Classifying four-body convex central configurations
We classify the full set of convex central configurations in the Newtonian planar four-body problem. Particular attention is given to configurations possessing some type of symmetry or defining geometric property. Special cases considered include kite, trapezoidal, co-circular, equidiagonal, orthodi...
Uloženo v:
| Vydáno v: | Celestial mechanics and dynamical astronomy Ročník 131; číslo 7; s. 1 - 27 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article Publikace |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.07.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0923-2958, 1572-9478 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We classify the full set of convex central configurations in the Newtonian planar four-body problem. Particular attention is given to configurations possessing some type of symmetry or defining geometric property. Special cases considered include kite, trapezoidal, co-circular, equidiagonal, orthodiagonal, and bisecting-diagonal configurations. Good coordinates for describing the set are established. We use them to prove that the set of four-body convex central configurations with positive masses is three-dimensional, a graph over a domain
D
that is the union of elementary regions in
R
+
3
. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0923-2958 1572-9478 |
| DOI: | 10.1007/s10569-019-9911-7 |