Kernel Sparse Subspace Clustering with a Spatial Max Pooling Operation for Hyperspectral Remote Sensing Data Interpretation

Hyperspectral image (HSI) clustering is generally a challenging task because of the complex spectral-spatial structure. Based on the assumption that all the pixels are sampled from the union of subspaces, recent works have introduced a robust technique—the sparse subspace clustering (SSC) algorithm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 9; číslo 4; s. 335
Hlavní autoři: Zhai, Han, Zhang, Hongyan, Xu, Xiong, Zhang, Liangpei, Li, Pingxiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.04.2017
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hyperspectral image (HSI) clustering is generally a challenging task because of the complex spectral-spatial structure. Based on the assumption that all the pixels are sampled from the union of subspaces, recent works have introduced a robust technique—the sparse subspace clustering (SSC) algorithm and its enhanced versions (SSC models incorporating spatial information)—to cluster HSIs, achieving excellent performances. However, these methods are all based on the linear representation model, which conflicts with the well-known nonlinear structure of HSIs and limits their performance to a large degree. In this paper, to overcome these obstacles, we present a new kernel sparse subspace clustering algorithm with a spatial max pooling operation (KSSC-SMP) for hyperspectral remote sensing data interpretation. The proposed approach maps the feature points into a much higher dimensional kernel space to extend the linear sparse subspace clustering model to nonlinear manifolds, which can better fit the complex nonlinear structure of HSIs. With the help of the kernel sparse representation, a more accurate representation coefficient matrix can be obtained. A spatial max pooling operation is utilized for the representation coefficients to generate more discriminant features by integrating the spatial-contextual information, which is essential for the accurate modeling of HSIs. This paper is an extension of our previous conference paper, and a number of enhancements are put forward. The proposed algorithm was evaluated on two well-known hyperspectral data sets—the Salinas image and the University of Pavia image—and the experimental results clearly indicate that the newly developed KSSC-SMP algorithm can obtain very competitive clustering results for HSIs, outperforming the current state-of-the-art clustering methods.
AbstractList Hyperspectral image (HSI) clustering is generally a challenging task because of the complex spectral-spatial structure. Based on the assumption that all the pixels are sampled from the union of subspaces, recent works have introduced a robust technique—the sparse subspace clustering (SSC) algorithm and its enhanced versions (SSC models incorporating spatial information)—to cluster HSIs, achieving excellent performances. However, these methods are all based on the linear representation model, which conflicts with the well-known nonlinear structure of HSIs and limits their performance to a large degree. In this paper, to overcome these obstacles, we present a new kernel sparse subspace clustering algorithm with a spatial max pooling operation (KSSC-SMP) for hyperspectral remote sensing data interpretation. The proposed approach maps the feature points into a much higher dimensional kernel space to extend the linear sparse subspace clustering model to nonlinear manifolds, which can better fit the complex nonlinear structure of HSIs. With the help of the kernel sparse representation, a more accurate representation coefficient matrix can be obtained. A spatial max pooling operation is utilized for the representation coefficients to generate more discriminant features by integrating the spatial-contextual information, which is essential for the accurate modeling of HSIs. This paper is an extension of our previous conference paper, and a number of enhancements are put forward. The proposed algorithm was evaluated on two well-known hyperspectral data sets—the Salinas image and the University of Pavia image—and the experimental results clearly indicate that the newly developed KSSC-SMP algorithm can obtain very competitive clustering results for HSIs, outperforming the current state-of-the-art clustering methods.
Author Zhang, Hongyan
Xu, Xiong
Zhang, Liangpei
Li, Pingxiang
Zhai, Han
Author_xml – sequence: 1
  givenname: Han
  surname: Zhai
  fullname: Zhai, Han
– sequence: 2
  givenname: Hongyan
  surname: Zhang
  fullname: Zhang, Hongyan
– sequence: 3
  givenname: Xiong
  surname: Xu
  fullname: Xu, Xiong
– sequence: 4
  givenname: Liangpei
  surname: Zhang
  fullname: Zhang, Liangpei
– sequence: 5
  givenname: Pingxiang
  surname: Li
  fullname: Li, Pingxiang
BookMark eNplkclOAzEMhiMEEuuBN4jEiUPB2TozR1S2ChCI5RylGQemGiZDkgoqXp6UAkKQixP7-3859iZZ7XyHhOwyOBCigsMQK5AghFohGxwKPpC84qu_7utkJ8Yp5CMEy-wGeb_A0GFL73oTItK72ST2xiIdtbOYMDTdI31t0hM1CyI1pqVX5o3eeN8uStc9hpz1HXU-0PN5fsYebQqZu8Vnn7IjdnGBHptk6LjLnn3A9CnaJmvOtBF3vuIWeTg9uR-dDy6vz8ajo8uBFapMA4ShVcOqVhzAimLi0IErJGMKhJISoCiFLWuJyg4ZL22hUEoBzvDSMQlMbJHx0rf2Zqr70DybMNfeNPoz4cOjNiE1tkVdWAtlYZFbW8sJV4YPnZmAcFDVTLkye-0tvfrgX2YYk576Wehy-zoPVBWlYlxk6nBJ2eBjDOi0bZZ_zqNpWs1ALxamfxaWFft_FN99_mc_ANyel8g
CitedBy_id crossref_primary_10_1109_JSTARS_2021_3120071
crossref_primary_10_1016_j_infrared_2022_104241
crossref_primary_10_1109_JSTARS_2023_3333281
crossref_primary_10_1109_TGRS_2021_3074184
crossref_primary_10_1109_JSTARS_2019_2895508
crossref_primary_10_3390_rs12050775
crossref_primary_10_1109_MGRS_2020_3032575
crossref_primary_10_1016_j_imavis_2024_105235
crossref_primary_10_1109_TGRS_2021_3097358
crossref_primary_10_1109_TGRS_2021_3096320
crossref_primary_10_1109_TGRS_2022_3203481
crossref_primary_10_3390_rs14051195
crossref_primary_10_1109_TGRS_2020_3019313
crossref_primary_10_3390_rs16173230
crossref_primary_10_1109_JIOT_2021_3056578
crossref_primary_10_1109_TGRS_2018_2852708
crossref_primary_10_3390_s21072368
crossref_primary_10_1016_j_jvcir_2018_09_009
crossref_primary_10_1109_TGRS_2019_2947253
crossref_primary_10_1109_TGRS_2021_3132683
crossref_primary_10_1109_TGRS_2020_3023418
crossref_primary_10_1109_TGRS_2019_2913004
crossref_primary_10_3390_rs16214097
crossref_primary_10_1007_s12145_023_01031_6
crossref_primary_10_1109_ACCESS_2020_3010519
crossref_primary_10_1109_TGRS_2021_3127536
crossref_primary_10_1109_JSTARS_2021_3063335
crossref_primary_10_1109_TGRS_2020_3018135
crossref_primary_10_1109_TGRS_2018_2868796
crossref_primary_10_1109_JSTARS_2021_3136599
crossref_primary_10_3390_rs15112832
crossref_primary_10_3390_su14020690
Cites_doi 10.1109/TGRS.2016.2524557
10.1109/TIT.1982.1056489
10.1016/j.proeps.2011.09.056
10.3923/itj.2011.1092.1105
10.1109/TSP.2013.2254478
10.1109/ICIP.2014.7025576
10.1109/TPAMI.2012.63
10.1109/CVPRW.2009.5206547
10.1109/TGRS.2013.2284280
10.1109/TGRS.2015.2452812
10.1109/34.868688
10.5194/isprsarchives-XLI-B3-945-2016
10.1109/TGRS.2012.2201730
10.1117/1.JRS.10.046014
10.1109/TSMCB.2004.831165
10.1109/JSTARS.2013.2264720
10.1016/j.isprsjprs.2014.04.014
10.3390/rs5116116
10.3390/rs8100787
10.3390/rs8040344
10.1109/TGRS.2016.2517242
10.1126/science.1242072
10.3390/rs5052057
10.1109/JSTARS.2014.2339298
10.1109/TPAMI.2013.57
10.1109/CVPR.2011.5995682
10.1137/050646421
10.14358/PERS.70.5.627
10.1109/TIP.2010.2076294
10.1109/34.244673
ContentType Journal Article
Copyright Copyright MDPI AG 2017
Copyright_xml – notice: Copyright MDPI AG 2017
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs9040335
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database (ProQuest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_7cc087ce2ccd4b25a26fab03f09d15f8
10_3390_rs9040335
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IPNFZ
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c358t-e06c569d5200c37bfef0f741150354400783c8d4e5c6128c75e4430fa28f14013
IEDL.DBID DOA
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402571700034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:51:17 EDT 2025
Mon Oct 20 02:52:21 EDT 2025
Sat Nov 29 07:17:10 EST 2025
Tue Nov 18 20:58:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-e06c569d5200c37bfef0f741150354400783c8d4e5c6128c75e4430fa28f14013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/7cc087ce2ccd4b25a26fab03f09d15f8
PQID 1905785123
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_7cc087ce2ccd4b25a26fab03f09d15f8
proquest_journals_1905785123
crossref_citationtrail_10_3390_rs9040335
crossref_primary_10_3390_rs9040335
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2017
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_3) 2016; 8
Wu (ref_28) 1993; 15
Afonso (ref_25) 2011; 20
ref_14
Rodriguez (ref_35) 2014; 344
Chen (ref_19) 2013; 51
ref_34
Li (ref_30) 2014; 94
Shi (ref_27) 2000; 22
Lloyd (ref_5) 1982; 28
ref_18
ref_16
He (ref_31) 2016; 54
Benzi (ref_24) 2006; 28
Elhamifar (ref_13) 2013; 35
Zhang (ref_15) 2016; 54
Zhang (ref_22) 2014; 52
Zhai (ref_17) 2016; 10
Mota (ref_23) 2013; 61
Baldeck (ref_4) 2013; 5
Foody (ref_36) 2004; 70
Tang (ref_9) 2011; 2
Cariou (ref_10) 2015; 9
ref_21
Yuan (ref_32) 2014; 7
Vijendra (ref_11) 2011; 10
ref_2
ref_29
ref_26
Zhang (ref_12) 2014; 7
Joyce (ref_1) 2013; 5
Gao (ref_33) 2013; 35
ref_7
ref_6
Chen (ref_8) 2004; 34
Borgeaud (ref_20) 2016; 54
References_xml – ident: ref_7
– ident: ref_16
  doi: 10.1109/TGRS.2016.2524557
– volume: 28
  start-page: 129
  year: 1982
  ident: ref_5
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 2
  start-page: 358
  year: 2011
  ident: ref_9
  article-title: A MRF-based clustering algorithm for remote sensing images by using the latent Dirichlet allocation model
  publication-title: Procedia Earth Planet. Sci.
  doi: 10.1016/j.proeps.2011.09.056
– volume: 10
  start-page: 1092
  year: 2011
  ident: ref_11
  article-title: Efficient clustering for high dimensional data: Subspace based clustering and density based clustering
  publication-title: Inf. Technol. J.
  doi: 10.3923/itj.2011.1092.1105
– ident: ref_26
– volume: 61
  start-page: 2718
  year: 2013
  ident: ref_23
  article-title: D-ADMM: A communication-efficient distributed algorithm for separable optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2254478
– ident: ref_29
  doi: 10.1109/ICIP.2014.7025576
– volume: 35
  start-page: 92
  year: 2013
  ident: ref_33
  article-title: Laplacian sparse coding, hypergraph Laplacian sparse coding and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.63
– ident: ref_14
  doi: 10.1109/CVPRW.2009.5206547
– volume: 52
  start-page: 4729
  year: 2014
  ident: ref_22
  article-title: Hyperspectral image restoration using low-rank matrix recovery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2284280
– volume: 54
  start-page: 178
  year: 2016
  ident: ref_31
  article-title: Total-variation regularized low-rank matrix factorization for hyperspectral image restoration
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2452812
– volume: 54
  start-page: 3672
  year: 2016
  ident: ref_15
  article-title: Spectral-spatial sparse subspace clustering for hyperspectral remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2524557
– volume: 22
  start-page: 888
  year: 2000
  ident: ref_27
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– ident: ref_21
  doi: 10.5194/isprsarchives-XLI-B3-945-2016
– volume: 51
  start-page: 217
  year: 2013
  ident: ref_19
  article-title: Hyperspectral image classification via kernel sparse representation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2201730
– volume: 10
  start-page: 046014
  year: 2016
  ident: ref_17
  article-title: Reweighted mass center based object-oriented sparse subspace clustering for hyperspectral images
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.10.046014
– ident: ref_18
– volume: 9
  start-page: 1105
  year: 2015
  ident: ref_10
  article-title: Unsupervised nearest neighbors clustering with application to hyperspectral images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 34
  start-page: 1907
  year: 2004
  ident: ref_8
  article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
  doi: 10.1109/TSMCB.2004.831165
– volume: 7
  start-page: 2056
  year: 2014
  ident: ref_12
  article-title: A nonlocal weighted joint sparse representation classification method for hyperspectral imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2264720
– volume: 94
  start-page: 25
  year: 2014
  ident: ref_30
  article-title: Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.04.014
– ident: ref_6
– volume: 5
  start-page: 6116
  year: 2013
  ident: ref_1
  article-title: Live coral cover index testing and application with hyperspectral airborne image data
  publication-title: Remote Sens.
  doi: 10.3390/rs5116116
– ident: ref_2
  doi: 10.3390/rs8100787
– volume: 8
  start-page: 344
  year: 2016
  ident: ref_3
  article-title: Application of the frequency spectrum to spectral similarity measures
  publication-title: Remote Sens.
  doi: 10.3390/rs8040344
– volume: 54
  start-page: 3410
  year: 2016
  ident: ref_20
  article-title: Kernel low-rank and sparse graph for unsupervised and semi-supervised classification of hyperspectral images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2517242
– volume: 344
  start-page: 1492
  year: 2014
  ident: ref_35
  article-title: Clustering by fast search-and-find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 5
  start-page: 2057
  year: 2013
  ident: ref_4
  article-title: Estimating vegetation beta diversity from airborne imaging spectroscopy and unsupervised clustering
  publication-title: Remote Sens.
  doi: 10.3390/rs5052057
– volume: 7
  start-page: 3570
  year: 2014
  ident: ref_32
  article-title: A novel sparsity-based framework using max pooling operation for hyperspectral image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2014.2339298
– volume: 35
  start-page: 2765
  year: 2013
  ident: ref_13
  article-title: Sparse subspace clustering: Algorithm, theory, and application
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.57
– ident: ref_34
  doi: 10.1109/CVPR.2011.5995682
– volume: 28
  start-page: 2095
  year: 2006
  ident: ref_24
  article-title: An augmented Lagrangian-based approach to the Oseen problem
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/050646421
– volume: 70
  start-page: 627
  year: 2004
  ident: ref_36
  article-title: Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.70.5.627
– volume: 20
  start-page: 681
  year: 2011
  ident: ref_25
  article-title: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2076294
– volume: 15
  start-page: 1101
  year: 1993
  ident: ref_28
  article-title: An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.244673
SSID ssj0000331904
Score 2.3189857
Snippet Hyperspectral image (HSI) clustering is generally a challenging task because of the complex spectral-spatial structure. Based on the assumption that all the...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 335
SubjectTerms Algorithms
Barriers
Clustering
Clusters
Coefficients
Data interpretation
Datasets
Detection
hyperspectral images
kernels
Manifolds (mathematics)
Mathematical models
nonlinear techniques
Nonlinearity
Pixels
Remote sensing
Robustness
Satellites
spatial max pooling
Spectra
State of the art
subspace clustering
Subspaces
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA9-FOqL2tritSqh-ODLYm6T7GafpF4rgq2KtsW3JTubWOG4O_fuSov_vDPZ3BVRfPFxs0MI_CbztbO_YWy3Mmh4u8YnXjuVKFvVSeEznVS5dpnxQqZhxtKvb_npqbm6Ks5jwW0c2ypnNjEY6noIVCPfR8dFvCxoaA9GtwlNjaKvq3GExiJbJpaEbmjdu5zXWIREBROqJRSSmN3vN2N8xmX9wA0Ftv5Hxjh4mKO1l55tna3G2JJ_bpXhDVtwg7fsdRxz_vvfBrs7cc3A9fnlCNNZx8loYMrseK8_Jb4E9GKc6rLckgRe_T7_bv_y8yEN9rnmZyPXqgvHQJcfYwLb_qfZoNyFQ8hxR2qHR9EvdmL5w37Gd-zn0dcfveMkTl9IQGozSZzIQGdFTbxMIPPKOy88xh8YQUqtaJy6kWBq5TRglGQAwVVKCm9T40PW9p4tDYYDt8m4Kazw4ICyHWXRPXpb5SlkuEmlfdd22N4MjBIiNTlNyOiXmKIQbuUctw77NBcdtXwcTwkdEqJzAaLQDgvD5rqMN7LMAYTJwaUAtapSbdMMjyWkF0Xd1d502NYM7DLe63H5H-kPz7_-yFZSCgBCj88WW5o0U7fNXsGfyc242Qlqeg_ioPOg
  priority: 102
  providerName: ProQuest
Title Kernel Sparse Subspace Clustering with a Spatial Max Pooling Operation for Hyperspectral Remote Sensing Data Interpretation
URI https://www.proquest.com/docview/1905785123
https://doaj.org/article/7cc087ce2ccd4b25a26fab03f09d15f8
Volume 9
WOSCitedRecordID wos000402571700034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (ProQuest)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBajHWwvoz82li0NouxhLyaKJdny49ompLTJTNKNbC9GlqW2ENLgJGNj0L-9d7ITEjbYy14Mlg_Z3J1095nTd4R8yBVsvB3lAietCITOiyBxkQzyWNpIOcZD32Pp63U8HKrJJEm3Wn1hTVhFD1wprh0bw1RsbGhMIfJQ6jByOmfcsaToSOeP-bI42QJTfg_m4FpMVFRCHHB9u1zAPQzLnQDkefr_2IZ9bOkdkFd1Ukg_VR9zSJ7Z2RF5Ufcnv_t1TH5f2XJmp3Q8BxxqKa52wLqWnk9XSHQA4YfiD1WqUQLW7JQO9E-aPmBHnlv6eW4rO1PIUGkfkGd1wLIEuZEFW8GMWMcOohd6qeluIeJr8qXXvTnvB3XbhMBwqZaBZZGRUVIgoZLhce6sYw4SB0j9uBTYB11xowphpYH0RhmwihCcOR0q5-HWG7I3e5jZt4SqRDNnrEGYIjTENVB9HJoIJsml6-gG-bjWZWZqTnFsbTHNAFug2rON2hvkdCM6r4g0_iZ0hgbZCCD3tR8Aj8hqj8j-5REN0lybM6sX5CIDb0BaH4jT7_7HO96TlyHGd1_C0yR7y3JlT8hz82N5vyhbZP-sO0xHLe-TLSwnHeP1sQvXVH6H5-nlIP32BKf57Sk
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVK58EYsFLAQSFyiemM7cQ4IQUu1q32wgoLaU3Acu6202g3ZLVDxn_iNzOSxqAJx64FjnJGVxJ-_mXHs-QCeZRqJt6d94JWTgTRZHiQ-UkEWKxdpz0VYaSx9GsWTiT48TKYb8LM9C0PbKltOrIg6X1haI99Bx0V1WZBoXxVfAlKNor-rrYRGDYuhO_-GKdvy5WAPx_d5GO6_PdjtB42qQGCF0qvA8ciqKMmp3pAVcead5x79KkZGQkmSCdfC6lw6ZdH7a4sPLaXg3oTaV9kI9nsFNiWBvQOb08F4erRe1eECIc1lXcJIiITvlEu8xmZ1wfFV-gB_0H_l0_Zv_G9f4yZcb6Jn9rqG-y3YcPPbsNUIuZ-c34EfQ1fO3Yx9KDBhd4xosTDWsd3ZGVWEQD_NaOWZGbJAcpuxsfnOpguSLjpm7wpXTwiGoTzrY4pen0Qt0e69Q1Bjj7ThH033zMqwizs278LHS3n3e9CZL-buPjCdGO6ts5TPSYMBgDdZHNoIO8mU75kuvGgHP7VN8XXSAJmlmIQRTtI1TrrwdG1a1BVH_mb0hhC0NqAi4VXDojxOG85JY2u5jq0Lrc1lFioTRvhYXHie5D3ldRe2W3ClDXMt09_IevDv209gq38wHqWjwWT4EK6FFO5UO5q2obMqz9wjuGq_rk6X5eNmkjD4fNlI_AWDQE5B
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgigX3ohAgRUCiYuVzT7s9QEhaIhapYSIlyouZr3ebZGixDgpUPHP-HXM-BFUgbj1wNH2aOXHt9_MrGfnA3iUGyTegQlR0F5FyuZFlIZYR3mifWwCl6LWWPqwn0wm5uAgnW7Az24vDJVVdpxYE3WxcLRG3kfHRX1ZkGj7oS2LmA5Hz8ovESlI0Z_WTk6jgcjYn3zD9G35dG-I3_qxEKOX73Z2o1ZhIHJSm1Xkeex0nBbUe8jJJA8-8IA-FqMkqRVJhhvpTKG8dhgJGIcPoJTkwQoT6swExz0H5xPMMamccKo_rtd3uERwc9U0M5Iy5f1qicd4Wp9ygbVSwB-OoPZuoyv_83u5CpfbmJo9bybBNdjw8-uw1cq7H53cgB9jX839jL0tMY33jMiytM6zndkx9YlA781oPZpZskDKm7FX9jubLkjQ6JC9Ln0zTRgG-GwXE_dmf2qFdm88Qh1HpG0AaDq0K8tO13HehPdn8uy3YHO-mPvbwExqeXDeUZanLIYFweaJcDEOkuswsD140gEhc21LdlIGmWWYmhFmsjVmevBwbVo2fUj-ZvSC0LQ2oNbh9YlFdZi1TJQlznGTOC-cK1QutBUx3haXgafFQAfTg-0OaFnLZ8vsN8ru_PvyA7iI8Mv29ybju3BJUAxUlzltw-aqOvb34IL7uvq8rO7Xs4XBp7OG4S-JHFWk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+Sparse+Subspace+Clustering+with+a+Spatial+Max+Pooling+Operation+for+Hyperspectral+Remote+Sensing+Data+Interpretation&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Han+Zhai&rft.au=Hongyan+Zhang&rft.au=Xiong+Xu&rft.au=Liangpei+Zhang&rft.date=2017-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=9&rft.issue=4&rft.spage=335&rft_id=info:doi/10.3390%2Frs9040335&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7cc087ce2ccd4b25a26fab03f09d15f8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon