Multiple-source adaptation theory and algorithms

We present a general theoretical and algorithmic analysis of the problem of multiple-source adaptation, a key learning problem in applications. We derive new normalized solutions with strong theoretical guarantees for the cross-entropy loss and other similar losses. We also provide new guarantees th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annals of mathematics and artificial intelligence Ročník 89; číslo 3-4; s. 237 - 270
Hlavní autori: Zhang, Ningshan, Mohri, Mehryar, Hoffman, Judy
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.03.2021
Springer
Springer Nature B.V
Predmet:
ISSN:1012-2443, 1573-7470
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present a general theoretical and algorithmic analysis of the problem of multiple-source adaptation, a key learning problem in applications. We derive new normalized solutions with strong theoretical guarantees for the cross-entropy loss and other similar losses. We also provide new guarantees that hold in the case where the conditional probabilities for the source domains are distinct. We further present a novel analysis of the convergence properties of density estimation used in distribution-weighted combinations, and study their effects on the learning guarantees. Moreover, we give new algorithms for determining the distribution-weighted combination solution for the cross-entropy loss and other losses. We report the results of a series of experiments with real-world datasets. We find that our algorithm outperforms competing approaches by producing a single robust predictor that performs well on any target mixture distribution. Altogether, our theory, algorithms, and empirical results provide a full solution for the multiple-source adaptation problem with very practical benefits.
AbstractList We present a general theoretical and algorithmic analysis of the problem of multiple-source adaptation, a key learning problem in applications. We derive new normalized solutions with strong theoretical guarantees for the cross-entropy loss and other similar losses. We also provide new guarantees that hold in the case where the conditional probabilities for the source domains are distinct. We further present a novel analysis of the convergence properties of density estimation used in distribution-weighted combinations, and study their effects on the learning guarantees. Moreover, we give new algorithms for determining the distribution-weighted combination solution for the cross-entropy loss and other losses. We report the results of a series of experiments with real-world datasets. We find that our algorithm outperforms competing approaches by producing a single robust predictor that performs well on any target mixture distribution. Altogether, our theory, algorithms, and empirical results provide a full solution for the multiple-source adaptation problem with very practical benefits.
We present a general theoretical and algorithmic analysis of the problem of multiple-source adaptation, a key learning problem in applications. We derive new normalized solutions with strong theoretical guarantees for the cross-entropy loss and other similar losses. We also provide new guarantees that hold in the case where the conditional probabilities for the source domains are distinct. We further present a novel analysis of the convergence properties of density estimation used in distribution-weighted combinations, and study their effects on the learning guarantees. Moreover, we give new algorithms for determining the distribution-weighted combination solution for the cross-entropy loss and other losses. We report the results of a series of experiments with real-world datasets. We find that our algorithm outperforms competing approaches by producing a single robust predictor that performs well on any target mixture distribution. Altogether, our theory, algorithms, and empirical results provide a full solution for the multiple-source adaptation problem with very practical benefits. Keywords Domain adaptation * Multiple-source adaptation * Renyi divergence * Transfer learning * DC programming Mathematics Subject Classification (2010) 68T05
Audience Academic
Author Hoffman, Judy
Zhang, Ningshan
Mohri, Mehryar
Author_xml – sequence: 1
  givenname: Ningshan
  orcidid: 0000-0002-0175-8759
  surname: Zhang
  fullname: Zhang, Ningshan
  email: nzhang@stern.nyu.edu
  organization: New York University
– sequence: 2
  givenname: Mehryar
  surname: Mohri
  fullname: Mohri, Mehryar
  organization: Google Research and Courant Institute of Mathematical Sciences
– sequence: 3
  givenname: Judy
  surname: Hoffman
  fullname: Hoffman, Judy
  organization: School of Interactive Computing, Georgia Institute of Technology
BookMark eNp9kD1PwzAQhi1UJNrCH2CKxOxyZydxMlYVX1IRC8yWEzutqzQutjv032MIEhJD5cHW6X18d8-MTAY3GEJuERYIIO4DQi4YBQYUaoElhQsyxUJwKnIBk_QGZJTlOb8isxB2AFCXVTkl8Hrsoz30hgZ39K3JlFaHqKJ1Qxa3xvlTpgadqX7jvI3bfbgml53qg7n5vefk4_HhffVM129PL6vlmra8qCI1mBrn2jRGcMSuEYha8KY2teEtcM6UKZWoWVeqkjNoUHdMFRogzVgpzfic3I3_Hrz7PJoQ5S4NOKSWktVYMShQ8JRajKmN6o20Q-eiV2062uxtmxx1NtWXyUjSg1WRgGoEWu9C8KaTrR3XTaDtJYL8FipHoTIJlT9CJSSU_UMP3u6VP52H-AiFFB42xv-tcYb6ArQaiNA
CitedBy_id crossref_primary_10_1007_s11042_022_13456_0
crossref_primary_10_1109_TIFS_2023_3340094
crossref_primary_10_1007_s10472_022_09791_5
crossref_primary_10_1109_TKDE_2024_3377243
Cites_doi 10.1016/0885-064X(89)90017-4
10.1007/s10472-018-9613-y
10.1109/CVPR.2014.81
10.1023/A:1021765131316
10.1137/0115116
10.1109/CVPR.2017.316
10.1145/1390156.1390190
10.1016/j.tcs.2013.09.027
10.1007/978-3-642-15561-1_16
10.1145/1379759.1379761
10.1109/ICASSP.2013.6639212
10.1145/1772690.1772767
10.1609/aaai.v29i1.9542
10.1109/TIT.2014.2320500
10.7551/mitpress/7503.003.0022
10.1109/TNNLS.2011.2178556
10.1145/1553374.1553411
10.1073/pnas.61.4.1238
10.1109/ASRU.2011.6163899
10.1162/08997660360581958
10.1109/LSP.2014.2324759
10.2200/S00416ED1V01Y201204HLT016
10.1007/978-3-642-33718-5_12
10.1007/BF01456868
10.1162/NECO_a_00283
10.1145/1291233.1291276
10.7551/mitpress/7503.003.0080
10.1007/978-3-319-10578-9_41
10.1145/800057.808710
10.1007/978-3-642-33709-3_50
10.1007/BF01448847
10.1111/j.1751-5823.2002.tb00178.x
10.1162/COLI_a_00049
10.1145/2783258.2783368
10.1109/ICCV.2011.6126344
10.1007/BF01584975
10.1109/ICCV.2015.463
10.1109/TPAMI.2002.1008382
10.1109/CVPR.2011.5995347
10.1137/S1052623494274313
10.1609/aaai.v32i1.11767
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
COPYRIGHT 2021 Springer
Springer Nature Switzerland AG 2020.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: COPYRIGHT 2021 Springer
– notice: Springer Nature Switzerland AG 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10472-020-09716-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1573-7470
EndPage 270
ExternalDocumentID A716472185
10_1007_s10472_020_09716_0
GrantInformation_xml – fundername: Google
  funderid: https://doi.org/10.13039/100006785
– fundername: National Science Foundation
  grantid: CCF-1535987; IIS-1618662
  funderid: https://doi.org/10.13039/100000001
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c358t-e17474debe7311fb711d73b9e9e3c0332ae6a792f6a6320b1df2a5d002448ad23
IEDL.DBID RSV
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000585735300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1012-2443
IngestDate Wed Nov 05 14:59:53 EST 2025
Sat Nov 29 09:48:20 EST 2025
Tue Nov 18 20:02:14 EST 2025
Sat Nov 29 05:14:37 EST 2025
Fri Feb 21 02:48:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Domain adaptation
DC programming
Rényi divergence
68T05
Multiple-source adaptation
Transfer learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-e17474debe7311fb711d73b9e9e3c0332ae6a792f6a6320b1df2a5d002448ad23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0175-8759
PQID 2918205173
PQPubID 2043872
PageCount 34
ParticipantIDs proquest_journals_2918205173
gale_infotracacademiconefile_A716472185
crossref_citationtrail_10_1007_s10472_020_09716_0
crossref_primary_10_1007_s10472_020_09716_0
springer_journals_10_1007_s10472_020_09716_0
PublicationCentury 2000
PublicationDate 20210300
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210300
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Annals of mathematics and artificial intelligence
PublicationTitleAbbrev Ann Math Artif Intell
PublicationYear 2021
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: a deep convolutional activation feature for generic visual recognition. In: ICML, vol. 32, pp 647–655 (2014)
Long, M., Cao, Y., Wang, J., Jordan, M. I.: Learning transferable features with deep adaptation networks. In: ICML, vol. 37, pp 97–105 (2015)
Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: ICCV, pp 4068–4076 (2015)
Girshick, R. B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp 580–587 (2014)
CoverTMThomasJMElements of Information Theory2006New YorkWiley-Interscience1140.94001
Pan, S. J., Ni, X., Sun, J. -T., Yang, Q., Chen, Z.: Cross-domain sentiment classification via spectral feature alignment. In: Proceedings of the 19th International conference on World Wide Web, pp 751–760 (2010)
Dredze, M., Crammer, K., Pereira, F.: Confidence-weighted linear classification. In: ICML, vol. 307, pp 264–271 (2008)
Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: CVPR, pp 2066–2073 (2012)
Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. In: ICLR (2017)
VapnikVStatistical Learning Theory1998New YorkWiley0935.62007
Gong, B., Grauman, K., Sha, F.: Reshaping visual datasets for domain adaptation. In: NIPS, pp 1286–1294 (2013b)
Jiang, J., Zhai, C.: Instance weighting for domain adaptation in nlp. In: Annual Meeting of the Association of Computational Linguistics, pp 264–271 (2007)
Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp 547–561 (1961)
TaoPDAnLTHA DC optimization algorithm for solving the trust-region subproblemSIAM J. Optim.199882476505161853110.1137/S1052623494274313
DengJZhangZEybenFSchullerBAutoencoder-based unsupervised domain adaptation for speech emotion recognitionIEEE Signal Process. Lett.20142191068107210.1109/LSP.2014.2324759
Zhang, K., Gong, M., Schölkopf, B.: Multi-source domain adaptation: a causal view. In: AAAI, pp 3150–3157 (2015)
Gong, B., Grauman, K., Sha, F.: Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation. In: ICML, vol. 8, pp 222–230 (2013a)
ScarfHThe approximation of fixed points of a continuous mappingSIAM J. Appl. Math.19671551328134324248310.1137/0115116
KuhnHSimplicial approximations of fixed pointsProc. Natl Acad. Sci.19686141238124248801010.1073/pnas.61.4.1238
Valiant, L. G.: A theory of the learnable. In: Annual ACM Symposium on Theory of Computing, pp 436–445 (1984)
Ganin, Y., Lempitsky, V. S.: Unsupervised domain adaptation by backpropagation. In: ICML, vol. 37, pp 1180–1189 (2015)
DuanLXuDTsangIWDomain adaptation from multiple sources: a domain-dependent regularization approachIEEE Trans. Neural Netw. Learn. Syst.201223350451810.1109/TNNLS.2011.2178556
TaboadaMBrookeJTofiloskiMVollKStedeMLexicon-based methods for sentiment analysisComput. Linguist.201137226730710.1162/COLI_a_00049
HorstRThoaiNVDC programming: overviewJ. Optim. Theory Appl.19991031143171501610.1023/A:1021765131316
Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: ICML, pp 513–520 (2011)
Xu, Z., Li, W., Niu, L., Xu, D.: Exploiting low-rank structure from latent domains for domain generalization. In: ECCV, vol. 8691, pp 628–643 (2014)
Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: an unsupervised approach. In: ICCV, pp 999–1006. IEEE (2011)
Blanchard, G., Lee, G., Scott, C.: Generalizing from several related classification tasks to a new unlabeled sample. In: NIPS, pp 2178–2186 (2011)
Merrill, O. H.: Applications and Extensions of an Algorithm That Computes Fixed Points of Certain Upper Semi-continuous Point to Set Mappings. PhD thesis, Dept. of Industrial Engineering. University of Michigan (1972)
Liao, H.: Speaker adaptation of context dependent deep neural networks. In: ICASSP, pp 7947–7951 (2013)
CrammerKKearnsMJWortmanJLearning from multiple sourcesJ. Mach. Learn. Res.200891757177424388231225.68168
CortesCGreenbergSMohriMRelative deviation learning bounds and generalization with unbounded loss functionsAnn. Math. Artif. Intell.20198514570390194610.1007/s10472-018-9613-y
ChenXDengXMatching algorithmic bounds for finding a brouwer fixed pointJ. ACM200855313:113:26244491110.1145/1379759.1379761
Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: ICML, vol. 28, pp 10–18 (2013)
Seide, F., Li, G., Chen, X., Yu, D.: Feature engineering in context-dependent deep neural networks for conversational speech transcription. In: 2011 IEEE Workshop on Automatic Speech Recognition & Understanding, pp 24–29. IEEE (2011)
Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: learning bounds and algorithms. In: COLT (2009b)
Roark, B., Sproat, R., Allauzen, C., Riley, M., Sorensen, J., Tai, T.: The opengrm open-source finite-state grammar software libraries. In: ACL (System Demonstrations), pp 61–66 (2012)
Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: ECCV, vol. 6314, pp 213–226 (2010)
von NeumannJZur theorie der gesellschaftsspieleMath. Ann.19281001295320151248610.1007/BF01448847
Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Conference on Computer Vision and Pattern Recognition, pp 7167–7176 (2017)
MartínezAMRecognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per classIEEE Trans. Pattern Anal. Mach. Intell.200224674876310.1109/TPAMI.2002.1008382
ArndtCInformation Measures: Information and its Description in Science and Engineering. Signals and Communication Technology2004New YorkSpringer
Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp 1106–1114 (2012)
BrouwerLEJÜber eineindeutige, stetige Transformationen von Flächen in sichMath. Ann.1910692176180151158210.1007/BF01456868Springer
Huang, J., Smola, A. J., Gretton, A., Borgwardt, K. M., Schölkopf, B.: Correcting sample selection bias by unlabeled data. In: NIPS, pp 601–608 (2006)
Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. In: NIPS, pp 137–144 (2006)
Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: ACL, pp 440–447 (2007)
CortesCMohriMDomain adaptation and sample bias correction theory and algorithm for regressionTheor. Comput. Sci.2014519103126314799110.1016/j.tcs.2013.09.027
Khosla, A., Zhou, T., Malisiewicz, T., Efros, A. A., Torralba, A.: Undoing the damage of dataset bias. In: ECCV, vol. 7572, pp 158–171 (2012)
TaoPDAnLTHConvex analysis approach to DC programming: theory, algorithms and applicationsActa Math. Vietnam.199722128935514797510895.90152
Hoffman, J., Mohri, M., Zhang, N.: Algorithms and theory for multiple-source adaptation. In: Advances in Neural Information Processing Systems, pp 8246–8256 (2018)
Yang, J., Yan, R., Hauptmann, A. G.: Cross-domain video concept detection using adaptive svms. In: ACM Multimedia, pp 188–197 (2007)
Mansour, Y., Mohri, M., Rostamizadeh, A.: Multiple source adaptation and the Rényi divergence. In: UAI, pp 367–374 (2009a)
Hoffman, J., Kulis, B., Darrell, T., Saenko, K.: Discovering latent domains for multisource domain adaptation. In: ECCV, vol. 7573, pp 702–715 (2012)
HirschMDPapadimitriouCHVavasisSAExponential lower bounds for finding brouwer fix pointsJ. Complex.19895437941610.1016/0885-064X(89)90017-4
Duan, L., Tsang, I. W., Xu, D., Chua, T.: Domain adaptation from multiple sources via auxiliary classifiers. In: ICML, vol. 382, pp 289–296 (2009)
YuilleALRangarajanAThe concave-convex procedureNeural Comput.200315491593610.1162/08997660360581958
Cortes, C., Mohri, M., Muñoz Medina, A.: Adaptation algorithm and theory based on generalized discrepancy. In: KDD, pp 169–178 (2015)
EavesBCHomotopies for computation of fixed pointsMath. Program.19723112230395310.1007/BF01584975
Van ErvenTHarremosPRényi divergence and kullback-leibler divergenceIEEE Trans. Inf. Theory20146073797382010.1109/TIT.2014.2320500
Hoffman, J., Rodner, E., Donahue, J., Saenko, K., Darrell, T.: Efficient learning of domain-invariant image representations. In: ICLR (2013)
LiuBSentiment analysis and opinion miningSynth. Lect. Hum. Lang. Technol.201251116710.2200/S00416ED1V01Y201204HLT016
GibbsALSuFEOn choosing and bounding probability metricsInt. Stat. Rev./Rev. Int. Stat.200270341943510.1111/j.1751-5823.2002.tb00178.x
Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation with multiple sources. In: NIPS, pp 1041–1048 (2008)
SriperumbudurBKLanckrietGRGA proof of convergence of the concave-convex procedure using Zangwill’s theoryNeural Comput.201224613911407296207210.1162/NECO_a_00283
Daumé, H III.: Frustratingly easy domain adaptation. In: Annual Meeting of the Association for Computational Linguistics (2007)
Pei, Z., Cao, Z., Long, M., Wang, J.: Multi-adversarial domain adaptation. In: AAAI, pp 3934–3941 (2018)
Torralba, A., Efros, A. A.: Unbiased look at dataset bias. In: CVPR, pp 1521–1528 (2011)
9716_CR47
9716_CR48
9716_CR45
9716_CR46
9716_CR44
9716_CR41
9716_CR42
9716_CR40
L Duan (9716_CR17) 2012; 23
MD Hirsch (9716_CR27) 1989; 5
9716_CR49
H Kuhn (9716_CR36) 1968; 61
9716_CR37
9716_CR34
9716_CR35
9716_CR32
9716_CR33
TM Cover (9716_CR10) 2006
9716_CR30
PD Tao (9716_CR57) 1998; 8
PD Tao (9716_CR56) 1997; 22
X Chen (9716_CR6) 2008; 55
J Deng (9716_CR13) 2014; 21
C Cortes (9716_CR9) 2019; 85
V Vapnik (9716_CR63) 1998
9716_CR39
9716_CR25
9716_CR26
9716_CR23
9716_CR24
9716_CR68
9716_CR21
9716_CR65
9716_CR22
9716_CR66
9716_CR61
H Scarf (9716_CR51) 1967; 15
M Taboada (9716_CR54) 2011; 37
C Arndt (9716_CR1) 2004
9716_CR60
K Crammer (9716_CR11) 2008; 9
BC Eaves (9716_CR18) 1972; 3
C Cortes (9716_CR7) 2014; 519
9716_CR29
9716_CR28
9716_CR14
AM Martínez (9716_CR43) 2002; 24
9716_CR58
9716_CR15
9716_CR59
9716_CR12
B Liu (9716_CR38) 2012; 5
9716_CR55
9716_CR52
9716_CR50
R Horst (9716_CR31) 1999; 103
J von Neumann (9716_CR64) 1928; 100
9716_CR8
9716_CR3
AL Gibbs (9716_CR20) 2002; 70
9716_CR4
BK Sriperumbudur (9716_CR53) 2012; 24
LEJ Brouwer (9716_CR5) 1910; 69
9716_CR2
T Van Erven (9716_CR62) 2014; 60
9716_CR19
9716_CR16
AL Yuille (9716_CR67) 2003; 15
References_xml – reference: Gong, B., Grauman, K., Sha, F.: Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation. In: ICML, vol. 8, pp 222–230 (2013a)
– reference: Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: CVPR, pp 2066–2073 (2012)
– reference: TaoPDAnLTHConvex analysis approach to DC programming: theory, algorithms and applicationsActa Math. Vietnam.199722128935514797510895.90152
– reference: Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation with multiple sources. In: NIPS, pp 1041–1048 (2008)
– reference: Pan, S. J., Ni, X., Sun, J. -T., Yang, Q., Chen, Z.: Cross-domain sentiment classification via spectral feature alignment. In: Proceedings of the 19th International conference on World Wide Web, pp 751–760 (2010)
– reference: Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: ICML, vol. 28, pp 10–18 (2013)
– reference: Ganin, Y., Lempitsky, V. S.: Unsupervised domain adaptation by backpropagation. In: ICML, vol. 37, pp 1180–1189 (2015)
– reference: HirschMDPapadimitriouCHVavasisSAExponential lower bounds for finding brouwer fix pointsJ. Complex.19895437941610.1016/0885-064X(89)90017-4
– reference: von NeumannJZur theorie der gesellschaftsspieleMath. Ann.19281001295320151248610.1007/BF01448847
– reference: Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. In: NIPS, pp 137–144 (2006)
– reference: Hoffman, J., Rodner, E., Donahue, J., Saenko, K., Darrell, T.: Efficient learning of domain-invariant image representations. In: ICLR (2013)
– reference: Cortes, C., Mohri, M., Muñoz Medina, A.: Adaptation algorithm and theory based on generalized discrepancy. In: KDD, pp 169–178 (2015)
– reference: Torralba, A., Efros, A. A.: Unbiased look at dataset bias. In: CVPR, pp 1521–1528 (2011)
– reference: Gong, B., Grauman, K., Sha, F.: Reshaping visual datasets for domain adaptation. In: NIPS, pp 1286–1294 (2013b)
– reference: Blanchard, G., Lee, G., Scott, C.: Generalizing from several related classification tasks to a new unlabeled sample. In: NIPS, pp 2178–2186 (2011)
– reference: Seide, F., Li, G., Chen, X., Yu, D.: Feature engineering in context-dependent deep neural networks for conversational speech transcription. In: 2011 IEEE Workshop on Automatic Speech Recognition & Understanding, pp 24–29. IEEE (2011)
– reference: Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. In: ICLR (2017)
– reference: DuanLXuDTsangIWDomain adaptation from multiple sources: a domain-dependent regularization approachIEEE Trans. Neural Netw. Learn. Syst.201223350451810.1109/TNNLS.2011.2178556
– reference: CrammerKKearnsMJWortmanJLearning from multiple sourcesJ. Mach. Learn. Res.200891757177424388231225.68168
– reference: YuilleALRangarajanAThe concave-convex procedureNeural Comput.200315491593610.1162/08997660360581958
– reference: Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: ECCV, vol. 6314, pp 213–226 (2010)
– reference: SriperumbudurBKLanckrietGRGA proof of convergence of the concave-convex procedure using Zangwill’s theoryNeural Comput.201224613911407296207210.1162/NECO_a_00283
– reference: Valiant, L. G.: A theory of the learnable. In: Annual ACM Symposium on Theory of Computing, pp 436–445 (1984)
– reference: CortesCGreenbergSMohriMRelative deviation learning bounds and generalization with unbounded loss functionsAnn. Math. Artif. Intell.20198514570390194610.1007/s10472-018-9613-y
– reference: CoverTMThomasJMElements of Information Theory2006New YorkWiley-Interscience1140.94001
– reference: TaboadaMBrookeJTofiloskiMVollKStedeMLexicon-based methods for sentiment analysisComput. Linguist.201137226730710.1162/COLI_a_00049
– reference: BrouwerLEJÜber eineindeutige, stetige Transformationen von Flächen in sichMath. Ann.1910692176180151158210.1007/BF01456868Springer
– reference: Girshick, R. B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp 580–587 (2014)
– reference: LiuBSentiment analysis and opinion miningSynth. Lect. Hum. Lang. Technol.201251116710.2200/S00416ED1V01Y201204HLT016
– reference: Dredze, M., Crammer, K., Pereira, F.: Confidence-weighted linear classification. In: ICML, vol. 307, pp 264–271 (2008)
– reference: ChenXDengXMatching algorithmic bounds for finding a brouwer fixed pointJ. ACM200855313:113:26244491110.1145/1379759.1379761
– reference: KuhnHSimplicial approximations of fixed pointsProc. Natl Acad. Sci.19686141238124248801010.1073/pnas.61.4.1238
– reference: Long, M., Cao, Y., Wang, J., Jordan, M. I.: Learning transferable features with deep adaptation networks. In: ICML, vol. 37, pp 97–105 (2015)
– reference: Duan, L., Tsang, I. W., Xu, D., Chua, T.: Domain adaptation from multiple sources via auxiliary classifiers. In: ICML, vol. 382, pp 289–296 (2009)
– reference: Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: an unsupervised approach. In: ICCV, pp 999–1006. IEEE (2011)
– reference: ScarfHThe approximation of fixed points of a continuous mappingSIAM J. Appl. Math.19671551328134324248310.1137/0115116
– reference: Zhang, K., Gong, M., Schölkopf, B.: Multi-source domain adaptation: a causal view. In: AAAI, pp 3150–3157 (2015)
– reference: Roark, B., Sproat, R., Allauzen, C., Riley, M., Sorensen, J., Tai, T.: The opengrm open-source finite-state grammar software libraries. In: ACL (System Demonstrations), pp 61–66 (2012)
– reference: Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: ICCV, pp 4068–4076 (2015)
– reference: MartínezAMRecognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per classIEEE Trans. Pattern Anal. Mach. Intell.200224674876310.1109/TPAMI.2002.1008382
– reference: Merrill, O. H.: Applications and Extensions of an Algorithm That Computes Fixed Points of Certain Upper Semi-continuous Point to Set Mappings. PhD thesis, Dept. of Industrial Engineering. University of Michigan (1972)
– reference: HorstRThoaiNVDC programming: overviewJ. Optim. Theory Appl.19991031143171501610.1023/A:1021765131316
– reference: Van ErvenTHarremosPRényi divergence and kullback-leibler divergenceIEEE Trans. Inf. Theory20146073797382010.1109/TIT.2014.2320500
– reference: Xu, Z., Li, W., Niu, L., Xu, D.: Exploiting low-rank structure from latent domains for domain generalization. In: ECCV, vol. 8691, pp 628–643 (2014)
– reference: TaoPDAnLTHA DC optimization algorithm for solving the trust-region subproblemSIAM J. Optim.199882476505161853110.1137/S1052623494274313
– reference: Yang, J., Yan, R., Hauptmann, A. G.: Cross-domain video concept detection using adaptive svms. In: ACM Multimedia, pp 188–197 (2007)
– reference: Jiang, J., Zhai, C.: Instance weighting for domain adaptation in nlp. In: Annual Meeting of the Association of Computational Linguistics, pp 264–271 (2007)
– reference: Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: ICML, pp 513–520 (2011)
– reference: Pei, Z., Cao, Z., Long, M., Wang, J.: Multi-adversarial domain adaptation. In: AAAI, pp 3934–3941 (2018)
– reference: Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: a deep convolutional activation feature for generic visual recognition. In: ICML, vol. 32, pp 647–655 (2014)
– reference: Hoffman, J., Kulis, B., Darrell, T., Saenko, K.: Discovering latent domains for multisource domain adaptation. In: ECCV, vol. 7573, pp 702–715 (2012)
– reference: GibbsALSuFEOn choosing and bounding probability metricsInt. Stat. Rev./Rev. Int. Stat.200270341943510.1111/j.1751-5823.2002.tb00178.x
– reference: Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: ACL, pp 440–447 (2007)
– reference: Hoffman, J., Mohri, M., Zhang, N.: Algorithms and theory for multiple-source adaptation. In: Advances in Neural Information Processing Systems, pp 8246–8256 (2018)
– reference: Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Conference on Computer Vision and Pattern Recognition, pp 7167–7176 (2017)
– reference: Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: learning bounds and algorithms. In: COLT (2009b)
– reference: Khosla, A., Zhou, T., Malisiewicz, T., Efros, A. A., Torralba, A.: Undoing the damage of dataset bias. In: ECCV, vol. 7572, pp 158–171 (2012)
– reference: DengJZhangZEybenFSchullerBAutoencoder-based unsupervised domain adaptation for speech emotion recognitionIEEE Signal Process. Lett.20142191068107210.1109/LSP.2014.2324759
– reference: Huang, J., Smola, A. J., Gretton, A., Borgwardt, K. M., Schölkopf, B.: Correcting sample selection bias by unlabeled data. In: NIPS, pp 601–608 (2006)
– reference: Liao, H.: Speaker adaptation of context dependent deep neural networks. In: ICASSP, pp 7947–7951 (2013)
– reference: Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp 547–561 (1961)
– reference: CortesCMohriMDomain adaptation and sample bias correction theory and algorithm for regressionTheor. Comput. Sci.2014519103126314799110.1016/j.tcs.2013.09.027
– reference: Mansour, Y., Mohri, M., Rostamizadeh, A.: Multiple source adaptation and the Rényi divergence. In: UAI, pp 367–374 (2009a)
– reference: Daumé, H III.: Frustratingly easy domain adaptation. In: Annual Meeting of the Association for Computational Linguistics (2007)
– reference: VapnikVStatistical Learning Theory1998New YorkWiley0935.62007
– reference: ArndtCInformation Measures: Information and its Description in Science and Engineering. Signals and Communication Technology2004New YorkSpringer
– reference: EavesBCHomotopies for computation of fixed pointsMath. Program.19723112230395310.1007/BF01584975
– reference: Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp 1106–1114 (2012)
– volume: 5
  start-page: 379
  issue: 4
  year: 1989
  ident: 9716_CR27
  publication-title: J. Complex.
  doi: 10.1016/0885-064X(89)90017-4
– volume: 85
  start-page: 45
  issue: 1
  year: 2019
  ident: 9716_CR9
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/s10472-018-9613-y
– ident: 9716_CR21
  doi: 10.1109/CVPR.2014.81
– volume: 103
  start-page: 1
  issue: 1
  year: 1999
  ident: 9716_CR31
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021765131316
– volume: 9
  start-page: 1757
  year: 2008
  ident: 9716_CR11
  publication-title: J. Mach. Learn. Res.
– ident: 9716_CR40
– ident: 9716_CR25
– ident: 9716_CR44
– ident: 9716_CR48
– volume: 15
  start-page: 1328
  issue: 5
  year: 1967
  ident: 9716_CR51
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0115116
– ident: 9716_CR29
– ident: 9716_CR60
  doi: 10.1109/CVPR.2017.316
– ident: 9716_CR35
– ident: 9716_CR4
– ident: 9716_CR12
– ident: 9716_CR15
  doi: 10.1145/1390156.1390190
– volume: 519
  start-page: 103
  year: 2014
  ident: 9716_CR7
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2013.09.027
– ident: 9716_CR50
  doi: 10.1007/978-3-642-15561-1_16
– volume: 55
  start-page: 13:1
  issue: 3
  year: 2008
  ident: 9716_CR6
  publication-title: J. ACM
  doi: 10.1145/1379759.1379761
– ident: 9716_CR37
  doi: 10.1109/ICASSP.2013.6639212
– ident: 9716_CR39
– ident: 9716_CR24
– ident: 9716_CR46
  doi: 10.1145/1772690.1772767
– volume-title: Information Measures: Information and its Description in Science and Engineering. Signals and Communication Technology
  year: 2004
  ident: 9716_CR1
– ident: 9716_CR41
– ident: 9716_CR68
  doi: 10.1609/aaai.v29i1.9542
– volume: 60
  start-page: 3797
  issue: 7
  year: 2014
  ident: 9716_CR62
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2014.2320500
– ident: 9716_CR49
– ident: 9716_CR2
  doi: 10.7551/mitpress/7503.003.0022
– volume: 23
  start-page: 504
  issue: 3
  year: 2012
  ident: 9716_CR17
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2011.2178556
– ident: 9716_CR45
– ident: 9716_CR16
  doi: 10.1145/1553374.1553411
– volume: 22
  start-page: 289
  issue: 1
  year: 1997
  ident: 9716_CR56
  publication-title: Acta Math. Vietnam.
– volume-title: Elements of Information Theory
  year: 2006
  ident: 9716_CR10
– ident: 9716_CR30
– ident: 9716_CR55
– volume: 61
  start-page: 1238
  issue: 4
  year: 1968
  ident: 9716_CR36
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.61.4.1238
– ident: 9716_CR23
– ident: 9716_CR52
  doi: 10.1109/ASRU.2011.6163899
– ident: 9716_CR42
– volume: 15
  start-page: 915
  issue: 4
  year: 2003
  ident: 9716_CR67
  publication-title: Neural Comput.
  doi: 10.1162/08997660360581958
– volume: 21
  start-page: 1068
  issue: 9
  year: 2014
  ident: 9716_CR13
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2324759
– volume: 5
  start-page: 1
  issue: 1
  year: 2012
  ident: 9716_CR38
  publication-title: Synth. Lect. Hum. Lang. Technol.
  doi: 10.2200/S00416ED1V01Y201204HLT016
– ident: 9716_CR33
– ident: 9716_CR34
  doi: 10.1007/978-3-642-33718-5_12
– volume: 69
  start-page: 176
  issue: 2
  year: 1910
  ident: 9716_CR5
  publication-title: Math. Ann.
  doi: 10.1007/BF01456868
– volume: 24
  start-page: 1391
  issue: 6
  year: 2012
  ident: 9716_CR53
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00283
– ident: 9716_CR66
  doi: 10.1145/1291233.1291276
– ident: 9716_CR14
– ident: 9716_CR32
  doi: 10.7551/mitpress/7503.003.0080
– ident: 9716_CR65
  doi: 10.1007/978-3-319-10578-9_41
– ident: 9716_CR22
– volume-title: Statistical Learning Theory
  year: 1998
  ident: 9716_CR63
– ident: 9716_CR61
  doi: 10.1145/800057.808710
– ident: 9716_CR28
  doi: 10.1007/978-3-642-33709-3_50
– volume: 100
  start-page: 295
  issue: 1
  year: 1928
  ident: 9716_CR64
  publication-title: Math. Ann.
  doi: 10.1007/BF01448847
– volume: 70
  start-page: 419
  issue: 3
  year: 2002
  ident: 9716_CR20
  publication-title: Int. Stat. Rev./Rev. Int. Stat.
  doi: 10.1111/j.1751-5823.2002.tb00178.x
– volume: 37
  start-page: 267
  issue: 2
  year: 2011
  ident: 9716_CR54
  publication-title: Comput. Linguist.
  doi: 10.1162/COLI_a_00049
– ident: 9716_CR8
  doi: 10.1145/2783258.2783368
– ident: 9716_CR3
– ident: 9716_CR26
  doi: 10.1109/ICCV.2011.6126344
– volume: 3
  start-page: 1
  issue: 1
  year: 1972
  ident: 9716_CR18
  publication-title: Math. Program.
  doi: 10.1007/BF01584975
– ident: 9716_CR59
  doi: 10.1109/ICCV.2015.463
– volume: 24
  start-page: 748
  issue: 6
  year: 2002
  ident: 9716_CR43
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1008382
– ident: 9716_CR58
  doi: 10.1109/CVPR.2011.5995347
– ident: 9716_CR19
– volume: 8
  start-page: 476
  issue: 2
  year: 1998
  ident: 9716_CR57
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494274313
– ident: 9716_CR47
  doi: 10.1609/aaai.v32i1.11767
SSID ssj0009686
Score 2.3189614
Snippet We present a general theoretical and algorithmic analysis of the problem of multiple-source adaptation, a key learning problem in applications. We derive new...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 237
SubjectTerms Adaptation
Algorithms
Analysis
Artificial Intelligence
Complex Systems
Computational linguistics
Computer Science
Empirical analysis
Entropy (Information theory)
Language processing
Mathematics
Natural language interfaces
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58HfRgfWK1yh4EDxrcJNvN7kmKWARp8aDgLWSTrApaq1sF_72ZNNuiYi_eFnbzIN9MZieZ-QbgMClVQuMyI6mJS5IYG5PCFu5J2NQJlM1oqXyxCdHvZ3d3-XU4cKtCWGW9J_qN2rxoPCM_ZTlSjbep4GfDV4JVo_B2NZTQmIdFyhhFOb8SZEq6m_pKj0hhRZwZ4yFpJqTOJYIRdJ48ixKJvxmmn9vzr3tSb366jf9OfA1Ww49n1BlLyjrM2cEGNOqiDlHQ8Q1Y6U2IXKtNiHsh4JCMT_kjZdRwfHsf-RzIz0gNTKSe7t2Qo4fnagtuuxc355ckFFkgmrezEbHOJREOo8IKTmlZCEqN4EVuc8t1zDlTNlUiZ2WqUs7igpqSqbZB255kyjC-DQuDl4HdgQhJyDEtxKm5SWzOM53ozC2z83xTpqluAq1XWOrAQI6FMJ7klDsZUZEOFelRkXETjidthmP-jZlfHyFwEpXT9axVyDFw80OaK9lB79D5vFm7Ca0aLRm0tpJTqJpwUuM9ff33uLuze9uDZYahMD50rQULo7d3uw9L-mP0WL0deJn9AlmV7b4
  priority: 102
  providerName: ProQuest
Title Multiple-source adaptation theory and algorithms
URI https://link.springer.com/article/10.1007/s10472-020-09716-0
https://www.proquest.com/docview/2918205173
Volume 89
WOSCitedRecordID wos000585735300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: M7S
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-L6WHoQPGigSdomPa6iCOKy-EK8hDRJVdBVtqvgvzfJpq5v0EspNE3TeWQ6nZlvADaTUiY4LjnKdFyiRJsYFaawZ8xkVqAMx6X0zSZYp8MvL_NuKAqr6mz3OiTpd-p3xW4JI8i5Ox73CFlHfcKaO-7U8eT0YgS1m_n-jg64ClnjRUOpzPdzfDBHnzflL9FRb3QOZv-33DmYCR-ZUXsoFfMwZnoLMFs3cIiCPi_A9PEbaGu1CPFxSC5Ewz_6kdTycRipj3y940skezqSd9cP_dvBzX21BOcH-2d7hyg0VECKpnyAjHU_mOVHYRjFuCwYxprRIje5oSqmlEiTSZaTMpMZJXGBdUlkqp0dT7jUhC5Do_fQMysQOcBxVwJiVVonJqdcJYrbN7ZebkYUVk3ANV2FCmjjrunFnRjhJDsCCUsg4Qkk4iZsv93zOMTa-HX0lmOXcIpoZ1Yy1BPY9TlIK9F2nqD1b3nahPWaoyJoaCVI7qDrU8xoE3ZqDo4u__zc1b8NX4Mp4tJgfNraOjQG_SezAZPqeXBb9Vswsbvf6Z60YPyIoZZLPD21x2561fIy_QpwB-hl
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hQGo5AKWtuuXRHIp6aK3GdjZ2DgghHgItu-qBStxcx3agEixbsoD4U_xGPI7DCqpy49BbpDiOnfk844lnvgH4nFU6o2klSW7TimTWpaR0pb8SLveAcpJWOhSbEIOBPD4ufkzBXZsLg2GVrU4MitpeGPxH_p0VSDXepYJvjv4QrBqFp6ttCY0GFj13e-NdtnrjYMfLd52xvd2j7X0SqwoQw7tyTJzfgws_qNIJTmlVCkqt4GXhCsdNyjnTLteiYFWuc87SktqK6a5FY5ZJbZHowKv8mYxLgVz9PUEmJL95qCyJlFnEt-YxSSem6mWCEXTWAmsTSR8Zwqfm4K9z2WDu9hb-tw-1CPNxY51sNSvhDUy54RIstEUrkqjDlmCu_0BUW7-FtB8DKklzipFoq0dNdEIScjxvEz20iT478VMcn57X7-Dni8ziPUwPL4buAyRIso5pL16N2cwVXJrMSC9W79nnzFDTAdpKVJnIsI6FPs7UhBsaUaA8ClRAgUo78PXhmVHDL_Js6y8IFIXKx_dsdMyh8ONDGi-1hd6v9-lltwMrLTpU1Eq1mkCjA99afE1u__u9H5_v7RO82j_qH6rDg0FvGV4zDPsJYXorMD2-vHKrMGuux7_ry7WwXhL49dK4uwcst0o4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9ERfTB6VScTu2D4IMGm6Rr2kdRh6KOgR_sLaRJqoLWsVXB_94kbTe_QXwrNE3Tu1yvv97d7wC2g1QE2E8jFCo_RYHSPkp0Yo6YDs2G0hFOhWs2wTqdqNeLu--q-F22exWSLGoaLEtTlu_3Vbr_rvAtYARZ6OM4kJAB7VOBbRpk8frlzZh2N3S9Hi2JFTKOjJZlM9_P8cE1fX5Bf4mUOgfUrv1_6QswX358egfFblmECZ3VoVY1dvBKO6_D3MWIzHW4BP5FmXSIij_9nlCiX0TwPVcH-eqJTHni4fZpcJ_fPQ6X4bp9fHV4gspGC0jSVpQjbWAJM3pKNKMYpwnDWDGaxDrWVPqUEqFDwWKShiKkxE-wSoloKevfg0goQldgMnvK9Cp4lojcloYYU1eBjmkkAxmZJzboNyQSywbgSsZclizkthnGAx_zJ1sBcSMg7gTE_Qbsjq7pFxwcv47esarj1kDNzFKUdQZmfZbqih9YhGhwb9RqQLPSLi8td8hJbCntW5jRBuxV2hyf_vm-a38bvgUz3aM2Pz_tnK3DLLGZMi6zrQmT-eBZb8C0fMnvh4NNt6HfAErd78s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple-source+adaptation+theory+and+algorithms&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Zhang%2C+Ningshan&rft.au=Mohri%2C+Mehryar&rft.au=Hoffman%2C+Judy&rft.date=2021-03-01&rft.pub=Springer&rft.issn=1012-2443&rft.volume=89&rft.issue=3-4&rft.spage=237&rft_id=info:doi/10.1007%2Fs10472-020-09716-0&rft.externalDocID=A716472185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon