Kernel Sparse Subspace Clustering with a Spatial Max Pooling Operation for Hyperspectral Remote Sensing Data Interpretation
Hyperspectral image (HSI) clustering is generally a challenging task because of the complex spectral-spatial structure. Based on the assumption that all the pixels are sampled from the union of subspaces, recent works have introduced a robust technique—the sparse subspace clustering (SSC) algorithm...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 9; číslo 4; s. 335 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.04.2017
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Hyperspectral image (HSI) clustering is generally a challenging task because of the complex spectral-spatial structure. Based on the assumption that all the pixels are sampled from the union of subspaces, recent works have introduced a robust technique—the sparse subspace clustering (SSC) algorithm and its enhanced versions (SSC models incorporating spatial information)—to cluster HSIs, achieving excellent performances. However, these methods are all based on the linear representation model, which conflicts with the well-known nonlinear structure of HSIs and limits their performance to a large degree. In this paper, to overcome these obstacles, we present a new kernel sparse subspace clustering algorithm with a spatial max pooling operation (KSSC-SMP) for hyperspectral remote sensing data interpretation. The proposed approach maps the feature points into a much higher dimensional kernel space to extend the linear sparse subspace clustering model to nonlinear manifolds, which can better fit the complex nonlinear structure of HSIs. With the help of the kernel sparse representation, a more accurate representation coefficient matrix can be obtained. A spatial max pooling operation is utilized for the representation coefficients to generate more discriminant features by integrating the spatial-contextual information, which is essential for the accurate modeling of HSIs. This paper is an extension of our previous conference paper, and a number of enhancements are put forward. The proposed algorithm was evaluated on two well-known hyperspectral data sets—the Salinas image and the University of Pavia image—and the experimental results clearly indicate that the newly developed KSSC-SMP algorithm can obtain very competitive clustering results for HSIs, outperforming the current state-of-the-art clustering methods. |
|---|---|
| AbstractList | Hyperspectral image (HSI) clustering is generally a challenging task because of the complex spectral-spatial structure. Based on the assumption that all the pixels are sampled from the union of subspaces, recent works have introduced a robust technique—the sparse subspace clustering (SSC) algorithm and its enhanced versions (SSC models incorporating spatial information)—to cluster HSIs, achieving excellent performances. However, these methods are all based on the linear representation model, which conflicts with the well-known nonlinear structure of HSIs and limits their performance to a large degree. In this paper, to overcome these obstacles, we present a new kernel sparse subspace clustering algorithm with a spatial max pooling operation (KSSC-SMP) for hyperspectral remote sensing data interpretation. The proposed approach maps the feature points into a much higher dimensional kernel space to extend the linear sparse subspace clustering model to nonlinear manifolds, which can better fit the complex nonlinear structure of HSIs. With the help of the kernel sparse representation, a more accurate representation coefficient matrix can be obtained. A spatial max pooling operation is utilized for the representation coefficients to generate more discriminant features by integrating the spatial-contextual information, which is essential for the accurate modeling of HSIs. This paper is an extension of our previous conference paper, and a number of enhancements are put forward. The proposed algorithm was evaluated on two well-known hyperspectral data sets—the Salinas image and the University of Pavia image—and the experimental results clearly indicate that the newly developed KSSC-SMP algorithm can obtain very competitive clustering results for HSIs, outperforming the current state-of-the-art clustering methods. |
| Author | Zhang, Hongyan Xu, Xiong Zhang, Liangpei Li, Pingxiang Zhai, Han |
| Author_xml | – sequence: 1 givenname: Han surname: Zhai fullname: Zhai, Han – sequence: 2 givenname: Hongyan surname: Zhang fullname: Zhang, Hongyan – sequence: 3 givenname: Xiong surname: Xu fullname: Xu, Xiong – sequence: 4 givenname: Liangpei surname: Zhang fullname: Zhang, Liangpei – sequence: 5 givenname: Pingxiang surname: Li fullname: Li, Pingxiang |
| BookMark | eNplkclOAzEMhiMEEuuBN4jEiUPB2TozR1S2ChCI5RylGQemGiZDkgoqXp6UAkKQixP7-3859iZZ7XyHhOwyOBCigsMQK5AghFohGxwKPpC84qu_7utkJ8Yp5CMEy-wGeb_A0GFL73oTItK72ST2xiIdtbOYMDTdI31t0hM1CyI1pqVX5o3eeN8uStc9hpz1HXU-0PN5fsYebQqZu8Vnn7IjdnGBHptk6LjLnn3A9CnaJmvOtBF3vuIWeTg9uR-dDy6vz8ajo8uBFapMA4ShVcOqVhzAimLi0IErJGMKhJISoCiFLWuJyg4ZL22hUEoBzvDSMQlMbJHx0rf2Zqr70DybMNfeNPoz4cOjNiE1tkVdWAtlYZFbW8sJV4YPnZmAcFDVTLkye-0tvfrgX2YYk576Wehy-zoPVBWlYlxk6nBJ2eBjDOi0bZZ_zqNpWs1ALxamfxaWFft_FN99_mc_ANyel8g |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2021_3120071 crossref_primary_10_1016_j_infrared_2022_104241 crossref_primary_10_1109_JSTARS_2023_3333281 crossref_primary_10_1109_TGRS_2021_3074184 crossref_primary_10_1109_JSTARS_2019_2895508 crossref_primary_10_3390_rs12050775 crossref_primary_10_1109_MGRS_2020_3032575 crossref_primary_10_1016_j_imavis_2024_105235 crossref_primary_10_1109_TGRS_2021_3097358 crossref_primary_10_1109_TGRS_2021_3096320 crossref_primary_10_1109_TGRS_2022_3203481 crossref_primary_10_3390_rs14051195 crossref_primary_10_1109_TGRS_2020_3019313 crossref_primary_10_3390_rs16173230 crossref_primary_10_1109_JIOT_2021_3056578 crossref_primary_10_1109_TGRS_2018_2852708 crossref_primary_10_3390_s21072368 crossref_primary_10_1016_j_jvcir_2018_09_009 crossref_primary_10_1109_TGRS_2019_2947253 crossref_primary_10_1109_TGRS_2021_3132683 crossref_primary_10_1109_TGRS_2020_3023418 crossref_primary_10_1109_TGRS_2019_2913004 crossref_primary_10_3390_rs16214097 crossref_primary_10_1007_s12145_023_01031_6 crossref_primary_10_1109_ACCESS_2020_3010519 crossref_primary_10_1109_TGRS_2021_3127536 crossref_primary_10_1109_JSTARS_2021_3063335 crossref_primary_10_1109_TGRS_2020_3018135 crossref_primary_10_1109_TGRS_2018_2868796 crossref_primary_10_1109_JSTARS_2021_3136599 crossref_primary_10_3390_rs15112832 crossref_primary_10_3390_su14020690 |
| Cites_doi | 10.1109/TGRS.2016.2524557 10.1109/TIT.1982.1056489 10.1016/j.proeps.2011.09.056 10.3923/itj.2011.1092.1105 10.1109/TSP.2013.2254478 10.1109/ICIP.2014.7025576 10.1109/TPAMI.2012.63 10.1109/CVPRW.2009.5206547 10.1109/TGRS.2013.2284280 10.1109/TGRS.2015.2452812 10.1109/34.868688 10.5194/isprsarchives-XLI-B3-945-2016 10.1109/TGRS.2012.2201730 10.1117/1.JRS.10.046014 10.1109/TSMCB.2004.831165 10.1109/JSTARS.2013.2264720 10.1016/j.isprsjprs.2014.04.014 10.3390/rs5116116 10.3390/rs8100787 10.3390/rs8040344 10.1109/TGRS.2016.2517242 10.1126/science.1242072 10.3390/rs5052057 10.1109/JSTARS.2014.2339298 10.1109/TPAMI.2013.57 10.1109/CVPR.2011.5995682 10.1137/050646421 10.14358/PERS.70.5.627 10.1109/TIP.2010.2076294 10.1109/34.244673 |
| ContentType | Journal Article |
| Copyright | Copyright MDPI AG 2017 |
| Copyright_xml | – notice: Copyright MDPI AG 2017 |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.3390/rs9040335 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database (ProQuest) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_7cc087ce2ccd4b25a26fab03f09d15f8 10_3390_rs9040335 |
| GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IPNFZ KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c358t-e06c569d5200c37bfef0f741150354400783c8d4e5c6128c75e4430fa28f14013 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402571700034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:51:17 EDT 2025 Mon Oct 20 02:52:21 EDT 2025 Sat Nov 29 07:17:10 EST 2025 Tue Nov 18 20:58:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-e06c569d5200c37bfef0f741150354400783c8d4e5c6128c75e4430fa28f14013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/7cc087ce2ccd4b25a26fab03f09d15f8 |
| PQID | 1905785123 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7cc087ce2ccd4b25a26fab03f09d15f8 proquest_journals_1905785123 crossref_citationtrail_10_3390_rs9040335 crossref_primary_10_3390_rs9040335 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-01 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2017 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Wang (ref_3) 2016; 8 Wu (ref_28) 1993; 15 Afonso (ref_25) 2011; 20 ref_14 Rodriguez (ref_35) 2014; 344 Chen (ref_19) 2013; 51 ref_34 Li (ref_30) 2014; 94 Shi (ref_27) 2000; 22 Lloyd (ref_5) 1982; 28 ref_18 ref_16 He (ref_31) 2016; 54 Benzi (ref_24) 2006; 28 Elhamifar (ref_13) 2013; 35 Zhang (ref_15) 2016; 54 Zhang (ref_22) 2014; 52 Zhai (ref_17) 2016; 10 Mota (ref_23) 2013; 61 Baldeck (ref_4) 2013; 5 Foody (ref_36) 2004; 70 Tang (ref_9) 2011; 2 Cariou (ref_10) 2015; 9 ref_21 Yuan (ref_32) 2014; 7 Vijendra (ref_11) 2011; 10 ref_2 ref_29 ref_26 Zhang (ref_12) 2014; 7 Joyce (ref_1) 2013; 5 Gao (ref_33) 2013; 35 ref_7 ref_6 Chen (ref_8) 2004; 34 Borgeaud (ref_20) 2016; 54 |
| References_xml | – ident: ref_7 – ident: ref_16 doi: 10.1109/TGRS.2016.2524557 – volume: 28 start-page: 129 year: 1982 ident: ref_5 article-title: Least squares quantization in PCM publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1982.1056489 – volume: 2 start-page: 358 year: 2011 ident: ref_9 article-title: A MRF-based clustering algorithm for remote sensing images by using the latent Dirichlet allocation model publication-title: Procedia Earth Planet. Sci. doi: 10.1016/j.proeps.2011.09.056 – volume: 10 start-page: 1092 year: 2011 ident: ref_11 article-title: Efficient clustering for high dimensional data: Subspace based clustering and density based clustering publication-title: Inf. Technol. J. doi: 10.3923/itj.2011.1092.1105 – ident: ref_26 – volume: 61 start-page: 2718 year: 2013 ident: ref_23 article-title: D-ADMM: A communication-efficient distributed algorithm for separable optimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2254478 – ident: ref_29 doi: 10.1109/ICIP.2014.7025576 – volume: 35 start-page: 92 year: 2013 ident: ref_33 article-title: Laplacian sparse coding, hypergraph Laplacian sparse coding and applications publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.63 – ident: ref_14 doi: 10.1109/CVPRW.2009.5206547 – volume: 52 start-page: 4729 year: 2014 ident: ref_22 article-title: Hyperspectral image restoration using low-rank matrix recovery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2284280 – volume: 54 start-page: 178 year: 2016 ident: ref_31 article-title: Total-variation regularized low-rank matrix factorization for hyperspectral image restoration publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2452812 – volume: 54 start-page: 3672 year: 2016 ident: ref_15 article-title: Spectral-spatial sparse subspace clustering for hyperspectral remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2524557 – volume: 22 start-page: 888 year: 2000 ident: ref_27 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.868688 – ident: ref_21 doi: 10.5194/isprsarchives-XLI-B3-945-2016 – volume: 51 start-page: 217 year: 2013 ident: ref_19 article-title: Hyperspectral image classification via kernel sparse representation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2201730 – volume: 10 start-page: 046014 year: 2016 ident: ref_17 article-title: Reweighted mass center based object-oriented sparse subspace clustering for hyperspectral images publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.10.046014 – ident: ref_18 – volume: 9 start-page: 1105 year: 2015 ident: ref_10 article-title: Unsupervised nearest neighbors clustering with application to hyperspectral images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 34 start-page: 1907 year: 2004 ident: ref_8 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/TSMCB.2004.831165 – volume: 7 start-page: 2056 year: 2014 ident: ref_12 article-title: A nonlocal weighted joint sparse representation classification method for hyperspectral imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2264720 – volume: 94 start-page: 25 year: 2014 ident: ref_30 article-title: Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.04.014 – ident: ref_6 – volume: 5 start-page: 6116 year: 2013 ident: ref_1 article-title: Live coral cover index testing and application with hyperspectral airborne image data publication-title: Remote Sens. doi: 10.3390/rs5116116 – ident: ref_2 doi: 10.3390/rs8100787 – volume: 8 start-page: 344 year: 2016 ident: ref_3 article-title: Application of the frequency spectrum to spectral similarity measures publication-title: Remote Sens. doi: 10.3390/rs8040344 – volume: 54 start-page: 3410 year: 2016 ident: ref_20 article-title: Kernel low-rank and sparse graph for unsupervised and semi-supervised classification of hyperspectral images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2517242 – volume: 344 start-page: 1492 year: 2014 ident: ref_35 article-title: Clustering by fast search-and-find of density peaks publication-title: Science doi: 10.1126/science.1242072 – volume: 5 start-page: 2057 year: 2013 ident: ref_4 article-title: Estimating vegetation beta diversity from airborne imaging spectroscopy and unsupervised clustering publication-title: Remote Sens. doi: 10.3390/rs5052057 – volume: 7 start-page: 3570 year: 2014 ident: ref_32 article-title: A novel sparsity-based framework using max pooling operation for hyperspectral image classification publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2014.2339298 – volume: 35 start-page: 2765 year: 2013 ident: ref_13 article-title: Sparse subspace clustering: Algorithm, theory, and application publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.57 – ident: ref_34 doi: 10.1109/CVPR.2011.5995682 – volume: 28 start-page: 2095 year: 2006 ident: ref_24 article-title: An augmented Lagrangian-based approach to the Oseen problem publication-title: SIAM J. Sci. Comput. doi: 10.1137/050646421 – volume: 70 start-page: 627 year: 2004 ident: ref_36 article-title: Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.70.5.627 – volume: 20 start-page: 681 year: 2011 ident: ref_25 article-title: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2076294 – volume: 15 start-page: 1101 year: 1993 ident: ref_28 article-title: An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.244673 |
| SSID | ssj0000331904 |
| Score | 2.3189857 |
| Snippet | Hyperspectral image (HSI) clustering is generally a challenging task because of the complex spectral-spatial structure. Based on the assumption that all the... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 335 |
| SubjectTerms | Algorithms Barriers Clustering Clusters Coefficients Data interpretation Datasets Detection hyperspectral images kernels Manifolds (mathematics) Mathematical models nonlinear techniques Nonlinearity Pixels Remote sensing Robustness Satellites spatial max pooling Spectra State of the art subspace clustering Subspaces |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA9-FOqL2tritSqh-ODLYm6T7GafpF4rgq2KtsW3JTubWOG4O_fuSov_vDPZ3BVRfPFxs0MI_CbztbO_YWy3Mmh4u8YnXjuVKFvVSeEznVS5dpnxQqZhxtKvb_npqbm6Ks5jwW0c2ypnNjEY6noIVCPfR8dFvCxoaA9GtwlNjaKvq3GExiJbJpaEbmjdu5zXWIREBROqJRSSmN3vN2N8xmX9wA0Ftv5Hxjh4mKO1l55tna3G2JJ_bpXhDVtwg7fsdRxz_vvfBrs7cc3A9fnlCNNZx8loYMrseK8_Jb4E9GKc6rLckgRe_T7_bv_y8yEN9rnmZyPXqgvHQJcfYwLb_qfZoNyFQ8hxR2qHR9EvdmL5w37Gd-zn0dcfveMkTl9IQGozSZzIQGdFTbxMIPPKOy88xh8YQUqtaJy6kWBq5TRglGQAwVVKCm9T40PW9p4tDYYDt8m4Kazw4ICyHWXRPXpb5SlkuEmlfdd22N4MjBIiNTlNyOiXmKIQbuUctw77NBcdtXwcTwkdEqJzAaLQDgvD5rqMN7LMAYTJwaUAtapSbdMMjyWkF0Xd1d502NYM7DLe63H5H-kPz7_-yFZSCgBCj88WW5o0U7fNXsGfyc242Qlqeg_ioPOg priority: 102 providerName: ProQuest |
| Title | Kernel Sparse Subspace Clustering with a Spatial Max Pooling Operation for Hyperspectral Remote Sensing Data Interpretation |
| URI | https://www.proquest.com/docview/1905785123 https://doaj.org/article/7cc087ce2ccd4b25a26fab03f09d15f8 |
| Volume | 9 |
| WOSCitedRecordID | wos000402571700034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (ProQuest) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBajHWwvoz82li0NouxhLyaKJdny49ompLTJTNKNbC9GlqW2ENLgJGNj0L-9d7ITEjbYy14Mlg_Z3J1095nTd4R8yBVsvB3lAietCITOiyBxkQzyWNpIOcZD32Pp63U8HKrJJEm3Wn1hTVhFD1wprh0bw1RsbGhMIfJQ6jByOmfcsaToSOeP-bI42QJTfg_m4FpMVFRCHHB9u1zAPQzLnQDkefr_2IZ9bOkdkFd1Ukg_VR9zSJ7Z2RF5Ufcnv_t1TH5f2XJmp3Q8BxxqKa52wLqWnk9XSHQA4YfiD1WqUQLW7JQO9E-aPmBHnlv6eW4rO1PIUGkfkGd1wLIEuZEFW8GMWMcOohd6qeluIeJr8qXXvTnvB3XbhMBwqZaBZZGRUVIgoZLhce6sYw4SB0j9uBTYB11xowphpYH0RhmwihCcOR0q5-HWG7I3e5jZt4SqRDNnrEGYIjTENVB9HJoIJsml6-gG-bjWZWZqTnFsbTHNAFug2rON2hvkdCM6r4g0_iZ0hgbZCCD3tR8Aj8hqj8j-5REN0lybM6sX5CIDb0BaH4jT7_7HO96TlyHGd1_C0yR7y3JlT8hz82N5vyhbZP-sO0xHLe-TLSwnHeP1sQvXVH6H5-nlIP32BKf57Sk |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVK58EYsFLAQSFyiemM7cQ4IQUu1q32wgoLaU3Acu6202g3ZLVDxn_iNzOSxqAJx64FjnJGVxJ-_mXHs-QCeZRqJt6d94JWTgTRZHiQ-UkEWKxdpz0VYaSx9GsWTiT48TKYb8LM9C0PbKltOrIg6X1haI99Bx0V1WZBoXxVfAlKNor-rrYRGDYuhO_-GKdvy5WAPx_d5GO6_PdjtB42qQGCF0qvA8ciqKMmp3pAVcead5x79KkZGQkmSCdfC6lw6ZdH7a4sPLaXg3oTaV9kI9nsFNiWBvQOb08F4erRe1eECIc1lXcJIiITvlEu8xmZ1wfFV-gB_0H_l0_Zv_G9f4yZcb6Jn9rqG-y3YcPPbsNUIuZ-c34EfQ1fO3Yx9KDBhd4xosTDWsd3ZGVWEQD_NaOWZGbJAcpuxsfnOpguSLjpm7wpXTwiGoTzrY4pen0Qt0e69Q1Bjj7ThH033zMqwizs278LHS3n3e9CZL-buPjCdGO6ts5TPSYMBgDdZHNoIO8mU75kuvGgHP7VN8XXSAJmlmIQRTtI1TrrwdG1a1BVH_mb0hhC0NqAi4VXDojxOG85JY2u5jq0Lrc1lFioTRvhYXHie5D3ldRe2W3ClDXMt09_IevDv209gq38wHqWjwWT4EK6FFO5UO5q2obMqz9wjuGq_rk6X5eNmkjD4fNlI_AWDQE5B |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgigX3ohAgRUCiYuVzT7s9QEhaIhapYSIlyouZr3ebZGixDgpUPHP-HXM-BFUgbj1wNH2aOXHt9_MrGfnA3iUGyTegQlR0F5FyuZFlIZYR3mifWwCl6LWWPqwn0wm5uAgnW7Az24vDJVVdpxYE3WxcLRG3kfHRX1ZkGj7oS2LmA5Hz8ovESlI0Z_WTk6jgcjYn3zD9G35dG-I3_qxEKOX73Z2o1ZhIHJSm1Xkeex0nBbUe8jJJA8-8IA-FqMkqRVJhhvpTKG8dhgJGIcPoJTkwQoT6swExz0H5xPMMamccKo_rtd3uERwc9U0M5Iy5f1qicd4Wp9ygbVSwB-OoPZuoyv_83u5CpfbmJo9bybBNdjw8-uw1cq7H53cgB9jX839jL0tMY33jMiytM6zndkx9YlA781oPZpZskDKm7FX9jubLkjQ6JC9Ln0zTRgG-GwXE_dmf2qFdm88Qh1HpG0AaDq0K8tO13HehPdn8uy3YHO-mPvbwExqeXDeUZanLIYFweaJcDEOkuswsD140gEhc21LdlIGmWWYmhFmsjVmevBwbVo2fUj-ZvSC0LQ2oNbh9YlFdZi1TJQlznGTOC-cK1QutBUx3haXgafFQAfTg-0OaFnLZ8vsN8ru_PvyA7iI8Mv29ybju3BJUAxUlzltw-aqOvb34IL7uvq8rO7Xs4XBp7OG4S-JHFWk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+Sparse+Subspace+Clustering+with+a+Spatial+Max+Pooling+Operation+for+Hyperspectral+Remote+Sensing+Data+Interpretation&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Han+Zhai&rft.au=Hongyan+Zhang&rft.au=Xiong+Xu&rft.au=Liangpei+Zhang&rft.date=2017-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=9&rft.issue=4&rft.spage=335&rft_id=info:doi/10.3390%2Frs9040335&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7cc087ce2ccd4b25a26fab03f09d15f8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |