A Novel Real-coded Quantum-inspired Genetic Algorithm and Its Application in Data Reconciliation

Traditional quantum-inspired genetic algorithm (QGA) has drawbacks such as premature convergence, heavy computational cost, complicated coding and decoding process etc. In this paper, a novel real-coded quantum-inspired genetic algorithm is proposed based on interval division thinking. Detailed comp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computational intelligence systems Ročník 5; číslo 3; s. 413 - 420
Hlavní autoři: Lin, G.A.O., Xingsheng, G.U.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.06.2012
Springer
Témata:
ISSN:1875-6891, 1875-6883, 1875-6883
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Traditional quantum-inspired genetic algorithm (QGA) has drawbacks such as premature convergence, heavy computational cost, complicated coding and decoding process etc. In this paper, a novel real-coded quantum-inspired genetic algorithm is proposed based on interval division thinking. Detailed comparisons with some similar approaches for some standard benchmark functions test validity of the proposed algorithm. Besides, the proposed algorithm is used in two typical nonlinear data reconciliation problems (distilling process and extraction process) and simulation results show its efficiency in nonlinear data reconciliation problems.
ISSN:1875-6891
1875-6883
1875-6883
DOI:10.1080/18756891.2012.696893