Operational benefits and challenges of shared-ride automated mobility-on-demand services

•Shared ride services with autonomous vehicles result in lower user waiting times.•Sharing also results in lower operational costs for operators than no sharing.•Trade-offs examined from perspective of operators, users and policymakers.•Benefits accrue only when demand pool is sufficiently large.•Ro...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Transportation research. Part A, Policy and practice Ročník 134; s. 251 - 270
Hlavní autori: Hyland, Michael, Mahmassani, Hani S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.04.2020
Predmet:
ISSN:0965-8564, 1879-2375
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Shared ride services with autonomous vehicles result in lower user waiting times.•Sharing also results in lower operational costs for operators than no sharing.•Trade-offs examined from perspective of operators, users and policymakers.•Benefits accrue only when demand pool is sufficiently large.•Role for public sector to incentivize shared ride offering and use. This paper presents a quantitative analysis of the operations of shared-ride automated mobility-on-demand services (SRAMODS). The study identifies (i) operational benefits of SRAMODS including improved service quality and/or lower operational costs relative to automated mobility-on-demand services (AMODS) without shared rides; and (ii) challenges associated with operating SRAMODS. The study employs an agent-based stochastic dynamic simulation framework to model the operational problems of AMODS. The agents include automated vehicles (AVs), on-demand user requests, and a central AV fleet controller that can dynamically change the plans (i.e. routes and AV-user assignments) of AVs in real-time using optimization-based control policies. The agent-based simulation tool and AV fleet control policies are used to test the operational performance of AMODS under a variety of scenarios. The first set of scenarios vary user demand and a parameter constraining the maximum user detour distance. Results indicate that even with a small maximum user detour distance parameter value, allowing shared rides significantly improves the operational efficiency of the AV fleet, where the efficiency gains stem from economies of demand density and network effects. The second set of scenarios vary the mean and coefficient of variation of the curbside pickup time parameter; i.e. how long an AV must wait curbside at a user’s pickup location before the user gets inside the AV. Results indicate that increases in mean curbside pickup time significantly degrade operational performance in terms of user in-vehicle travel time and user wait time. The study quantifies the total system (user plus fleet controller) cost as a function of mean curbside pickup time. Finally, the paper provides an extensive discussion of the implications of the quantitative analysis for public-sector transportation planners and policy-makers as well as for mobility service providers.
AbstractList •Shared ride services with autonomous vehicles result in lower user waiting times.•Sharing also results in lower operational costs for operators than no sharing.•Trade-offs examined from perspective of operators, users and policymakers.•Benefits accrue only when demand pool is sufficiently large.•Role for public sector to incentivize shared ride offering and use. This paper presents a quantitative analysis of the operations of shared-ride automated mobility-on-demand services (SRAMODS). The study identifies (i) operational benefits of SRAMODS including improved service quality and/or lower operational costs relative to automated mobility-on-demand services (AMODS) without shared rides; and (ii) challenges associated with operating SRAMODS. The study employs an agent-based stochastic dynamic simulation framework to model the operational problems of AMODS. The agents include automated vehicles (AVs), on-demand user requests, and a central AV fleet controller that can dynamically change the plans (i.e. routes and AV-user assignments) of AVs in real-time using optimization-based control policies. The agent-based simulation tool and AV fleet control policies are used to test the operational performance of AMODS under a variety of scenarios. The first set of scenarios vary user demand and a parameter constraining the maximum user detour distance. Results indicate that even with a small maximum user detour distance parameter value, allowing shared rides significantly improves the operational efficiency of the AV fleet, where the efficiency gains stem from economies of demand density and network effects. The second set of scenarios vary the mean and coefficient of variation of the curbside pickup time parameter; i.e. how long an AV must wait curbside at a user’s pickup location before the user gets inside the AV. Results indicate that increases in mean curbside pickup time significantly degrade operational performance in terms of user in-vehicle travel time and user wait time. The study quantifies the total system (user plus fleet controller) cost as a function of mean curbside pickup time. Finally, the paper provides an extensive discussion of the implications of the quantitative analysis for public-sector transportation planners and policy-makers as well as for mobility service providers.
Author Hyland, Michael
Mahmassani, Hani S.
Author_xml – sequence: 1
  givenname: Michael
  surname: Hyland
  fullname: Hyland, Michael
  email: hylandm@uci.edu
  organization: Department of Civil and Environmental Engineering, University of California, Irvine, Institute of Transportation Studies, 4000 Anteater Instruction and Research Bldg. (AIRB), Irvine, CA 92697-3600, United States
– sequence: 2
  givenname: Hani S.
  surname: Mahmassani
  fullname: Mahmassani, Hani S.
  email: masmah@northwestern.edu
  organization: Department of Civil and Environmental Engineering, Northwestern University, Northwestern University Transportation Center, 600 Foster Street, Evanston, IL 60208, United States
BookMark eNp90L1OwzAQwHELFYm28ABseYGEs5PYiZhQxZdUqQtIbJZjn6mrJK5sU6lvTwpMDJ1uud9J91-Q2ehHJOSWQkGB8rtdkYIqGDAogBVAxQWZ00a0OStFPSNzaHmdNzWvrsgixh0AVFywOfnY7DGo5Pyo-qzDEa1LMVOjyfRW9T2Onxgzb7O4VQFNHpzBTH0lP6iEJht853qXjrkfc4PDiUUMB6cxXpNLq_qIN39zSd6fHt9WL_l68_y6eljnuqyblGOFlgotahCUKexMxxqGAIraVneiVZ1tFNCuprQtqa1qy7mmDedl01jQrFwS-ntXBx9jQCv3wQ0qHCUFeUojd3JKI09pJDA5pZmM-Ge0Sz8Rpk3Xn5X3vxKnlw4Og4za4ajRuIA6SePdGf0NKw2B6g
CitedBy_id crossref_primary_10_1109_TEM_2025_3592031
crossref_primary_10_3390_su14053020
crossref_primary_10_1016_j_tra_2023_103819
crossref_primary_10_5507_tots_2024_008
crossref_primary_10_1016_j_cstp_2025_101462
crossref_primary_10_1177_03611981231201111
crossref_primary_10_3390_mti5050026
crossref_primary_10_1016_j_trip_2025_101630
crossref_primary_10_1016_j_trc_2023_104420
crossref_primary_10_1016_j_trip_2025_101623
crossref_primary_10_3390_futuretransp5020035
crossref_primary_10_1016_j_tranpol_2024_10_010
crossref_primary_10_1080_15472450_2021_1901225
crossref_primary_10_3390_su15043199
crossref_primary_10_3389_ffutr_2022_915219
crossref_primary_10_3390_su16114337
crossref_primary_10_3390_en17215399
crossref_primary_10_3390_a17010009
crossref_primary_10_1016_j_trd_2025_104975
crossref_primary_10_1016_j_tbs_2023_100619
crossref_primary_10_1080_21650020_2025_2539145
crossref_primary_10_1080_23249935_2023_2214968
crossref_primary_10_1016_j_tra_2021_07_005
crossref_primary_10_1177_1748006X241233863
crossref_primary_10_1177_03611981251346450
crossref_primary_10_1016_j_ijhcs_2023_103043
crossref_primary_10_1145_3721434
crossref_primary_10_1016_j_tra_2020_09_002
crossref_primary_10_1109_TITS_2023_3345174
crossref_primary_10_1177_03611981221083617
crossref_primary_10_3390_electronics11172687
crossref_primary_10_3390_app12199544
crossref_primary_10_1177_03611981211004588
crossref_primary_10_1016_j_trc_2025_105098
crossref_primary_10_1109_TITS_2021_3071512
crossref_primary_10_3390_systems11040187
crossref_primary_10_3389_ffutr_2021_681451
crossref_primary_10_1002_jtr_2449
crossref_primary_10_1016_j_tra_2021_01_001
crossref_primary_10_1177_03611981221088585
crossref_primary_10_1016_j_tra_2022_03_032
crossref_primary_10_1016_j_trc_2021_103104
crossref_primary_10_1109_TITS_2023_3268158
crossref_primary_10_1080_01441647_2025_2545224
crossref_primary_10_1080_21680566_2024_2315507
crossref_primary_10_1016_j_jclepro_2021_128172
crossref_primary_10_1016_j_tra_2023_103583
crossref_primary_10_1155_atr_3150069
crossref_primary_10_3390_su14020876
crossref_primary_10_1177_0361198121997140
Cites_doi 10.1109/IVS.2019.8814051
10.1016/j.compenvurbsys.2017.04.006
10.1016/j.scs.2015.07.006
10.1016/j.ejor.2012.05.028
10.3141/2498-12
10.1016/j.ejor.2012.08.015
10.1111/mice.12157
10.1109/ICRA.2016.7487272
10.1016/j.tra.2019.03.009
10.3141/1882-02
10.1080/00207543.2015.1043403
10.1002/net.21628
10.1016/j.trc.2018.05.003
10.1016/j.tra.2016.08.020
10.3141/2542-13
10.1016/j.trb.2013.08.012
10.1080/15568318.2015.1092057
10.1016/j.trc.2019.02.020
10.1073/pnas.1611675114
10.1109/ACC.2015.7171122
10.1287/trsc.17.3.351
10.1109/MIS.2016.2
10.1016/j.trc.2019.08.006
10.1016/j.trc.2013.12.001
10.1016/j.trb.2019.02.003
10.1016/j.ejor.2009.04.024
10.1016/j.trc.2016.12.017
10.1287/trsc.14.2.130
10.1016/j.trb.2015.02.013
10.1016/j.eswa.2015.04.060
10.1016/j.trb.2014.09.011
10.3141/2653-04
10.1016/j.ijtst.2017.05.005
10.1109/TKDE.2014.2334313
10.1016/j.trc.2019.01.019
10.1007/978-3-319-05990-7_20
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tra.2020.02.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2375
EndPage 270
ExternalDocumentID 10_1016_j_tra_2020_02_017
S0965856419307888
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABLJU
ABMAC
ABMMH
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSZ
T5K
WUQ
XPP
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c358t-e4ef17c750712aebdb282e00a1f9cb79abf8a01b511931f45f66c1866388f0c23
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524263600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0965-8564
IngestDate Tue Nov 18 21:38:40 EST 2025
Sat Nov 29 07:05:34 EST 2025
Fri Feb 23 02:48:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic vehicle routing
Simulation
Automated vehicles
Automated mobility-on-demand
Shared mobility
Shared rides
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-e4ef17c750712aebdb282e00a1f9cb79abf8a01b511931f45f66c1866388f0c23
PageCount 20
ParticipantIDs crossref_primary_10_1016_j_tra_2020_02_017
crossref_citationtrail_10_1016_j_tra_2020_02_017
elsevier_sciencedirect_doi_10_1016_j_tra_2020_02_017
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Transportation research. Part A, Policy and practice
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schaller, B., 2018. The New Automobility: Lyft, Uber and the Future of American Cities. Brooklyn, NY.
Dandl, Hyland, Bogenberger, Mahmassani (b0035) 2019; 1–22
Frei, Hyland, Mahmassani (b0050) 2017; 76
Figliozzi, Mahmassani, Jaillet (bib238) 2004; 1882
Lavieri, Bhat (b0115) 2019; 124
Ma, Zheng, Wolfson (b0130) 2015; 27
Martinez, Viegas (b0140) 2017; 6
Agatz, Erera, Savelsbergh, Wang (b0005) 2012; 223
Hosni, Naoum-Sawaya, Artail (b0080) 2014; 70
Levin, Kockelman, Boyles, Li (b0125) 2017; 64
Hörl, Ruch, Becker, Frazzoli, Axhausen (b0075) 2019; 102
Zhang, R., Rossi, F., Pavone, M., 2015a. Model Predictive Control of Autonomous Mobility-on-Demand Systems. https://doi.org/10.1109/ICRA.2016.7487272.
Alonso-Mora, Samaranayake, Wallar, Frazzoli, Rus (b0010) 2017; 114
Jung, Jayakrishnan, Choi (b0100) 2017; 11
Koebler, J., 2016. Why Everyone Hates UberPOOL [WWW Document]. VICE. URL https://www.vice.com/en_us/article/4xaa5d/why-drivers-and-riders-hate-uberpool-and-lyft-line (accessed 7.1.19).
Hawkins, A., 2019. Ford’s on-demand bus service Chariot is going out of business [WWW Document]. The Verge. URL https://www.theverge.com/2019/1/10/18177378/chariot-out-of-business-shuttle-microtransit-ford (accessed 4.18.19).
Maciejewski, Bischoff, Nagel (b0135) 2016; 31
Lee, Savelsbergh (b0120) 2015; 81
Internal Revenue Service, 2018. Standard Mileage Rates [WWW Document]. URL https://www.irs.gov/tax-professionals/standard-mileage-rates (accessed 10.16.18).
Fagnant, Kockelman (b0045) 2014; 40
Mahmassani (bib236) 2016
Zhang, R., Spieser, K., Frazzoli, E., Pavone, M., 2015b. Models, algorithms, and evaluation for autonomous mobility-on-demand systems. In: 2015 American Control Conference (ACC). IEEE, pp. 2573–2587. https://doi.org/10.1109/ACC.2015.7171122.
Boesch, Ciari, Axhausen (b0020) 2016; 2542
Psaraftis (b0165) 1980; 14
Santos, Xavier (b0180) 2015; 42
Campbell, H., 2017. 7 Reasons Why I Hate Uberpool and Lyftline [WWW Document]. Rideshare Guy A Blog Pod. Rideshare Drivers. URL https://therideshareguy.com/7-reasons-why-i-hate-uberpool-and-lyftline/ (accessed 7.1.19).
Poon, L., 2017. Bridj Closes after Losing Deal with Car Company [WWW Document]. CityLab. URL https://www.citylab.com/transportation/2017/05/bridj-collapses-after-3-years-microtransit-bus/524955/ (accessed 4.18.19).
TLC, 2016. TLC Trip Record Data [WWW Document]. NYC Taxi&Limousine Comm. URL https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page (accessed 7.24.18).
Pillac, Gendreau, Guéret, Medaglia (b0150) 2013; 225
Berbeglia, Cordeau, Laporte (b0015) 2010; 202
Henao, Marshall (b0065) 2018; 1–22
Fagnant, Kockelman (b0040) 2016; 45
Furuhata, Dessouky, Ordóñez, Brunet, Wang, Koenig (b0055) 2013; 57
Jung, Jayakrishnan, Park (b0105) 2016; 31
Shaheen, Cohen, Zohdy (bib237) 2016
Psaraftis, Wen, Kontovas (b0170) 2016; 67
Wang, Meng, Zhang (b0210) 2015
Horl, S., Balac, M., Axhausen, K.W., 2019. Dynamic demand estimation for an AMoD system in Paris, in: 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, pp. 260–266. https://doi.org/10.1109/IVS.2019.8814051.
Chen, Kockelman, Hanna (b0030) 2016; 94
Hyland, Mahmassani (b0085) 2018; 92
Hyland, Mahmassani (b0090) 2017; 2653
Psaraftis, H.N., 1983. An Exact Algorithm for the Single Vehicle Many-to-Many Dial-A-Ride Problem with Time Windows. http://dx.doi.org/10.1287/trsc.17.3.351 17, 351–357.
Wilson, N.H.M., Colvin, N.J., 1977. Computer control of the Rochester dial-a-ride system, Technical Report R77-31. Cambridge, Massachusetts.
Simonetto, Monteil, Gambella (b0190) 2019; 101
Zachariah, J., Gao, J., Kornhauser, A., Mufti, T., 2014. Uncongested mobility for all: a proposal for an area wide autonomous taxi system in New Jersey. In: Transportation Research Board 93rd Annual Meeting.
Zhang, Guhathakurta, Fang, Zhang (b0235) 2015; 19
Mourad, Puchinger, Chu (b0145) 2019; 123
Ritzinger, Puchinger, Hartl (b0175) 2015; 54
Vosooghi, Puchinger, Jankovic, Vouillon (b0205) 2019; 107
Spieser, Treleaven, Zhang, Frazzoli, Pavone (b0195) 2014
Boesch (10.1016/j.tra.2020.02.017_b0020) 2016; 2542
Psaraftis (10.1016/j.tra.2020.02.017_b0165) 1980; 14
10.1016/j.tra.2020.02.017_b0095
Jung (10.1016/j.tra.2020.02.017_b0100) 2017; 11
Mourad (10.1016/j.tra.2020.02.017_b0145) 2019; 123
10.1016/j.tra.2020.02.017_b0215
Furuhata (10.1016/j.tra.2020.02.017_b0055) 2013; 57
Ritzinger (10.1016/j.tra.2020.02.017_b0175) 2015; 54
Hörl (10.1016/j.tra.2020.02.017_b0075) 2019; 102
Mahmassani (10.1016/j.tra.2020.02.017_bib236) 2016
Dandl (10.1016/j.tra.2020.02.017_b0035) 2019; 1–22
Hosni (10.1016/j.tra.2020.02.017_b0080) 2014; 70
Hyland (10.1016/j.tra.2020.02.017_b0090) 2017; 2653
10.1016/j.tra.2020.02.017_b0200
Fagnant (10.1016/j.tra.2020.02.017_b0040) 2016; 45
Zhang (10.1016/j.tra.2020.02.017_b0235) 2015; 19
Frei (10.1016/j.tra.2020.02.017_b0050) 2017; 76
Hyland (10.1016/j.tra.2020.02.017_b0085) 2018; 92
Shaheen (10.1016/j.tra.2020.02.017_bib237) 2016
Henao (10.1016/j.tra.2020.02.017_b0065) 2018; 1–22
Vosooghi (10.1016/j.tra.2020.02.017_b0205) 2019; 107
Berbeglia (10.1016/j.tra.2020.02.017_b0015) 2010; 202
Chen (10.1016/j.tra.2020.02.017_b0030) 2016; 94
Fagnant (10.1016/j.tra.2020.02.017_b0045) 2014; 40
10.1016/j.tra.2020.02.017_b0160
Spieser (10.1016/j.tra.2020.02.017_b0195) 2014
Ma (10.1016/j.tra.2020.02.017_b0130) 2015; 27
10.1016/j.tra.2020.02.017_b0110
Lee (10.1016/j.tra.2020.02.017_b0120) 2015; 81
10.1016/j.tra.2020.02.017_b0155
Agatz (10.1016/j.tra.2020.02.017_b0005) 2012; 223
Figliozzi (10.1016/j.tra.2020.02.017_bib238) 2004; 1882
10.1016/j.tra.2020.02.017_b0230
Alonso-Mora (10.1016/j.tra.2020.02.017_b0010) 2017; 114
Martinez (10.1016/j.tra.2020.02.017_b0140) 2017; 6
Pillac (10.1016/j.tra.2020.02.017_b0150) 2013; 225
Levin (10.1016/j.tra.2020.02.017_b0125) 2017; 64
10.1016/j.tra.2020.02.017_b0070
Wang (10.1016/j.tra.2020.02.017_b0210) 2015
10.1016/j.tra.2020.02.017_b0220
10.1016/j.tra.2020.02.017_b0025
Lavieri (10.1016/j.tra.2020.02.017_b0115) 2019; 124
Jung (10.1016/j.tra.2020.02.017_b0105) 2016; 31
10.1016/j.tra.2020.02.017_b0185
Simonetto (10.1016/j.tra.2020.02.017_b0190) 2019; 101
Psaraftis (10.1016/j.tra.2020.02.017_b0170) 2016; 67
10.1016/j.tra.2020.02.017_b0225
Santos (10.1016/j.tra.2020.02.017_b0180) 2015; 42
10.1016/j.tra.2020.02.017_b0060
Maciejewski (10.1016/j.tra.2020.02.017_b0135) 2016; 31
References_xml – volume: 2653
  start-page: 26
  year: 2017
  end-page: 34
  ident: b0090
  article-title: Taxonomy of shared autonomous vehicle fleet management problems to inform future transportation mobility
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– volume: 11
  start-page: 567
  year: 2017
  end-page: 581
  ident: b0100
  article-title: Dually sustainable urban mobility option: Shared-taxi operations with electric vehicles
  publication-title: Int. J. Sustain. Transp.
– volume: 64
  start-page: 373
  year: 2017
  end-page: 383
  ident: b0125
  article-title: A general framework for modeling shared autonomous vehicles with dynamic network-loading and dynamic ride-sharing application
  publication-title: Comput. Environ. Urban Syst.
– volume: 31
  start-page: 275
  year: 2016
  end-page: 291
  ident: b0105
  article-title: Dynamic shared-taxi dispatch algorithm with hybrid-simulated annealing
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 225
  start-page: 1
  year: 2013
  end-page: 11
  ident: b0150
  article-title: A review of dynamic vehicle routing problems
  publication-title: Eur. J. Oper. Res.
– volume: 76
  start-page: 71
  year: 2017
  end-page: 89
  ident: b0050
  article-title: Flexing service schedules: Assessing the potential for demand-adaptive hybrid transit via a stated preference approach
  publication-title: Transp. Res. Part C Emerg. Technol.
– year: 2016
  ident: bib236
  article-title: Technological innovation and the future of urban personal travel
  publication-title: MOBILITY 2050: A Vision for Transportation Infrastructure.
– year: 2015
  ident: b0210
  article-title: Optimal parking pricing in many-to-one park-and-ride network with parking space constraints
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– volume: 101
  start-page: 208
  year: 2019
  end-page: 232
  ident: b0190
  article-title: Real-time city-scale ridesharing via linear assignment problems
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 102
  start-page: 20
  year: 2019
  end-page: 31
  ident: b0075
  article-title: Fleet operational policies for automated mobility: A simulation assessment for Zurich
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 70
  start-page: 303
  year: 2014
  end-page: 318
  ident: b0080
  article-title: The shared-taxi problem: Formulation and solution methods
  publication-title: Transp. Res. Part B Methodol.
– volume: 92
  start-page: 278
  year: 2018
  end-page: 297
  ident: b0085
  article-title: Dynamic autonomous vehicle fleet operations: Optimization-based strategies to assign AVs to immediate traveler demand requests
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 27
  start-page: 1782
  year: 2015
  end-page: 1795
  ident: b0130
  article-title: Real-time city-scale taxi ridesharing
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: Internal Revenue Service, 2018. Standard Mileage Rates [WWW Document]. URL https://www.irs.gov/tax-professionals/standard-mileage-rates (accessed 10.16.18).
– volume: 45
  start-page: 143
  year: 2016
  end-page: 158
  ident: b0040
  article-title: Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin
  publication-title: Texas. Transportation (Amst)
– volume: 40
  start-page: 1
  year: 2014
  end-page: 13
  ident: b0045
  article-title: The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios
  publication-title: Transp. Res. Part C Emerg. Technol.
– reference: Hawkins, A., 2019. Ford’s on-demand bus service Chariot is going out of business [WWW Document]. The Verge. URL https://www.theverge.com/2019/1/10/18177378/chariot-out-of-business-shuttle-microtransit-ford (accessed 4.18.19).
– volume: 6
  start-page: 13
  year: 2017
  end-page: 27
  ident: b0140
  article-title: Assessing the impacts of deploying a shared self-driving urban mobility system: An agent-based model applied to the city of Lisbon, Portugal
  publication-title: Int. J. Transp. Sci. Technol.
– reference: Psaraftis, H.N., 1983. An Exact Algorithm for the Single Vehicle Many-to-Many Dial-A-Ride Problem with Time Windows. http://dx.doi.org/10.1287/trsc.17.3.351 17, 351–357.
– volume: 94
  start-page: 243
  year: 2016
  end-page: 254
  ident: b0030
  article-title: Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions
  publication-title: Transp. Res. Part A Policy Pract.
– reference: Wilson, N.H.M., Colvin, N.J., 1977. Computer control of the Rochester dial-a-ride system, Technical Report R77-31. Cambridge, Massachusetts.
– volume: 223
  start-page: 295
  year: 2012
  end-page: 303
  ident: b0005
  article-title: Optimization for dynamic ride-sharing: A review
  publication-title: Eur. J. Oper. Res.
– volume: 124
  start-page: 242
  year: 2019
  end-page: 261
  ident: b0115
  article-title: Modeling individuals’ willingness to share trips with strangers in an autonomous vehicle future
  publication-title: Transp. Res. Part A Policy Pract.
– reference: Poon, L., 2017. Bridj Closes after Losing Deal with Car Company [WWW Document]. CityLab. URL https://www.citylab.com/transportation/2017/05/bridj-collapses-after-3-years-microtransit-bus/524955/ (accessed 4.18.19).
– reference: Zhang, R., Rossi, F., Pavone, M., 2015a. Model Predictive Control of Autonomous Mobility-on-Demand Systems. https://doi.org/10.1109/ICRA.2016.7487272.
– volume: 123
  start-page: 323
  year: 2019
  end-page: 346
  ident: b0145
  article-title: A survey of models and algorithms for optimizing shared mobility
  publication-title: Transp. Res. Part B Methodol.
– volume: 202
  start-page: 8
  year: 2010
  end-page: 15
  ident: b0015
  article-title: Dynamic pickup and delivery problems
  publication-title: Eur. J. Oper. Res.
– volume: 67
  start-page: 3
  year: 2016
  end-page: 31
  ident: b0170
  article-title: Dynamic vehicle routing problems: Three decades and counting
  publication-title: Networks
– volume: 1–22
  year: 2018
  ident: b0065
  article-title: The impact of ride-hailing on vehicle miles traveled
  publication-title: Transportation (Amst).
– volume: 31
  start-page: 68
  year: 2016
  end-page: 77
  ident: b0135
  article-title: An assignment-based approach to efficient real-time city-scale taxi dispatching
  publication-title: IEEE Intell. Syst.
– volume: 1882
  start-page: 10
  year: 2004
  end-page: 18
  ident: bib238
  article-title: Competitive performance assessment of dynamic vehicle routing technologies using sequential auctions
  publication-title: Transportation Research Record
– reference: Zhang, R., Spieser, K., Frazzoli, E., Pavone, M., 2015b. Models, algorithms, and evaluation for autonomous mobility-on-demand systems. In: 2015 American Control Conference (ACC). IEEE, pp. 2573–2587. https://doi.org/10.1109/ACC.2015.7171122.
– volume: 81
  year: 2015
  ident: b0120
  article-title: Dynamic ridesharing: Is there a role for dedicated drivers?
  publication-title: Transp. Res. Part B Methodol.
– volume: 57
  start-page: 28
  year: 2013
  end-page: 46
  ident: b0055
  article-title: Ridesharing: The state-of-the-art and future directions
  publication-title: Transp. Res. Part B Methodol.
– reference: Horl, S., Balac, M., Axhausen, K.W., 2019. Dynamic demand estimation for an AMoD system in Paris, in: 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, pp. 260–266. https://doi.org/10.1109/IVS.2019.8814051.
– volume: 19
  start-page: 34
  year: 2015
  end-page: 45
  ident: b0235
  article-title: Exploring the impact of shared autonomous vehicles on urban parking demand: an agent-based simulation approach
  publication-title: Sustain. Cities Soc.
– volume: 107
  start-page: 15
  year: 2019
  end-page: 33
  ident: b0205
  article-title: Shared autonomous vehicle simulation and service design
  publication-title: Transp. Res. Part C Emerg. Technol.
– reference: Schaller, B., 2018. The New Automobility: Lyft, Uber and the Future of American Cities. Brooklyn, NY.
– reference: Zachariah, J., Gao, J., Kornhauser, A., Mufti, T., 2014. Uncongested mobility for all: a proposal for an area wide autonomous taxi system in New Jersey. In: Transportation Research Board 93rd Annual Meeting.
– start-page: 229
  year: 2014
  end-page: 245
  ident: b0195
  article-title: Toward a systematic approach to the design and evaluation of automated mobility-on-demand systems: a case study in Singapore
  publication-title: Road Vehicle Automation, Lecture Notes in Mobility
– year: 2016
  ident: bib237
  publication-title: Shared mobility: current practices and guiding principles. FHWA-HOP-16-022
– volume: 2542
  start-page: 111
  year: 2016
  end-page: 119
  ident: b0020
  article-title: Autonomous vehicle fleet sizes required to serve different levels of demand
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– reference: Campbell, H., 2017. 7 Reasons Why I Hate Uberpool and Lyftline [WWW Document]. Rideshare Guy A Blog Pod. Rideshare Drivers. URL https://therideshareguy.com/7-reasons-why-i-hate-uberpool-and-lyftline/ (accessed 7.1.19).
– volume: 1–22
  year: 2019
  ident: b0035
  article-title: Evaluating the impact of spatio-temporal demand forecast aggregation on the operational performance of shared autonomous mobility fleets
  publication-title: Transportation (Amst).
– reference: TLC, 2016. TLC Trip Record Data [WWW Document]. NYC Taxi&Limousine Comm. URL https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page (accessed 7.24.18).
– volume: 114
  start-page: 462
  year: 2017
  end-page: 467
  ident: b0010
  article-title: On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 42
  start-page: 6728
  year: 2015
  end-page: 6737
  ident: b0180
  article-title: Taxi and ride sharing: a dynamic dial-a-ride problem with money as an incentive
  publication-title: Expert Syst. Appl.
– volume: 14
  start-page: 130
  year: 1980
  end-page: 154
  ident: b0165
  article-title: A Dynamic programming solution to the single vehicle many-to-many immediate request dial-a-ride problem
  publication-title: Transp. Sci.
– volume: 54
  start-page: 215
  year: 2015
  end-page: 231
  ident: b0175
  article-title: A survey on dynamic and stochastic vehicle routing problems
  publication-title: Int. J. Prod. Res.
– reference: Koebler, J., 2016. Why Everyone Hates UberPOOL [WWW Document]. VICE. URL https://www.vice.com/en_us/article/4xaa5d/why-drivers-and-riders-hate-uberpool-and-lyft-line (accessed 7.1.19).
– year: 2016
  ident: 10.1016/j.tra.2020.02.017_bib236
  article-title: Technological innovation and the future of urban personal travel
– ident: 10.1016/j.tra.2020.02.017_b0070
  doi: 10.1109/IVS.2019.8814051
– ident: 10.1016/j.tra.2020.02.017_b0110
– volume: 64
  start-page: 373
  year: 2017
  ident: 10.1016/j.tra.2020.02.017_b0125
  article-title: A general framework for modeling shared autonomous vehicles with dynamic network-loading and dynamic ride-sharing application
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2017.04.006
– ident: 10.1016/j.tra.2020.02.017_b0095
– ident: 10.1016/j.tra.2020.02.017_b0185
– volume: 19
  start-page: 34
  year: 2015
  ident: 10.1016/j.tra.2020.02.017_b0235
  article-title: Exploring the impact of shared autonomous vehicles on urban parking demand: an agent-based simulation approach
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2015.07.006
– volume: 223
  start-page: 295
  year: 2012
  ident: 10.1016/j.tra.2020.02.017_b0005
  article-title: Optimization for dynamic ride-sharing: A review
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2012.05.028
– year: 2015
  ident: 10.1016/j.tra.2020.02.017_b0210
  article-title: Optimal parking pricing in many-to-one park-and-ride network with parking space constraints
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/2498-12
– volume: 225
  start-page: 1
  year: 2013
  ident: 10.1016/j.tra.2020.02.017_b0150
  article-title: A review of dynamic vehicle routing problems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2012.08.015
– volume: 31
  start-page: 275
  year: 2016
  ident: 10.1016/j.tra.2020.02.017_b0105
  article-title: Dynamic shared-taxi dispatch algorithm with hybrid-simulated annealing
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12157
– volume: 1–22
  year: 2018
  ident: 10.1016/j.tra.2020.02.017_b0065
  article-title: The impact of ride-hailing on vehicle miles traveled
  publication-title: Transportation (Amst).
– ident: 10.1016/j.tra.2020.02.017_b0225
  doi: 10.1109/ICRA.2016.7487272
– volume: 124
  start-page: 242
  year: 2019
  ident: 10.1016/j.tra.2020.02.017_b0115
  article-title: Modeling individuals’ willingness to share trips with strangers in an autonomous vehicle future
  publication-title: Transp. Res. Part A Policy Pract.
  doi: 10.1016/j.tra.2019.03.009
– volume: 1882
  start-page: 10
  year: 2004
  ident: 10.1016/j.tra.2020.02.017_bib238
  article-title: Competitive performance assessment of dynamic vehicle routing technologies using sequential auctions
  publication-title: Transportation Research Record
  doi: 10.3141/1882-02
– volume: 54
  start-page: 215
  year: 2015
  ident: 10.1016/j.tra.2020.02.017_b0175
  article-title: A survey on dynamic and stochastic vehicle routing problems
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2015.1043403
– volume: 67
  start-page: 3
  year: 2016
  ident: 10.1016/j.tra.2020.02.017_b0170
  article-title: Dynamic vehicle routing problems: Three decades and counting
  publication-title: Networks
  doi: 10.1002/net.21628
– volume: 92
  start-page: 278
  year: 2018
  ident: 10.1016/j.tra.2020.02.017_b0085
  article-title: Dynamic autonomous vehicle fleet operations: Optimization-based strategies to assign AVs to immediate traveler demand requests
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2018.05.003
– ident: 10.1016/j.tra.2020.02.017_b0200
– volume: 94
  start-page: 243
  year: 2016
  ident: 10.1016/j.tra.2020.02.017_b0030
  article-title: Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions
  publication-title: Transp. Res. Part A Policy Pract.
  doi: 10.1016/j.tra.2016.08.020
– volume: 2542
  start-page: 111
  year: 2016
  ident: 10.1016/j.tra.2020.02.017_b0020
  article-title: Autonomous vehicle fleet sizes required to serve different levels of demand
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/2542-13
– volume: 57
  start-page: 28
  year: 2013
  ident: 10.1016/j.tra.2020.02.017_b0055
  article-title: Ridesharing: The state-of-the-art and future directions
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2013.08.012
– volume: 11
  start-page: 567
  year: 2017
  ident: 10.1016/j.tra.2020.02.017_b0100
  article-title: Dually sustainable urban mobility option: Shared-taxi operations with electric vehicles
  publication-title: Int. J. Sustain. Transp.
  doi: 10.1080/15568318.2015.1092057
– volume: 45
  start-page: 143
  year: 2016
  ident: 10.1016/j.tra.2020.02.017_b0040
  article-title: Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin
  publication-title: Texas. Transportation (Amst)
– ident: 10.1016/j.tra.2020.02.017_b0215
– volume: 102
  start-page: 20
  year: 2019
  ident: 10.1016/j.tra.2020.02.017_b0075
  article-title: Fleet operational policies for automated mobility: A simulation assessment for Zurich
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2019.02.020
– volume: 1–22
  year: 2019
  ident: 10.1016/j.tra.2020.02.017_b0035
  article-title: Evaluating the impact of spatio-temporal demand forecast aggregation on the operational performance of shared autonomous mobility fleets
  publication-title: Transportation (Amst).
– volume: 114
  start-page: 462
  year: 2017
  ident: 10.1016/j.tra.2020.02.017_b0010
  article-title: On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1611675114
– ident: 10.1016/j.tra.2020.02.017_b0230
  doi: 10.1109/ACC.2015.7171122
– ident: 10.1016/j.tra.2020.02.017_b0160
  doi: 10.1287/trsc.17.3.351
– volume: 31
  start-page: 68
  year: 2016
  ident: 10.1016/j.tra.2020.02.017_b0135
  article-title: An assignment-based approach to efficient real-time city-scale taxi dispatching
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2016.2
– volume: 107
  start-page: 15
  year: 2019
  ident: 10.1016/j.tra.2020.02.017_b0205
  article-title: Shared autonomous vehicle simulation and service design
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2019.08.006
– volume: 40
  start-page: 1
  year: 2014
  ident: 10.1016/j.tra.2020.02.017_b0045
  article-title: The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2013.12.001
– ident: 10.1016/j.tra.2020.02.017_b0155
– ident: 10.1016/j.tra.2020.02.017_b0025
– volume: 123
  start-page: 323
  year: 2019
  ident: 10.1016/j.tra.2020.02.017_b0145
  article-title: A survey of models and algorithms for optimizing shared mobility
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2019.02.003
– ident: 10.1016/j.tra.2020.02.017_b0220
– year: 2016
  ident: 10.1016/j.tra.2020.02.017_bib237
– volume: 202
  start-page: 8
  year: 2010
  ident: 10.1016/j.tra.2020.02.017_b0015
  article-title: Dynamic pickup and delivery problems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2009.04.024
– volume: 76
  start-page: 71
  year: 2017
  ident: 10.1016/j.tra.2020.02.017_b0050
  article-title: Flexing service schedules: Assessing the potential for demand-adaptive hybrid transit via a stated preference approach
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2016.12.017
– volume: 14
  start-page: 130
  year: 1980
  ident: 10.1016/j.tra.2020.02.017_b0165
  article-title: A Dynamic programming solution to the single vehicle many-to-many immediate request dial-a-ride problem
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.14.2.130
– volume: 81
  year: 2015
  ident: 10.1016/j.tra.2020.02.017_b0120
  article-title: Dynamic ridesharing: Is there a role for dedicated drivers?
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2015.02.013
– volume: 42
  start-page: 6728
  year: 2015
  ident: 10.1016/j.tra.2020.02.017_b0180
  article-title: Taxi and ride sharing: a dynamic dial-a-ride problem with money as an incentive
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.060
– volume: 70
  start-page: 303
  year: 2014
  ident: 10.1016/j.tra.2020.02.017_b0080
  article-title: The shared-taxi problem: Formulation and solution methods
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2014.09.011
– volume: 2653
  start-page: 26
  year: 2017
  ident: 10.1016/j.tra.2020.02.017_b0090
  article-title: Taxonomy of shared autonomous vehicle fleet management problems to inform future transportation mobility
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/2653-04
– volume: 6
  start-page: 13
  year: 2017
  ident: 10.1016/j.tra.2020.02.017_b0140
  article-title: Assessing the impacts of deploying a shared self-driving urban mobility system: An agent-based model applied to the city of Lisbon, Portugal
  publication-title: Int. J. Transp. Sci. Technol.
  doi: 10.1016/j.ijtst.2017.05.005
– ident: 10.1016/j.tra.2020.02.017_b0060
– volume: 27
  start-page: 1782
  year: 2015
  ident: 10.1016/j.tra.2020.02.017_b0130
  article-title: Real-time city-scale taxi ridesharing
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2014.2334313
– volume: 101
  start-page: 208
  year: 2019
  ident: 10.1016/j.tra.2020.02.017_b0190
  article-title: Real-time city-scale ridesharing via linear assignment problems
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2019.01.019
– start-page: 229
  year: 2014
  ident: 10.1016/j.tra.2020.02.017_b0195
  article-title: Toward a systematic approach to the design and evaluation of automated mobility-on-demand systems: a case study in Singapore
  doi: 10.1007/978-3-319-05990-7_20
SSID ssj0004672
Score 2.588986
Snippet •Shared ride services with autonomous vehicles result in lower user waiting times.•Sharing also results in lower operational costs for operators than no...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 251
SubjectTerms Automated mobility-on-demand
Automated vehicles
Dynamic vehicle routing
Shared mobility
Shared rides
Simulation
Title Operational benefits and challenges of shared-ride automated mobility-on-demand services
URI https://dx.doi.org/10.1016/j.tra.2020.02.017
Volume 134
WOSCitedRecordID wos000524263600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-2375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004672
  issn: 0965-8564
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKhwQcEAwmBmzygROVK-d3cqzQ0JimgbSBeoscx1Y3rUmVZtN24l_n-VdqbYAAiUvapnUa-X12Pj-_9z2E3kmdfkkLGGlFROIkqQmwDEmSSFJ43Od1pHfPvx1nJyf5fF58GY2-u1yY68usafKbm2L1X00N58DYKnX2L8w9XBROwHswOhzB7HD8I8N_XonOefgqmMmk2hrQ2WuuboqO3lgvVOg56c5rMWFXfQvMFbjnstXBsrekbUgtltqrbmcTn8YOkugGPlYxaDEFQtr1k5mmplpw2OoQmEysAUK3LpzSD9rXbvHFEsi8KTM1OYTXyenU90uE1Atn0c4ylzCziU7SXsc0IXlihMunwsy5ABMSRqaAyjApWxennVatKK15Qoem1Mi9yd_4IS6mfacEpUKqxVhNZugdTe1TrXkDtwH0lSonwAO0FWZJkY_R1uzTwfzIS63V9b-G-3Yb4zpE8M4f_ZzaeHTl7Bl6atcZeGbw8RyNRLONHrk09PU2euIpUb5Acw812KEGg5XwBjW4ldhDDR5Qg--jBjvUvERfPx6cfTgktugG4TBqeyJiIYOMZ2qdEDJR1RUsygWlLJAFr7KCVTJnNKjU_nMUyDiRacqVamKU55LyMNpB46ZtxCuEWS54EsC3aSaAp7IKrhpwGbM6TSXL0l1EXX-V3CrSq8Iol6ULPbwo4XOpurikYQldvIveD01WRo7ldz-OnRFKyycNTywBMb9u9vrfmr1BjzfD4C0a992V2EMP-XV_vu72La5-AAIWmi8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operational+benefits+and+challenges+of+shared-ride+automated+mobility-on-demand+services&rft.jtitle=Transportation+research.+Part+A%2C+Policy+and+practice&rft.au=Hyland%2C+Michael&rft.au=Mahmassani%2C+Hani+S.&rft.date=2020-04-01&rft.pub=Elsevier+Ltd&rft.issn=0965-8564&rft.eissn=1879-2375&rft.volume=134&rft.spage=251&rft.epage=270&rft_id=info:doi/10.1016%2Fj.tra.2020.02.017&rft.externalDocID=S0965856419307888
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-8564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-8564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-8564&client=summon