Spectral Properties of Discontinuous Sturm–Liouville Problems with a Finite Number of Transmission Conditions
In this paper we investigate discontinuous two-point boundary value problems with eigenparameter in the boundary conditions and with transmission conditions at the finitely many points of discontinuity. A self-adjoint linear operator A is defined in a suitable Hilbert space H such that the eigenvalu...
Uloženo v:
| Vydáno v: | Mediterranean journal of mathematics Ročník 13; číslo 1; s. 153 - 170 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.02.2016
|
| Témata: | |
| ISSN: | 1660-5446, 1660-5454 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we investigate discontinuous two-point boundary value problems with eigenparameter in the boundary conditions and with transmission conditions at the finitely many points of discontinuity. A self-adjoint linear operator
A
is defined in a suitable Hilbert space
H
such that the eigenvalues of the considered problem coincide with those of
A
. We obtain asymptotic formulas for the eigenvalues and eigenfunctions. Also we show that the eigenelements of
A
are complete in
H
. |
|---|---|
| ISSN: | 1660-5446 1660-5454 |
| DOI: | 10.1007/s00009-014-0487-x |