Trip Record Data [WWW Document]. NYC Taxi&Limousine Comm. URL https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page (accessed 7.24.18). Pillac, Gendreau, Guéret, Medaglia (b0150) 2013; 225 Berbeglia, Cordeau, Laporte (b0015) 2010; 202 Henao, Marshall (b0065) 2018; 1–22 Fagnant, Kockelman (b0040) 2016; 45 Furuhata, Dessouky, Ordóñez, Brunet, Wang, Koenig (b0055) 2013; 57 Jung, Jayakrishnan, Park (b0105) 2016; 31 Shaheen, Cohen, Zohdy (bib237) 2016 Psaraftis, Wen, Kontovas (b0170) 2016; 67 Wang, Meng, Zhang (b0210) 2015 Horl, S., Balac, M., Axhausen, K.W., 2019. Dynamic demand estimation for an AMoD system in Paris, in: 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, pp. 260–266. https://doi.org/10.1109/IVS.2019.8814051. Chen, Kockelman, Hanna (b0030) 2016; 94 Hyland, Mahmassani (b0085) 2018; 92 Hyland, Mahmassani (b0090) 2017; 2653 Psaraftis, H.N., 1983. An Exact Algorithm for the Single Vehicle Many-to-Many Dial-A-Ride Problem with Time Windows. http://dx.doi.org/10.1287/trsc.17.3.351 17, 351–357. Wilson, N.H.M., Colvin, N.J., 1977. Computer control of the Rochester dial-a-ride system, Technical Report R77-31. Cambridge, Massachusetts. Simonetto, Monteil, Gambella (b0190) 2019; 101 Zachariah, J., Gao, J., Kornhauser, A., Mufti, T., 2014. Uncongested mobility for all: a proposal for an area wide autonomous taxi system in New Jersey. In: Transportation Research Board 93rd Annual Meeting. Zhang, Guhathakurta, Fang, Zhang (b0235) 2015; 19 Mourad, Puchinger, Chu (b0145) 2019; 123 Ritzinger, Puchinger, Hartl (b0175) 2015; 54 Vosooghi, Puchinger, Jankovic, Vouillon (b0205) 2019; 107 Spieser, Treleaven, Zhang, Frazzoli, Pavone (b0195) 2014 Boesch (10.1016/j.tra.2020.02.017_b0020) 2016; 2542 Psaraftis (10.1016/j.tra.2020.02.017_b0165) 1980; 14 10.1016/j.tra.2020.02.017_b0095 Jung (10.1016/j.tra.2020.02.017_b0100) 2017; 11 Mourad (10.1016/j.tra.2020.02.017_b0145) 2019; 123 10.1016/j.tra.2020.02.017_b0215 Furuhata (10.1016/j.tra.2020.02.017_b0055) 2013; 57 Ritzinger (10.1016/j.tra.2020.02.017_b0175) 2015; 54 Hörl (10.1016/j.tra.2020.02.017_b0075) 2019; 102 Mahmassani (10.1016/j.tra.2020.02.017_bib236) 2016 Dandl (10.1016/j.tra.2020.02.017_b0035) 2019; 1–22 Hosni (10.1016/j.tra.2020.02.017_b0080) 2014; 70 Hyland (10.1016/j.tra.2020.02.017_b0090) 2017; 2653 10.1016/j.tra.2020.02.017_b0200 Fagnant (10.1016/j.tra.2020.02.017_b0040) 2016; 45 Zhang (10.1016/j.tra.2020.02.017_b0235) 2015; 19 Frei (10.1016/j.tra.2020.02.017_b0050) 2017; 76 Hyland (10.1016/j.tra.2020.02.017_b0085) 2018; 92 Shaheen (10.1016/j.tra.2020.02.017_bib237) 2016 Henao (10.1016/j.tra.2020.02.017_b0065) 2018; 1–22 Vosooghi (10.1016/j.tra.2020.02.017_b0205) 2019; 107 Berbeglia (10.1016/j.tra.2020.02.017_b0015) 2010; 202 Chen (10.1016/j.tra.2020.02.017_b0030) 2016; 94 Fagnant (10.1016/j.tra.2020.02.017_b0045) 2014; 40 10.1016/j.tra.2020.02.017_b0160 Spieser (10.1016/j.tra.2020.02.017_b0195) 2014 Ma (10.1016/j.tra.2020.02.017_b0130) 2015; 27 10.1016/j.tra.2020.02.017_b0110 Lee (10.1016/j.tra.2020.02.017_b0120) 2015; 81 10.1016/j.tra.2020.02.017_b0155 Agatz (10.1016/j.tra.2020.02.017_b0005) 2012; 223 Figliozzi (10.1016/j.tra.2020.02.017_bib238) 2004; 1882 10.1016/j.tra.2020.02.017_b0230 Alonso-Mora (10.1016/j.tra.2020.02.017_b0010) 2017; 114 Martinez (10.1016/j.tra.2020.02.017_b0140) 2017; 6 Pillac (10.1016/j.tra.2020.02.017_b0150) 2013; 225 Levin (10.1016/j.tra.2020.02.017_b0125) 2017; 64 10.1016/j.tra.2020.02.017_b0070 Wang (10.1016/j.tra.2020.02.017_b0210) 2015 10.1016/j.tra.2020.02.017_b0220 10.1016/j.tra.2020.02.017_b0025 Lavieri (10.1016/j.tra.2020.02.017_b0115) 2019; 124 Jung (10.1016/j.tra.2020.02.017_b0105) 2016; 31 10.1016/j.tra.2020.02.017_b0185 Simonetto (10.1016/j.tra.2020.02.017_b0190) 2019; 101 Psaraftis (10.1016/j.tra.2020.02.017_b0170) 2016; 67 10.1016/j.tra.2020.02.017_b0225 Santos (10.1016/j.tra.2020.02.017_b0180) 2015; 42 10.1016/j.tra.2020.02.017_b0060 Maciejewski (10.1016/j.tra.2020.02.017_b0135) 2016; 31 |
| References_xml | – volume: 2653 start-page: 26 year: 2017 end-page: 34 ident: b0090 article-title: Taxonomy of shared autonomous vehicle fleet management problems to inform future transportation mobility publication-title: Transp. Res. Rec. J. Transp. Res. Board – volume: 11 start-page: 567 year: 2017 end-page: 581 ident: b0100 article-title: Dually sustainable urban mobility option: Shared-taxi operations with electric vehicles publication-title: Int. J. Sustain. Transp. – volume: 64 start-page: 373 year: 2017 end-page: 383 ident: b0125 article-title: A general framework for modeling shared autonomous vehicles with dynamic network-loading and dynamic ride-sharing application publication-title: Comput. Environ. Urban Syst. – volume: 31 start-page: 275 year: 2016 end-page: 291 ident: b0105 article-title: Dynamic shared-taxi dispatch algorithm with hybrid-simulated annealing publication-title: Comput. Civ. Infrastruct. Eng. – volume: 225 start-page: 1 year: 2013 end-page: 11 ident: b0150 article-title: A review of dynamic vehicle routing problems publication-title: Eur. J. Oper. Res. – volume: 76 start-page: 71 year: 2017 end-page: 89 ident: b0050 article-title: Flexing service schedules: Assessing the potential for demand-adaptive hybrid transit via a stated preference approach publication-title: Transp. Res. Part C Emerg. Technol. – year: 2016 ident: bib236 article-title: Technological innovation and the future of urban personal travel publication-title: MOBILITY 2050: A Vision for Transportation Infrastructure. – year: 2015 ident: b0210 article-title: Optimal parking pricing in many-to-one park-and-ride network with parking space constraints publication-title: Transp. Res. Rec. J. Transp. Res. Board – volume: 101 start-page: 208 year: 2019 end-page: 232 ident: b0190 article-title: Real-time city-scale ridesharing via linear assignment problems publication-title: Transp. Res. Part C Emerg. Technol. – volume: 102 start-page: 20 year: 2019 end-page: 31 ident: b0075 article-title: Fleet operational policies for automated mobility: A simulation assessment for Zurich publication-title: Transp. Res. Part C Emerg. Technol. – volume: 70 start-page: 303 year: 2014 end-page: 318 ident: b0080 article-title: The shared-taxi problem: Formulation and solution methods publication-title: Transp. Res. Part B Methodol. – volume: 92 start-page: 278 year: 2018 end-page: 297 ident: b0085 article-title: Dynamic autonomous vehicle fleet operations: Optimization-based strategies to assign AVs to immediate traveler demand requests publication-title: Transp. Res. Part C Emerg. Technol. – volume: 27 start-page: 1782 year: 2015 end-page: 1795 ident: b0130 article-title: Real-time city-scale taxi ridesharing publication-title: IEEE Trans. Knowl. Data Eng. – reference: Internal Revenue Service, 2018. Standard Mileage Rates [WWW Document]. URL https://www.irs.gov/tax-professionals/standard-mileage-rates (accessed 10.16.18). – volume: 45 start-page: 143 year: 2016 end-page: 158 ident: b0040 article-title: Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin publication-title: Texas. Transportation (Amst) – volume: 40 start-page: 1 year: 2014 end-page: 13 ident: b0045 article-title: The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios publication-title: Transp. Res. Part C Emerg. Technol. – reference: Hawkins, A., 2019. Ford’s on-demand bus service Chariot is going out of business [WWW Document]. The Verge. URL https://www.theverge.com/2019/1/10/18177378/chariot-out-of-business-shuttle-microtransit-ford (accessed 4.18.19). – volume: 6 start-page: 13 year: 2017 end-page: 27 ident: b0140 article-title: Assessing the impacts of deploying a shared self-driving urban mobility system: An agent-based model applied to the city of Lisbon, Portugal publication-title: Int. J. Transp. Sci. Technol. – reference: Psaraftis, H.N., 1983. An Exact Algorithm for the Single Vehicle Many-to-Many Dial-A-Ride Problem with Time Windows. http://dx.doi.org/10.1287/trsc.17.3.351 17, 351–357. – volume: 94 start-page: 243 year: 2016 end-page: 254 ident: b0030 article-title: Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions publication-title: Transp. Res. Part A Policy Pract. – reference: Wilson, N.H.M., Colvin, N.J., 1977. Computer control of the Rochester dial-a-ride system, Technical Report R77-31. Cambridge, Massachusetts. – volume: 223 start-page: 295 year: 2012 end-page: 303 ident: b0005 article-title: Optimization for dynamic ride-sharing: A review publication-title: Eur. J. Oper. Res. – volume: 124 start-page: 242 year: 2019 end-page: 261 ident: b0115 article-title: Modeling individuals’ willingness to share trips with strangers in an autonomous vehicle future publication-title: Transp. Res. Part A Policy Pract. – reference: Poon, L., 2017. Bridj Closes after Losing Deal with Car Company [WWW Document]. CityLab. URL https://www.citylab.com/transportation/2017/05/bridj-collapses-after-3-years-microtransit-bus/524955/ (accessed 4.18.19). – reference: Zhang, R., Rossi, F., Pavone, M., 2015a. Model Predictive Control of Autonomous Mobility-on-Demand Systems. https://doi.org/10.1109/ICRA.2016.7487272. – volume: 123 start-page: 323 year: 2019 end-page: 346 ident: b0145 article-title: A survey of models and algorithms for optimizing shared mobility publication-title: Transp. Res. Part B Methodol. – volume: 202 start-page: 8 year: 2010 end-page: 15 ident: b0015 article-title: Dynamic pickup and delivery problems publication-title: Eur. J. Oper. Res. – volume: 67 start-page: 3 year: 2016 end-page: 31 ident: b0170 article-title: Dynamic vehicle routing problems: Three decades and counting publication-title: Networks – volume: 1–22 year: 2018 ident: b0065 article-title: The impact of ride-hailing on vehicle miles traveled publication-title: Transportation (Amst). – volume: 31 start-page: 68 year: 2016 end-page: 77 ident: b0135 article-title: An assignment-based approach to efficient real-time city-scale taxi dispatching publication-title: IEEE Intell. Syst. – volume: 1882 start-page: 10 year: 2004 end-page: 18 ident: bib238 article-title: Competitive performance assessment of dynamic vehicle routing technologies using sequential auctions publication-title: Transportation Research Record – reference: Zhang, R., Spieser, K., Frazzoli, E., Pavone, M., 2015b. Models, algorithms, and evaluation for autonomous mobility-on-demand systems. In: 2015 American Control Conference (ACC). IEEE, pp. 2573–2587. https://doi.org/10.1109/ACC.2015.7171122. – volume: 81 year: 2015 ident: b0120 article-title: Dynamic ridesharing: Is there a role for dedicated drivers? publication-title: Transp. Res. Part B Methodol. – volume: 57 start-page: 28 year: 2013 end-page: 46 ident: b0055 article-title: Ridesharing: The state-of-the-art and future directions publication-title: Transp. Res. Part B Methodol. – reference: Horl, S., Balac, M., Axhausen, K.W., 2019. Dynamic demand estimation for an AMoD system in Paris, in: 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, pp. 260–266. https://doi.org/10.1109/IVS.2019.8814051. – volume: 19 start-page: 34 year: 2015 end-page: 45 ident: b0235 article-title: Exploring the impact of shared autonomous vehicles on urban parking demand: an agent-based simulation approach publication-title: Sustain. Cities Soc. – volume: 107 start-page: 15 year: 2019 end-page: 33 ident: b0205 article-title: Shared autonomous vehicle simulation and service design publication-title: Transp. Res. Part C Emerg. Technol. – reference: Schaller, B., 2018. The New Automobility: Lyft, Uber and the Future of American Cities. Brooklyn, NY. – reference: Zachariah, J., Gao, J., Kornhauser, A., Mufti, T., 2014. Uncongested mobility for all: a proposal for an area wide autonomous taxi system in New Jersey. In: Transportation Research Board 93rd Annual Meeting. – start-page: 229 year: 2014 end-page: 245 ident: b0195 article-title: Toward a systematic approach to the design and evaluation of automated mobility-on-demand systems: a case study in Singapore publication-title: Road Vehicle Automation, Lecture Notes in Mobility – year: 2016 ident: bib237 publication-title: Shared mobility: current practices and guiding principles. FHWA-HOP-16-022 – volume: 2542 start-page: 111 year: 2016 end-page: 119 ident: b0020 article-title: Autonomous vehicle fleet sizes required to serve different levels of demand publication-title: Transp. Res. Rec. J. Transp. Res. Board – reference: Campbell, H., 2017. 7 Reasons Why I Hate Uberpool and Lyftline [WWW Document]. Rideshare Guy A Blog Pod. Rideshare Drivers. URL https://therideshareguy.com/7-reasons-why-i-hate-uberpool-and-lyftline/ (accessed 7.1.19). – volume: 1–22 year: 2019 ident: b0035 article-title: Evaluating the impact of spatio-temporal demand forecast aggregation on the operational performance of shared autonomous mobility fleets publication-title: Transportation (Amst). – reference: TLC, 2016. TLC Trip Record Data [WWW Document]. NYC Taxi&Limousine Comm. URL https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page (accessed 7.24.18). – volume: 114 start-page: 462 year: 2017 end-page: 467 ident: b0010 article-title: On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 42 start-page: 6728 year: 2015 end-page: 6737 ident: b0180 article-title: Taxi and ride sharing: a dynamic dial-a-ride problem with money as an incentive publication-title: Expert Syst. Appl. – volume: 14 start-page: 130 year: 1980 end-page: 154 ident: b0165 article-title: A Dynamic programming solution to the single vehicle many-to-many immediate request dial-a-ride problem publication-title: Transp. Sci. – volume: 54 start-page: 215 year: 2015 end-page: 231 ident: b0175 article-title: A survey on dynamic and stochastic vehicle routing problems publication-title: Int. J. Prod. Res. – reference: Koebler, J., 2016. Why Everyone Hates UberPOOL [WWW Document]. VICE. URL https://www.vice.com/en_us/article/4xaa5d/why-drivers-and-riders-hate-uberpool-and-lyft-line (accessed 7.1.19). – year: 2016 ident: 10.1016/j.tra.2020.02.017_bib236 article-title: Technological innovation and the future of urban personal travel – ident: 10.1016/j.tra.2020.02.017_b0070 doi: 10.1109/IVS.2019.8814051 – ident: 10.1016/j.tra.2020.02.017_b0110 – volume: 64 start-page: 373 year: 2017 ident: 10.1016/j.tra.2020.02.017_b0125 article-title: A general framework for modeling shared autonomous vehicles with dynamic network-loading and dynamic ride-sharing application publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2017.04.006 – ident: 10.1016/j.tra.2020.02.017_b0095 – ident: 10.1016/j.tra.2020.02.017_b0185 – volume: 19 start-page: 34 year: 2015 ident: 10.1016/j.tra.2020.02.017_b0235 article-title: Exploring the impact of shared autonomous vehicles on urban parking demand: an agent-based simulation approach publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2015.07.006 – volume: 223 start-page: 295 year: 2012 ident: 10.1016/j.tra.2020.02.017_b0005 article-title: Optimization for dynamic ride-sharing: A review publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2012.05.028 – year: 2015 ident: 10.1016/j.tra.2020.02.017_b0210 article-title: Optimal parking pricing in many-to-one park-and-ride network with parking space constraints publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.3141/2498-12 – volume: 225 start-page: 1 year: 2013 ident: 10.1016/j.tra.2020.02.017_b0150 article-title: A review of dynamic vehicle routing problems publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2012.08.015 – volume: 31 start-page: 275 year: 2016 ident: 10.1016/j.tra.2020.02.017_b0105 article-title: Dynamic shared-taxi dispatch algorithm with hybrid-simulated annealing publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12157 – volume: 1–22 year: 2018 ident: 10.1016/j.tra.2020.02.017_b0065 article-title: The impact of ride-hailing on vehicle miles traveled publication-title: Transportation (Amst). – ident: 10.1016/j.tra.2020.02.017_b0225 doi: 10.1109/ICRA.2016.7487272 – volume: 124 start-page: 242 year: 2019 ident: 10.1016/j.tra.2020.02.017_b0115 article-title: Modeling individuals’ willingness to share trips with strangers in an autonomous vehicle future publication-title: Transp. Res. Part A Policy Pract. doi: 10.1016/j.tra.2019.03.009 – volume: 1882 start-page: 10 year: 2004 ident: 10.1016/j.tra.2020.02.017_bib238 article-title: Competitive performance assessment of dynamic vehicle routing technologies using sequential auctions publication-title: Transportation Research Record doi: 10.3141/1882-02 – volume: 54 start-page: 215 year: 2015 ident: 10.1016/j.tra.2020.02.017_b0175 article-title: A survey on dynamic and stochastic vehicle routing problems publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2015.1043403 – volume: 67 start-page: 3 year: 2016 ident: 10.1016/j.tra.2020.02.017_b0170 article-title: Dynamic vehicle routing problems: Three decades and counting publication-title: Networks doi: 10.1002/net.21628 – volume: 92 start-page: 278 year: 2018 ident: 10.1016/j.tra.2020.02.017_b0085 article-title: Dynamic autonomous vehicle fleet operations: Optimization-based strategies to assign AVs to immediate traveler demand requests publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2018.05.003 – ident: 10.1016/j.tra.2020.02.017_b0200 – volume: 94 start-page: 243 year: 2016 ident: 10.1016/j.tra.2020.02.017_b0030 article-title: Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions publication-title: Transp. Res. Part A Policy Pract. doi: 10.1016/j.tra.2016.08.020 – volume: 2542 start-page: 111 year: 2016 ident: 10.1016/j.tra.2020.02.017_b0020 article-title: Autonomous vehicle fleet sizes required to serve different levels of demand publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.3141/2542-13 – volume: 57 start-page: 28 year: 2013 ident: 10.1016/j.tra.2020.02.017_b0055 article-title: Ridesharing: The state-of-the-art and future directions publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2013.08.012 – volume: 11 start-page: 567 year: 2017 ident: 10.1016/j.tra.2020.02.017_b0100 article-title: Dually sustainable urban mobility option: Shared-taxi operations with electric vehicles publication-title: Int. J. Sustain. Transp. doi: 10.1080/15568318.2015.1092057 – volume: 45 start-page: 143 year: 2016 ident: 10.1016/j.tra.2020.02.017_b0040 article-title: Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin publication-title: Texas. Transportation (Amst) – ident: 10.1016/j.tra.2020.02.017_b0215 – volume: 102 start-page: 20 year: 2019 ident: 10.1016/j.tra.2020.02.017_b0075 article-title: Fleet operational policies for automated mobility: A simulation assessment for Zurich publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2019.02.020 – volume: 1–22 year: 2019 ident: 10.1016/j.tra.2020.02.017_b0035 article-title: Evaluating the impact of spatio-temporal demand forecast aggregation on the operational performance of shared autonomous mobility fleets publication-title: Transportation (Amst). – volume: 114 start-page: 462 year: 2017 ident: 10.1016/j.tra.2020.02.017_b0010 article-title: On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1611675114 – ident: 10.1016/j.tra.2020.02.017_b0230 doi: 10.1109/ACC.2015.7171122 – ident: 10.1016/j.tra.2020.02.017_b0160 doi: 10.1287/trsc.17.3.351 – volume: 31 start-page: 68 year: 2016 ident: 10.1016/j.tra.2020.02.017_b0135 article-title: An assignment-based approach to efficient real-time city-scale taxi dispatching publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2016.2 – volume: 107 start-page: 15 year: 2019 ident: 10.1016/j.tra.2020.02.017_b0205 article-title: Shared autonomous vehicle simulation and service design publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2019.08.006 – volume: 40 start-page: 1 year: 2014 ident: 10.1016/j.tra.2020.02.017_b0045 article-title: The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2013.12.001 – ident: 10.1016/j.tra.2020.02.017_b0155 – ident: 10.1016/j.tra.2020.02.017_b0025 – volume: 123 start-page: 323 year: 2019 ident: 10.1016/j.tra.2020.02.017_b0145 article-title: A survey of models and algorithms for optimizing shared mobility publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2019.02.003 – ident: 10.1016/j.tra.2020.02.017_b0220 – year: 2016 ident: 10.1016/j.tra.2020.02.017_bib237 – volume: 202 start-page: 8 year: 2010 ident: 10.1016/j.tra.2020.02.017_b0015 article-title: Dynamic pickup and delivery problems publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2009.04.024 – volume: 76 start-page: 71 year: 2017 ident: 10.1016/j.tra.2020.02.017_b0050 article-title: Flexing service schedules: Assessing the potential for demand-adaptive hybrid transit via a stated preference approach publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2016.12.017 – volume: 14 start-page: 130 year: 1980 ident: 10.1016/j.tra.2020.02.017_b0165 article-title: A Dynamic programming solution to the single vehicle many-to-many immediate request dial-a-ride problem publication-title: Transp. Sci. doi: 10.1287/trsc.14.2.130 – volume: 81 year: 2015 ident: 10.1016/j.tra.2020.02.017_b0120 article-title: Dynamic ridesharing: Is there a role for dedicated drivers? publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2015.02.013 – volume: 42 start-page: 6728 year: 2015 ident: 10.1016/j.tra.2020.02.017_b0180 article-title: Taxi and ride sharing: a dynamic dial-a-ride problem with money as an incentive publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.060 – volume: 70 start-page: 303 year: 2014 ident: 10.1016/j.tra.2020.02.017_b0080 article-title: The shared-taxi problem: Formulation and solution methods publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2014.09.011 – volume: 2653 start-page: 26 year: 2017 ident: 10.1016/j.tra.2020.02.017_b0090 article-title: Taxonomy of shared autonomous vehicle fleet management problems to inform future transportation mobility publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.3141/2653-04 – volume: 6 start-page: 13 year: 2017 ident: 10.1016/j.tra.2020.02.017_b0140 article-title: Assessing the impacts of deploying a shared self-driving urban mobility system: An agent-based model applied to the city of Lisbon, Portugal publication-title: Int. J. Transp. Sci. Technol. doi: 10.1016/j.ijtst.2017.05.005 – ident: 10.1016/j.tra.2020.02.017_b0060 – volume: 27 start-page: 1782 year: 2015 ident: 10.1016/j.tra.2020.02.017_b0130 article-title: Real-time city-scale taxi ridesharing publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2014.2334313 – volume: 101 start-page: 208 year: 2019 ident: 10.1016/j.tra.2020.02.017_b0190 article-title: Real-time city-scale ridesharing via linear assignment problems publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2019.01.019 – start-page: 229 year: 2014 ident: 10.1016/j.tra.2020.02.017_b0195 article-title: Toward a systematic approach to the design and evaluation of automated mobility-on-demand systems: a case study in Singapore doi: 10.1007/978-3-319-05990-7_20 |
| SSID | ssj0004672 |
| Score | 2.588986 |
| Snippet | •Shared ride services with autonomous vehicles result in lower user waiting times.•Sharing also results in lower operational costs for operators than no... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 251 |
| SubjectTerms | Automated mobility-on-demand Automated vehicles Dynamic vehicle routing Shared mobility Shared rides Simulation |
| Title | Operational benefits and challenges of shared-ride automated mobility-on-demand services |
| URI | https://dx.doi.org/10.1016/j.tra.2020.02.017 |
| Volume | 134 |
| WOSCitedRecordID | wos000524263600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-2375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004672 issn: 0965-8564 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKhwQcEAwmBmzygROVK-d3cqzQ0JimgbSBeoscx1Y3rUmVZtN24l_n-VdqbYAAiUvapnUa-X12Pj-_9z2E3kmdfkkLGGlFROIkqQmwDEmSSFJ43Od1pHfPvx1nJyf5fF58GY2-u1yY68usafKbm2L1X00N58DYKnX2L8w9XBROwHswOhzB7HD8I8N_XonOefgqmMmk2hrQ2WuuboqO3lgvVOg56c5rMWFXfQvMFbjnstXBsrekbUgtltqrbmcTn8YOkugGPlYxaDEFQtr1k5mmplpw2OoQmEysAUK3LpzSD9rXbvHFEsi8KTM1OYTXyenU90uE1Atn0c4ylzCziU7SXsc0IXlihMunwsy5ABMSRqaAyjApWxennVatKK15Qoem1Mi9yd_4IS6mfacEpUKqxVhNZugdTe1TrXkDtwH0lSonwAO0FWZJkY_R1uzTwfzIS63V9b-G-3Yb4zpE8M4f_ZzaeHTl7Bl6atcZeGbw8RyNRLONHrk09PU2euIpUb5Acw812KEGg5XwBjW4ldhDDR5Qg--jBjvUvERfPx6cfTgktugG4TBqeyJiIYOMZ2qdEDJR1RUsygWlLJAFr7KCVTJnNKjU_nMUyDiRacqVamKU55LyMNpB46ZtxCuEWS54EsC3aSaAp7IKrhpwGbM6TSXL0l1EXX-V3CrSq8Iol6ULPbwo4XOpurikYQldvIveD01WRo7ldz-OnRFKyycNTywBMb9u9vrfmr1BjzfD4C0a992V2EMP-XV_vu72La5-AAIWmi8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operational+benefits+and+challenges+of+shared-ride+automated+mobility-on-demand+services&rft.jtitle=Transportation+research.+Part+A%2C+Policy+and+practice&rft.au=Hyland%2C+Michael&rft.au=Mahmassani%2C+Hani+S.&rft.date=2020-04-01&rft.pub=Elsevier+Ltd&rft.issn=0965-8564&rft.eissn=1879-2375&rft.volume=134&rft.spage=251&rft.epage=270&rft_id=info:doi/10.1016%2Fj.tra.2020.02.017&rft.externalDocID=S0965856419307888 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-8564&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-8564&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-8564&client=summon |