Complexity of stochastic dual dynamic programming

Stochastic dual dynamic programming is a cutting plane type algorithm for multi-stage stochastic optimization originated about 30 years ago. In spite of its popularity in practice, there does not exist any analysis on the convergence rates of this method. In this paper, we first establish the number...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 191; číslo 2; s. 717 - 754
Hlavný autor: Lan, Guanghui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2022
Springer
Springer Nature B.V
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Stochastic dual dynamic programming is a cutting plane type algorithm for multi-stage stochastic optimization originated about 30 years ago. In spite of its popularity in practice, there does not exist any analysis on the convergence rates of this method. In this paper, we first establish the number of iterations, i.e., iteration complexity, required by a basic dual dynamic programming method for solving single-scenario multi-stage optimization problems, by introducing novel mathematical tools including the saturation of search points. We then refine these basic tools and establish the iteration complexity for an explorative dual dynamic programing method proposed herein and the classic stochastic dual dynamic programming method for solving more general multi-stage stochastic optimization problems under the standard stage-wise independence assumption. Our results indicate that the complexity of these methods mildly increases with the number of stages T , in fact linearly dependent on T for discounted problems. Therefore, they are efficient for strategic decision making which involves a large number of stages, but with a relatively small number of decision variables in each stage. Without explicitly discretizing the state and action spaces, these methods might also be pertinent to the related reinforcement learning and stochastic control areas.
AbstractList Stochastic dual dynamic programming is a cutting plane type algorithm for multi-stage stochastic optimization originated about 30 years ago. In spite of its popularity in practice, there does not exist any analysis on the convergence rates of this method. In this paper, we first establish the number of iterations, i.e., iteration complexity, required by a basic dual dynamic programming method for solving single-scenario multi-stage optimization problems, by introducing novel mathematical tools including the saturation of search points. We then refine these basic tools and establish the iteration complexity for an explorative dual dynamic programing method proposed herein and the classic stochastic dual dynamic programming method for solving more general multi-stage stochastic optimization problems under the standard stage-wise independence assumption. Our results indicate that the complexity of these methods mildly increases with the number of stages T, in fact linearly dependent on T for discounted problems. Therefore, they are efficient for strategic decision making which involves a large number of stages, but with a relatively small number of decision variables in each stage. Without explicitly discretizing the state and action spaces, these methods might also be pertinent to the related reinforcement learning and stochastic control areas.
Stochastic dual dynamic programming is a cutting plane type algorithm for multi-stage stochastic optimization originated about 30 years ago. In spite of its popularity in practice, there does not exist any analysis on the convergence rates of this method. In this paper, we first establish the number of iterations, i.e., iteration complexity, required by a basic dual dynamic programming method for solving single-scenario multi-stage optimization problems, by introducing novel mathematical tools including the saturation of search points. We then refine these basic tools and establish the iteration complexity for an explorative dual dynamic programing method proposed herein and the classic stochastic dual dynamic programming method for solving more general multi-stage stochastic optimization problems under the standard stage-wise independence assumption. Our results indicate that the complexity of these methods mildly increases with the number of stages T , in fact linearly dependent on T for discounted problems. Therefore, they are efficient for strategic decision making which involves a large number of stages, but with a relatively small number of decision variables in each stage. Without explicitly discretizing the state and action spaces, these methods might also be pertinent to the related reinforcement learning and stochastic control areas.
Audience Academic
Author Lan, Guanghui
Author_xml – sequence: 1
  givenname: Guanghui
  surname: Lan
  fullname: Lan, Guanghui
  email: george.lan@isye.gatech.edu
  organization: H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology
BookMark eNp9kM9LwzAUx4NMcJv-A54GnjvfS9M0PY7hLxh40XNIk7RmtM1MOnD_vdEKggfJIeTx_eS991mQ2eAHS8g1whoBytuIgFBmQCEDLHiZ4RmZI8t5xjjjMzIHoEVWcIQLsohxDwCYCzEnuPX9obMfbjytfLOKo9dvKo5Or8xRdStzGlSfHofg26D63g3tJTlvVBft1c-9JK_3dy_bx2z3_PC03ewynRdizCxqTbWwRhlj6oLTSiAtS84qpsqmLmptKNMoNLNCc80bRoWidWMEWqVrkS_JzfRv6v1-tHGUe38MQ2opKc9RVIyJIqXWU6pVnZVuaPwYlE7H2DR3ktS4VN-UkFesKhgkQEyADj7GYBup3ahG54cEuk4iyC-jcjIqk1H5bVRiQukf9BBcr8LpfyifoJjCQ2vD7xr_UJ_A2Yp1
CitedBy_id crossref_primary_10_1007_s00245_023_09977_1
crossref_primary_10_1137_22M1508005
crossref_primary_10_1287_opre_2020_0464
crossref_primary_10_1007_s12190_022_01722_1
crossref_primary_10_1137_23M1575093
crossref_primary_10_1007_s10107_024_02192_y
crossref_primary_10_1007_s10107_022_01798_4
crossref_primary_10_1109_JSYST_2023_3305511
Cites_doi 10.1007/BF01582895
10.1287/opre.33.5.989
10.2139/ssrn.3102988
10.1016/j.ejor.2010.08.007
10.1287/opre.2018.1835
10.1287/moor.2014.0664
10.1287/moor.16.1.119
10.1016/j.orl.2005.02.003
10.1039/C9RE00176J
10.1007/s10107-018-1249-5
10.1007/s10107-011-0442-6
10.1016/S0927-0507(03)10003-5
10.1137/1.9780898718751
10.1287/moor.16.3.650
10.1287/opre.2013.1175
10.1007/s10107-014-0787-8
10.1007/978-3-030-39568-1
10.1007/s10957-004-1842-z
10.1007/s10589-013-9584-1
10.1137/19M1258876
10.1007/978-1-4419-8853-9
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020
COPYRIGHT 2022 Springer
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020
– notice: COPYRIGHT 2022 Springer
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-020-01567-1
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 754
ExternalDocumentID A703949540
10_1007_s10107_020_01567_1
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-e1cc2c8edadddb5629812776494a7fb5bcd24c18c4e8c6c6f428a2bfd81eacb83
IEDL.DBID RSV
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000569585000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:40:13 EDT 2025
Sat Nov 29 10:25:33 EST 2025
Tue Nov 18 22:41:14 EST 2025
Sat Nov 29 03:34:02 EST 2025
Fri Feb 21 02:47:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 90C06
93A14
90C15
49M37
90C25
90C22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-e1cc2c8edadddb5629812776494a7fb5bcd24c18c4e8c6c6f428a2bfd81eacb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2631894485
PQPubID 25307
PageCount 38
ParticipantIDs proquest_journals_2631894485
gale_infotracacademiconefile_A703949540
crossref_citationtrail_10_1007_s10107_020_01567_1
crossref_primary_10_1007_s10107_020_01567_1
springer_journals_10_1007_s10107_020_01567_1
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Philpott, A., Wahid, F., Bonnans, F.: Midas: A mixed integer dynamic approximation scheme, 2016. PhD thesis, Inria Saclay Ile de France (2016)
Tyrrell RockafellarRWetsRoger J-BScenarios and policy aggregation in optimization under uncertaintyMath. Oper. Res.1991161119147110679310.1287/moor.16.1.119
Baucke, R., Downward, A., Zakeri, G.: A deterministic algorithm for solving multistage stochastic programming problems. Technical report, The University of Auckland, 70 Symonds Street, Grafton, Auckland, July 2017 (2017)
DonohueCJBirgeJRThe abridged nested decomposition method for multistage stochastic linear programs with relatively complete recourseAlgorithm. Oper. Res.2006112022763221148.90336
LinowskyKPhilpottABOn the convergence of sampling-based decomposition algorithms for multistage stochastic programsJ. Optim. Theory Appl.2005125349366213650010.1007/s10957-004-1842-z
PhilpottAMatosVdFinardiEOn solving multistage stochastic programs with coherent risk measuresOper. Res.201361957970310573910.1287/opre.2013.1175
ShapiroAOn complexity of multistage stochastic programsOper. Res. Lett.20063418218606610.1016/j.orl.2005.02.003
BirgeJRLouveauxFVIntroduction to Stochastic Programming1997New YorkSpringer0892.90142
HindsbergerMPhilpottABResa: a method for solving multistage stochastic linear programsJ. Appl. Oper. Res.201461215
KelleyJEThe cutting plane method for solving convex programsJ. SIAM196087037121185380098.12104
LanGFirst-Order and Stochastic Optimization Methods for Machine Learning2020BaselSpringer10.1007/978-3-030-39568-1
LeclèreVCarpentierPChancelierJPLenoirAPacaudFExact converging bounds for stochastic dual dynamic programming via fenchel dualitySIAM J. Optim.202030212231250409188410.1137/19M1258876
Shapiro, A., Nemirovski, A.: On complexity of stochastic programming problems. E-print available at: http://www.optimization-online.org (2004)
PereiraMPintoLMulti-stage stochastic optimization applied to energy planningMath. Program.1991521–3359375112617610.1007/BF01582895
GeorghiouATsoukalasAWiesemannWRobust dual dynamic programmingOper. Res.2019673813830396844110.1287/opre.2018.1835
GuiguesVSddp for some interstage dependent risk-averse problems and application to hydro-thermal planningComput. Optim. Appl.201457167203314650410.1007/s10589-013-9584-1
ZouJAhmedSSunXAStochastic dual dynamic integer programmingMath. Program.20191751–2461502394289710.1007/s10107-018-1249-5
BaoHZhouZKotsalisGLanGTongZLignin valorization process control under feedstock uncertainty through a dynamic stochastic programming approachReact. Chem. Eng.201941740174710.1039/C9RE00176J
BirgeJRDecomposition and partitioning methods for multistage stochastic linear programsOper. Res.1985335989100780691610.1287/opre.33.5.989
Guigues, V.: Inexact cuts in deterministic and stochastic dual dynamic programming applied to linear optimization problems (2018)
HigleJLSenSStochastic decomposition: an algorithm for two-stage linear programs with recourseMath. Oper. Res.199116650669112047510.1287/moor.16.3.650
Lan, G., Zhou, Z.: Dynamic stochastic approximation for multi-stage stochastic optimization. Manuscript, Georgia Institute of Technology, 2017. Mathematical Programming, under minor revision (2017)
ShapiroAAnalysis of stochastic dual dynamic programming methodEur. J. Oper. Res.20112096372274685410.1016/j.ejor.2010.08.007
GirardeauPLeclereVPhilpottABOn the convergence of decomposition methods for multistage stochastic convex programsMath. Oper. Res.201540130145332041710.1287/moor.2014.0664
LanGNemirovskiASShapiroAValidation analysis of mirror descent stochastic approximation methodMath. Program.2012134425458296131410.1007/s10107-011-0442-6
Ahmed, S., Cabral, F.G., Costa, B.F.P.D.: Stochastic lipschitz dynamic programming (2019)
KozmíkVMortonDPEvaluating policies in risk-averse multi-stage stochastic programmingMath. Program.20151521–2275300336948310.1007/s10107-014-0787-8
NesterovYEIntroductory Lectures on Convex Optimization: A Basic Course2004Norwell, MAKluwer Academic Publishers10.1007/978-1-4419-8853-9
RuszczyńskiARuszczyńskiAShapiroADecomposition methodsStochastic Programming2003AmsterdamElsevier14121110.1016/S0927-0507(03)10003-5
ShapiroADentchevaDRuszczyńskiALectures on Stochastic Programming: Modeling and Theory2009PhiladelphiaSIAM10.1137/1.9780898718751
V Kozmík (1567_CR14) 2015; 152
R Tyrrell Rockafellar (1567_CR24) 1991; 16
J Zou (1567_CR30) 2019; 175
A Shapiro (1567_CR28) 2009
G Lan (1567_CR15) 2020
A Philpott (1567_CR22) 2013; 61
JR Birge (1567_CR5) 1997
V Guigues (1567_CR9) 2014; 57
H Bao (1567_CR2) 2019; 4
1567_CR17
1567_CR1
1567_CR10
1567_CR3
JR Birge (1567_CR4) 1985; 33
JE Kelley (1567_CR13) 1960; 8
YE Nesterov (1567_CR20) 2004
M Pereira (1567_CR21) 1991; 52
CJ Donohue (1567_CR6) 2006; 1
A Georghiou (1567_CR7) 2019; 67
JL Higle (1567_CR11) 1991; 16
M Hindsberger (1567_CR12) 2014; 6
A Ruszczyński (1567_CR25) 2003
1567_CR29
A Shapiro (1567_CR27) 2011; 209
G Lan (1567_CR16) 2012; 134
A Shapiro (1567_CR26) 2006; 34
V Leclère (1567_CR18) 2020; 30
1567_CR23
K Linowsky (1567_CR19) 2005; 125
P Girardeau (1567_CR8) 2015; 40
References_xml – reference: BaoHZhouZKotsalisGLanGTongZLignin valorization process control under feedstock uncertainty through a dynamic stochastic programming approachReact. Chem. Eng.201941740174710.1039/C9RE00176J
– reference: PhilpottAMatosVdFinardiEOn solving multistage stochastic programs with coherent risk measuresOper. Res.201361957970310573910.1287/opre.2013.1175
– reference: HigleJLSenSStochastic decomposition: an algorithm for two-stage linear programs with recourseMath. Oper. Res.199116650669112047510.1287/moor.16.3.650
– reference: KelleyJEThe cutting plane method for solving convex programsJ. SIAM196087037121185380098.12104
– reference: GuiguesVSddp for some interstage dependent risk-averse problems and application to hydro-thermal planningComput. Optim. Appl.201457167203314650410.1007/s10589-013-9584-1
– reference: BirgeJRDecomposition and partitioning methods for multistage stochastic linear programsOper. Res.1985335989100780691610.1287/opre.33.5.989
– reference: KozmíkVMortonDPEvaluating policies in risk-averse multi-stage stochastic programmingMath. Program.20151521–2275300336948310.1007/s10107-014-0787-8
– reference: LanGNemirovskiASShapiroAValidation analysis of mirror descent stochastic approximation methodMath. Program.2012134425458296131410.1007/s10107-011-0442-6
– reference: Tyrrell RockafellarRWetsRoger J-BScenarios and policy aggregation in optimization under uncertaintyMath. Oper. Res.1991161119147110679310.1287/moor.16.1.119
– reference: HindsbergerMPhilpottABResa: a method for solving multistage stochastic linear programsJ. Appl. Oper. Res.201461215
– reference: GirardeauPLeclereVPhilpottABOn the convergence of decomposition methods for multistage stochastic convex programsMath. Oper. Res.201540130145332041710.1287/moor.2014.0664
– reference: LeclèreVCarpentierPChancelierJPLenoirAPacaudFExact converging bounds for stochastic dual dynamic programming via fenchel dualitySIAM J. Optim.202030212231250409188410.1137/19M1258876
– reference: ZouJAhmedSSunXAStochastic dual dynamic integer programmingMath. Program.20191751–2461502394289710.1007/s10107-018-1249-5
– reference: DonohueCJBirgeJRThe abridged nested decomposition method for multistage stochastic linear programs with relatively complete recourseAlgorithm. Oper. Res.2006112022763221148.90336
– reference: Philpott, A., Wahid, F., Bonnans, F.: Midas: A mixed integer dynamic approximation scheme, 2016. PhD thesis, Inria Saclay Ile de France (2016)
– reference: PereiraMPintoLMulti-stage stochastic optimization applied to energy planningMath. Program.1991521–3359375112617610.1007/BF01582895
– reference: Shapiro, A., Nemirovski, A.: On complexity of stochastic programming problems. E-print available at: http://www.optimization-online.org (2004)
– reference: Guigues, V.: Inexact cuts in deterministic and stochastic dual dynamic programming applied to linear optimization problems (2018)
– reference: ShapiroADentchevaDRuszczyńskiALectures on Stochastic Programming: Modeling and Theory2009PhiladelphiaSIAM10.1137/1.9780898718751
– reference: ShapiroAAnalysis of stochastic dual dynamic programming methodEur. J. Oper. Res.20112096372274685410.1016/j.ejor.2010.08.007
– reference: BirgeJRLouveauxFVIntroduction to Stochastic Programming1997New YorkSpringer0892.90142
– reference: LanGFirst-Order and Stochastic Optimization Methods for Machine Learning2020BaselSpringer10.1007/978-3-030-39568-1
– reference: Ahmed, S., Cabral, F.G., Costa, B.F.P.D.: Stochastic lipschitz dynamic programming (2019)
– reference: GeorghiouATsoukalasAWiesemannWRobust dual dynamic programmingOper. Res.2019673813830396844110.1287/opre.2018.1835
– reference: ShapiroAOn complexity of multistage stochastic programsOper. Res. Lett.20063418218606610.1016/j.orl.2005.02.003
– reference: LinowskyKPhilpottABOn the convergence of sampling-based decomposition algorithms for multistage stochastic programsJ. Optim. Theory Appl.2005125349366213650010.1007/s10957-004-1842-z
– reference: Lan, G., Zhou, Z.: Dynamic stochastic approximation for multi-stage stochastic optimization. Manuscript, Georgia Institute of Technology, 2017. Mathematical Programming, under minor revision (2017)
– reference: Baucke, R., Downward, A., Zakeri, G.: A deterministic algorithm for solving multistage stochastic programming problems. Technical report, The University of Auckland, 70 Symonds Street, Grafton, Auckland, July 2017 (2017)
– reference: NesterovYEIntroductory Lectures on Convex Optimization: A Basic Course2004Norwell, MAKluwer Academic Publishers10.1007/978-1-4419-8853-9
– reference: RuszczyńskiARuszczyńskiAShapiroADecomposition methodsStochastic Programming2003AmsterdamElsevier14121110.1016/S0927-0507(03)10003-5
– volume: 52
  start-page: 359
  issue: 1–3
  year: 1991
  ident: 1567_CR21
  publication-title: Math. Program.
  doi: 10.1007/BF01582895
– volume: 33
  start-page: 989
  issue: 5
  year: 1985
  ident: 1567_CR4
  publication-title: Oper. Res.
  doi: 10.1287/opre.33.5.989
– ident: 1567_CR10
  doi: 10.2139/ssrn.3102988
– ident: 1567_CR23
– volume-title: Introduction to Stochastic Programming
  year: 1997
  ident: 1567_CR5
– ident: 1567_CR29
– ident: 1567_CR1
– ident: 1567_CR3
– volume: 209
  start-page: 63
  year: 2011
  ident: 1567_CR27
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2010.08.007
– volume: 67
  start-page: 813
  issue: 3
  year: 2019
  ident: 1567_CR7
  publication-title: Oper. Res.
  doi: 10.1287/opre.2018.1835
– volume: 6
  start-page: 2
  issue: 1
  year: 2014
  ident: 1567_CR12
  publication-title: J. Appl. Oper. Res.
– volume: 40
  start-page: 130
  year: 2015
  ident: 1567_CR8
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2014.0664
– volume: 16
  start-page: 119
  issue: 1
  year: 1991
  ident: 1567_CR24
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.16.1.119
– volume: 34
  start-page: 1
  year: 2006
  ident: 1567_CR26
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2005.02.003
– volume: 4
  start-page: 1740
  year: 2019
  ident: 1567_CR2
  publication-title: React. Chem. Eng.
  doi: 10.1039/C9RE00176J
– volume: 175
  start-page: 461
  issue: 1–2
  year: 2019
  ident: 1567_CR30
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1249-5
– volume: 8
  start-page: 703
  year: 1960
  ident: 1567_CR13
  publication-title: J. SIAM
– volume: 134
  start-page: 425
  year: 2012
  ident: 1567_CR16
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0442-6
– start-page: 141
  volume-title: Stochastic Programming
  year: 2003
  ident: 1567_CR25
  doi: 10.1016/S0927-0507(03)10003-5
– volume-title: Lectures on Stochastic Programming: Modeling and Theory
  year: 2009
  ident: 1567_CR28
  doi: 10.1137/1.9780898718751
– volume: 16
  start-page: 650
  year: 1991
  ident: 1567_CR11
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.16.3.650
– volume: 61
  start-page: 957
  year: 2013
  ident: 1567_CR22
  publication-title: Oper. Res.
  doi: 10.1287/opre.2013.1175
– volume: 152
  start-page: 275
  issue: 1–2
  year: 2015
  ident: 1567_CR14
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0787-8
– volume-title: First-Order and Stochastic Optimization Methods for Machine Learning
  year: 2020
  ident: 1567_CR15
  doi: 10.1007/978-3-030-39568-1
– volume: 125
  start-page: 349
  year: 2005
  ident: 1567_CR19
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-004-1842-z
– volume: 57
  start-page: 167
  year: 2014
  ident: 1567_CR9
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-013-9584-1
– volume: 30
  start-page: 1223
  issue: 2
  year: 2020
  ident: 1567_CR18
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M1258876
– volume-title: Introductory Lectures on Convex Optimization: A Basic Course
  year: 2004
  ident: 1567_CR20
  doi: 10.1007/978-1-4419-8853-9
– volume: 1
  start-page: 20
  issue: 1
  year: 2006
  ident: 1567_CR6
  publication-title: Algorithm. Oper. Res.
– ident: 1567_CR17
SSID ssj0001388
Score 2.4270473
Snippet Stochastic dual dynamic programming is a cutting plane type algorithm for multi-stage stochastic optimization originated about 30 years ago. In spite of its...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 717
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Complexity
Decision making
Dynamic programming
Flying-machines
Full Length Paper
Iterative methods
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimal control
Optimization
Stochastic processes
Theoretical
Title Complexity of stochastic dual dynamic programming
URI https://link.springer.com/article/10.1007/s10107-020-01567-1
https://www.proquest.com/docview/2631894485
Volume 191
WOSCitedRecordID wos000569585000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EPejBt7i6Sg-CBy30kTbJcREXLy7ii72FZpqioLuyrYL_3kk33V2foMfSdFpmkm8mzcw3AIeZyMltYOpjwLXPyAH72gjjG50HvJBSFynWzSZ4ryf6fXnpisLKJtu9OZKskXqm2C20v9Uim0iV0PKmPc8CuTthGzZcXd9N8DeMhWgatdrowJXKfC_jgzv6DMpfTkdrp9Nd_d_nrsGKCzK9znhWrMOcGWzA8gz1IF1dTPhay00ILSxYaszqzRsWHgWEeJ9ZBmfPlmp5-bhtveeSuZ5Iwhbcds9uTs9910zBxzgRlW9CxAiFyQnQck1RjyQbcZ4yyTJe6ERjHjEMBTIjMMW0oH1JFumCTEnYrEW8DfOD4cDsgBcnsdQ6ZTkJZoHhWcwzLlGQ549FEGMLwkanCh3TuG148aimHMlWOYqUo2rlqLAFx5Nnnsc8G7-OPrKmUnYRkmTMXC0BfZ-ls1IdwjFJWz8WtKDdWFO51VmqKCUkk7QxTVpw0lhvevvn9-7-bfgeLEW2WqJO8m7DfDV6MfuwiK_VQzk6qGftO3cI5Ek
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kFdSDb7G6ag-CBy30kTbJUcRFcV3EF3sLzTRFQXfFrYL_3km33fUNeixNp2Um-WbSzHwDsJOKjNwGJh76XHuMHLCnjTCe0ZnPcyl1nmDZbIJ3OqLbledVUdigznavjyRLpH5X7BbY32qhTaSKaXnTnmeSkceyjPkXlzcj_A0iIepGrTY6qEplvpfxwR19BuUvp6Ol02nN_-9zF2CuCjLdg-GsWIQJ01uC2XfUg3R1NuJrHSxDYGHBUmMWr24_dykgxNvUMji7tlTLzYZt690qmeuBJKzAdevo6vDYq5opeBjFovBMgBiiMBkBWqYp6pFkI84TJlnKcx1rzEKGgUBmBCaY5LQvSUOdkykJm7WIVqHR6_fMGrhRHEmtE5aRYOYbnkY85RIFef5I-BE6ENQ6VVgxjduGF_dqzJFslaNIOapUjgoc2Bs98zjk2fh19K41lbKLkCRjWtUS0PdZOit1QDgmaevHfAeatTVVtToHKkwIySRtTGMH9mvrjW___N71vw3fhunjq7O2ap90TjdgJrSVE2XCdxMaxdOz2YQpfCnuBk9b5Qx-AzLe5y0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kiuiD3-J0ah8EH7SsH2mTPA51KOoQ_MC30FxTFHTKVgX_ey9du81PEB9L02u4S-4jufsdwE4iUjIbGLvoce0yMsCuNsK4Rqcez6TUWYxFswne6YjbW3kxVsVfZLtXV5KDmgaL0tTNm89p1hwrfPPtEVtgk6oi2uoU_0wym0hv4_XLm6Eu9kMhqqat1lMoy2a-p_HBNH1W0F9uSgsD1J7__9QXYK50Pp3WYLUswoTpLsHsGCQhPZ0PcVz7y-BbdWEhM_M35ylzyFHEu8QiOzu2hMtJB-3snTLJ65EorMB1--jq4Ngtmyy4GEYid42PGKAwKSm6VJM3JEl2nMdMsoRnOtKYBgx9gcwIjDHOKF5JAp2RiElnaxGuQq371DVr4IRRKLWOWUqEmWd4EvKESxTkEYTCC7EOfsVfhSUCuW2E8aBG2MmWOYqYowrmKL8Oe8Nvngf4G7-O3rViU3ZzEmVMyhoDmp-FuVIt0m-SQkLm1aFRSVaVu7avgpg0nKSANarDfiXJ0euf_7v-t-HbMH1x2FZnJ53TDZgJbEFFkQfegFreezGbMIWv-X2_t1Us5neQr_AR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexity+of+stochastic+dual+dynamic+programming&rft.jtitle=Mathematical+programming&rft.au=Lan%2C+Guanghui&rft.date=2022-02-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=191&rft.issue=2&rft.spage=717&rft.epage=754&rft_id=info:doi/10.1007%2Fs10107-020-01567-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_020_01567_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon