Robust Localization Based on Mixed-Norm Minimization Criterion
This paper presents robust positioning methods that use range measurements to estimate location parameters. The existing maximum correntropy criterion-based localization algorithm uses only the <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formu...
Uloženo v:
| Vydáno v: | IEEE access Ročník 10; s. 57080 - 57093 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper presents robust positioning methods that use range measurements to estimate location parameters. The existing maximum correntropy criterion-based localization algorithm uses only the <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm minimization. Therefore, the localization performance may not be satisfying because the <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm minimization is vulnerable to the large error. Therefore, we propose the convex combination of <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm because the <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> norm minimization is effective in the large noise condition. The mixed-norm maximum Versoria criterion-based unscented Kalman filter, mixed-norm least lncosh unscented Kalman filter, mixed-norm maximum Versoria criterion iterative reweighted least-squares, mixed-norm least lncosh iterative reweighted least squares and closed-form localization approaches are proposed for mixed line-of-sight/ non-line-of-sight environments. The proposed mixed-norm unscented Kalman filter-based algorithms are more superior to the other methods as the line-of-sight noise level increases by the use of the convex combination of <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> norm and <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm. The iterative reweighted least sqaures-based methods employ a weight matrix. The closed-form weighted least squares algorithm has an advantage that its computational complexity is lower than that of other methods. Simulation and experiments illustrate the localization accuracies of the proposed unscented Kalman filter-based methods are found to be superior to those of the other algorithms under large noise level conditions. |
|---|---|
| AbstractList | This paper presents robust positioning methods that use range measurements to estimate location parameters. The existing maximum correntropy criterion-based localization algorithm uses only the <tex-math notation="LaTeX">$l_{2}$ </tex-math> norm minimization. Therefore, the localization performance may not be satisfying because the <tex-math notation="LaTeX">$l_{2}$ </tex-math> norm minimization is vulnerable to the large error. Therefore, we propose the convex combination of <tex-math notation="LaTeX">$l_{1}$ </tex-math> and <tex-math notation="LaTeX">$l_{2}$ </tex-math> norm because the <tex-math notation="LaTeX">$l_{1}$ </tex-math> norm minimization is effective in the large noise condition. The mixed-norm maximum Versoria criterion-based unscented Kalman filter, mixed-norm least lncosh unscented Kalman filter, mixed-norm maximum Versoria criterion iterative reweighted least-squares, mixed-norm least lncosh iterative reweighted least squares and closed-form localization approaches are proposed for mixed line-of-sight/ non-line-of-sight environments. The proposed mixed-norm unscented Kalman filter-based algorithms are more superior to the other methods as the line-of-sight noise level increases by the use of the convex combination of <tex-math notation="LaTeX">$l_{1}$ </tex-math> norm and <tex-math notation="LaTeX">$l_{2}$ </tex-math> norm. The iterative reweighted least sqaures-based methods employ a weight matrix. The closed-form weighted least squares algorithm has an advantage that its computational complexity is lower than that of other methods. Simulation and experiments illustrate the localization accuracies of the proposed unscented Kalman filter-based methods are found to be superior to those of the other algorithms under large noise level conditions. This paper presents robust positioning methods that use range measurements to estimate location parameters. The existing maximum correntropy criterion-based localization algorithm uses only the <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm minimization. Therefore, the localization performance may not be satisfying because the <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm minimization is vulnerable to the large error. Therefore, we propose the convex combination of <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm because the <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> norm minimization is effective in the large noise condition. The mixed-norm maximum Versoria criterion-based unscented Kalman filter, mixed-norm least lncosh unscented Kalman filter, mixed-norm maximum Versoria criterion iterative reweighted least-squares, mixed-norm least lncosh iterative reweighted least squares and closed-form localization approaches are proposed for mixed line-of-sight/ non-line-of-sight environments. The proposed mixed-norm unscented Kalman filter-based algorithms are more superior to the other methods as the line-of-sight noise level increases by the use of the convex combination of <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> norm and <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norm. The iterative reweighted least sqaures-based methods employ a weight matrix. The closed-form weighted least squares algorithm has an advantage that its computational complexity is lower than that of other methods. Simulation and experiments illustrate the localization accuracies of the proposed unscented Kalman filter-based methods are found to be superior to those of the other algorithms under large noise level conditions. This paper presents robust positioning methods that use range measurements to estimate location parameters. The existing maximum correntropy criterion-based localization algorithm uses only the [Formula Omitted] norm minimization. Therefore, the localization performance may not be satisfying because the [Formula Omitted] norm minimization is vulnerable to the large error. Therefore, we propose the convex combination of [Formula Omitted] and [Formula Omitted] norm because the [Formula Omitted] norm minimization is effective in the large noise condition. The mixed-norm maximum Versoria criterion-based unscented Kalman filter, mixed-norm least lncosh unscented Kalman filter, mixed-norm maximum Versoria criterion iterative reweighted least-squares, mixed-norm least lncosh iterative reweighted least squares and closed-form localization approaches are proposed for mixed line-of-sight/ non-line-of-sight environments. The proposed mixed-norm unscented Kalman filter-based algorithms are more superior to the other methods as the line-of-sight noise level increases by the use of the convex combination of [Formula Omitted] norm and [Formula Omitted] norm. The iterative reweighted least sqaures-based methods employ a weight matrix. The closed-form weighted least squares algorithm has an advantage that its computational complexity is lower than that of other methods. Simulation and experiments illustrate the localization accuracies of the proposed unscented Kalman filter-based methods are found to be superior to those of the other algorithms under large noise level conditions. |
| Author | Park, Chee-Hyun Chang, Joon-Hyuk |
| Author_xml | – sequence: 1 givenname: Chee-Hyun orcidid: 0000-0002-9739-5277 surname: Park fullname: Park, Chee-Hyun organization: School of Electronics Engineering, Hanyang University, Seoul, South Korea – sequence: 2 givenname: Joon-Hyuk orcidid: 0000-0003-2610-2323 surname: Chang fullname: Chang, Joon-Hyuk email: jchang@hanyang.ac.kr organization: School of Electronics Engineering, Hanyang University, Seoul, South Korea |
| BookMark | eNpNUNtKAzEQDaLgrV_Ql4LPWzNJNpt9EXTxBlXB6nPIJrOS0m40uwX1603dWpyXOQznMpxjst-GFgkZA50C0PL8sqqu5_Mpo4xNORSF4mqPHDGQZcZzLvf_4UMy6roFTaPSKS-OyMVzqNddP5kFa5b-2_Q-tJMr06GbJPDgP9FljyGuEmz96o9QRd9jTOiUHDRm2eFou0_I6831S3WXzZ5u76vLWWZ5rvrMsdw2sm64LR0tS2otoJTGoChBWsMdCOuoEbRBFDmltrHIQDjpHIBhyE_I_eDrglno9-hXJn7pYLz-PYT4pk3svV2iFoqz2nLFixoEy2XNHIOS1ykxN7WE5HU2eL3H8LHGrteLsI5tel8zWQha5EypxOIDy8bQdRGbXSpQveldD73rTe9623tSjQeVR8SdoiwUCGD8B3zEf5k |
| CODEN | IAECCG |
| Cites_doi | 10.1109/JIOT.2022.3150564 10.1016/j.eswa.2015.02.056 10.1016/j.sigpro.2014.12.020 10.1109/TCSII.2017.2671521 10.1109/WCNC.1999.797838 10.1109/LWC.2021.3109787 10.1109/TWC.2020.2997455 10.1109/IPSN.2005.1440903 10.1016/j.dsp.2014.02.009 10.1109/TVT.2005.861207 10.1109/TSP.2019.2916755 10.1016/j.jappgeo.2015.03.001 10.1109/ICE.2017.8279941 10.1002/SERIES1345 10.1109/TSP.2013.2251341 10.1109/TWC.2014.2314640 10.1109/TAC.2020.3011443 10.1109/TAES.1984.310439 10.1109/WPNC.2013.6533288 10.1155/ASP/2006/43429 10.3390/s16091530 10.1109/LSP.2021.3082329 10.1109/LCOMM.2015.2482979 10.1109/ACCESS.2019.2901940 10.1109/97.554469 10.1109/JSTSP.2009.2028383 10.1109/JPROC.2003.823141 10.1016/j.sigpro.2017.09.019 10.1109/LCOMM.2015.2442580 10.1109/WCNC.2007.296 10.1016/j.jfranklin.2017.10.023 10.1109/LCOMM.2022.3155685 10.1109/VETECF.2003.1285996 10.1109/VTC2021-Spring51267.2021.9449063 10.1109/ACC.2003.1243439 10.1214/aoms/1177704172 10.1109/TSP.2013.2286779 10.1109/TAES.2017.2651684 10.1109/TWC.2021.3105641 10.1109/MSP.2005.1458284 10.1109/TSP.2011.2138702 10.12732/ijpam.v91i3.7 10.1109/TMC.2022.3150758 10.1186/s13634-017-0498-4 10.1109/LWC.2020.3037095 10.1109/TMC.2022.3148338 10.1109/TSP.2011.2152400 10.1109/78.301830 10.1109/TMC.2019.2921537 10.1016/j.sigpro.2019.107348 10.1109/ICUMT54235.2021.9631716 10.1016/j.automatica.2016.10.004 10.1109/ACCESS.2018.2817800 10.1186/s13634-016-0385-4 10.1109/LSP.2015.2437456 10.1109/TWC.2015.2490677 10.1016/j.sigpro.2020.107941 10.1007/s00190-005-0473-y |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2022.3177838 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 57093 |
| ExternalDocumentID | oai_doaj_org_article_4832bc3837b14256b2d2193b1e65ab61 10_1109_ACCESS_2022_3177838 9781412 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Institute of Information Communications Technology Planning Evaluation (IITP) Grant funded by the Korea Government [Ministry of Science and Information Communications Technology (MSIT)] (Development of Ultra-High Speech Quality Technology for Remote Multi-Speaker Conference System) grantid: 2021-0-00456 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c358t-d25cf6bf3c9d0990cc1e66aae4916ca3d14cd0a40fee4500cfce214d6dd11a2e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808032500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:44:20 EDT 2025 Mon Jun 30 04:18:03 EDT 2025 Sat Nov 29 06:32:08 EST 2025 Wed Aug 27 02:24:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-d25cf6bf3c9d0990cc1e66aae4916ca3d14cd0a40fee4500cfce214d6dd11a2e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9739-5277 0000-0003-2610-2323 |
| OpenAccessLink | https://doaj.org/article/4832bc3837b14256b2d2193b1e65ab61 |
| PQID | 2674075288 |
| PQPubID | 4845423 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2674075288 ieee_primary_9781412 doaj_primary_oai_doaj_org_article_4832bc3837b14256b2d2193b1e65ab61 crossref_primary_10_1109_ACCESS_2022_3177838 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Wilcox (ref44) 2012 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref60 ref61 |
| References_xml | – ident: ref33 doi: 10.1109/JIOT.2022.3150564 – ident: ref6 doi: 10.1016/j.eswa.2015.02.056 – ident: ref15 doi: 10.1016/j.sigpro.2014.12.020 – ident: ref39 doi: 10.1109/TCSII.2017.2671521 – ident: ref47 doi: 10.1109/WCNC.1999.797838 – ident: ref36 doi: 10.1109/LWC.2021.3109787 – ident: ref53 doi: 10.1109/TWC.2020.2997455 – ident: ref13 doi: 10.1109/IPSN.2005.1440903 – ident: ref5 doi: 10.1016/j.dsp.2014.02.009 – ident: ref19 doi: 10.1109/TVT.2005.861207 – ident: ref27 doi: 10.1109/TSP.2019.2916755 – ident: ref43 doi: 10.1016/j.jappgeo.2015.03.001 – ident: ref60 doi: 10.1109/ICE.2017.8279941 – ident: ref12 doi: 10.1002/SERIES1345 – ident: ref49 doi: 10.1109/TSP.2013.2251341 – ident: ref8 doi: 10.1109/TWC.2014.2314640 – ident: ref28 doi: 10.1109/TAC.2020.3011443 – ident: ref1 doi: 10.1109/TAES.1984.310439 – ident: ref9 doi: 10.1109/WPNC.2013.6533288 – ident: ref14 doi: 10.1155/ASP/2006/43429 – ident: ref23 doi: 10.3390/s16091530 – ident: ref41 doi: 10.1109/LSP.2021.3082329 – ident: ref7 doi: 10.1109/LCOMM.2015.2482979 – ident: ref57 doi: 10.1109/ACCESS.2019.2901940 – ident: ref42 doi: 10.1109/97.554469 – ident: ref45 doi: 10.1002/SERIES1345 – ident: ref51 doi: 10.1109/JSTSP.2009.2028383 – ident: ref55 doi: 10.1109/JPROC.2003.823141 – ident: ref11 doi: 10.1016/j.sigpro.2017.09.019 – ident: ref10 doi: 10.1109/LCOMM.2015.2442580 – ident: ref18 doi: 10.1109/WCNC.2007.296 – ident: ref54 doi: 10.1016/j.jfranklin.2017.10.023 – ident: ref35 doi: 10.1109/LCOMM.2022.3155685 – volume-title: Introduction to Robust Estimation and Hypothesis Testing year: 2012 ident: ref44 – ident: ref21 doi: 10.1109/VETECF.2003.1285996 – ident: ref38 doi: 10.1109/VTC2021-Spring51267.2021.9449063 – ident: ref56 doi: 10.1109/ACC.2003.1243439 – ident: ref17 doi: 10.1214/aoms/1177704172 – ident: ref48 doi: 10.1109/TSP.2013.2286779 – ident: ref26 doi: 10.1109/TAES.2017.2651684 – ident: ref37 doi: 10.1109/TWC.2021.3105641 – ident: ref50 doi: 10.1109/MSP.2005.1458284 – ident: ref25 doi: 10.1109/TSP.2011.2138702 – ident: ref52 doi: 10.12732/ijpam.v91i3.7 – ident: ref29 doi: 10.1109/TMC.2022.3150758 – ident: ref58 doi: 10.1186/s13634-017-0498-4 – ident: ref34 doi: 10.1109/LWC.2020.3037095 – ident: ref32 doi: 10.1109/TMC.2022.3148338 – ident: ref3 doi: 10.1109/TSP.2011.2152400 – ident: ref2 doi: 10.1109/78.301830 – ident: ref30 doi: 10.1109/TMC.2019.2921537 – ident: ref24 doi: 10.1016/j.sigpro.2019.107348 – ident: ref31 doi: 10.1109/ICUMT54235.2021.9631716 – ident: ref22 doi: 10.1016/j.automatica.2016.10.004 – ident: ref61 doi: 10.1109/ACCESS.2018.2817800 – ident: ref20 doi: 10.1186/s13634-016-0385-4 – ident: ref59 doi: 10.1109/LSP.2015.2437456 – ident: ref4 doi: 10.1109/TWC.2015.2490677 – ident: ref40 doi: 10.1016/j.sigpro.2020.107941 – ident: ref46 doi: 10.1002/SERIES1345 – ident: ref16 doi: 10.1007/s00190-005-0473-y |
| SSID | ssj0000816957 |
| Score | 2.2282023 |
| Snippet | This paper presents robust positioning methods that use range measurements to estimate location parameters. The existing maximum correntropy criterion-based... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 57080 |
| SubjectTerms | Algorithms Closed form solutions Cost function Criteria Digital signal processing distributed information systems Estimation Exact solutions filtering theory indoor navigation iterative algorithms Iterative methods Kalman filters Least squares Line of sight Localization Location awareness Mathematical analysis Minimization mobile communication Noise Noise level Noise levels Optimization parameter estimation radio navigation Robustness Signal processing algorithms |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-6MGj1TZpk_Yi6KJ40EVEwVvIq7AHu7IP8ec7k2YXQS_eQklC8qXJPJL5BuDM24q72vJUlI1JiWMqRaGg04xX2AAVBtZUIdmEHAyqt7f6aQnOF7Ew3vvw-MxfUDHc5buRnZGr7DLwM1FK4WUpRRertfCnUAKJupSRWCjP6svrfh_ngCYgY2iZSllRDMoP4RM4-mNSlV8ncRAvd5v_G9gWbEQ1Mrnu1n0blny7A-s_yAV34ep5ZGaTafJA0ipGWyY3KLRcgoXH4Zd36QA1Viy2w_d5BUp9gB2M2j14vbt96d-nMVtCanlZTVPHStsI03BbO7rtsjb3QmjtC9QAreYuL6zLdJE13hdlltnGepYXTjiX55p5vg8r7aj1B5AQ65sUGjUBIYtGMqNzXmqHmpo2vNB1D87nMKqPjhRDBWMiq1WHuiLUVUS9BzcE9aIqMVqHD4ihihtEFXi0GEv2MrmlSmGYw8OUG5xEqY3Ie7BLuC86iZD34Hi-cCruvoliOGxUhVhVHf7d6gjWaICdK-UYVqbjmT-BVfs5HU7Gp-HH-gYw_st0 priority: 102 providerName: IEEE |
| Title | Robust Localization Based on Mixed-Norm Minimization Criterion |
| URI | https://ieeexplore.ieee.org/document/9781412 https://www.proquest.com/docview/2674075288 https://doaj.org/article/4832bc3837b14256b2d2193b1e65ab61 |
| Volume | 10 |
| WOSCitedRecordID | wos000808032500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPOhB1ClW5-jBo2VN0qbpRdjGhgc3RBR2C_lV2MFOtk48-bf7knaj4MGLlxJKmibfS_LeS_u-h9Cd1ZyaXNOIpYWKHMdUBEpBRjHl8AAYDKTgPtlENp_zxSJ_bqX6cv-E1fTANXCDBKac0s6PcscVKVPEwCKjCluWSlU7PnGWt5wpvwdzzPI0a2iGcJwPhuMxjAgcQkLAT80y7iJSWqrIM_Y3KVZ-7cte2UxP0UljJYbDundn6MCW5-i4xR3YRQ8vK7XdVOGTU0ZNMGU4Ap1kQijMll_WRHMwSKFYLt93FVxmA2hgVV6gt-nkdfwYNckQIk1TXkWGpLpgqqA6N-5jltaAAJPSJmDgaUkNTrSJZRIX1iZpHOtCW4ITw4zBWBJLL1GnXJX2CoWO1C1jEhQ9y5IiI0pimkoDhphUNJF5gO53uIiPmvNCeF8hzkUNo3AwigbGAI0cdvuqjrDa3wAxikaM4i8xBqjrkN834qm4MAlQbycJ0SyujSDQbbB0COfX__HqG3TkhlOfq_RQp1pv7S061J_VcrPu-3kF19n3pO-jA38AohTPbA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6KCurBt1ife_Do6m6ym929CFqUirWIKHgLeS304FZsK_58Z9K0CHrxFpYkJF82mUcy3wCcOlNyWxkei7zWMXFMxSgUVJzwEhugwsDq0iebKPr98vW1emzB2TwWxjnnH5-5cyr6u3w7NBNylV14fiZKKbxImbNCtNbco0IpJKq8CNRCaVJdXHU6OAs0AhlD27QoSopC-SF-PEt_SKvy6yz2AuZ2_X9D24C1oEhGV9OV34SWa7Zg9Qe94DZcPg31ZDSOeiSvQrxldI1iy0ZYeBh8ORv3UWfFYjN4m1Wg5AfYwbDZgZfbm-dONw75EmLD83IcW5abWuiam8rSfZcxqRNCKZehDmgUt2lmbKKypHYuy5PE1MaxNLPC2jRVzPFdWGiGjduDiHjfCqFQFxBFVhdMq5TnyqKupjTPVNWGsxmM8n1KiyG9OZFUcoq6JNRlQL0N1wT1vCpxWvsPiKEMW0RmeLhoQxYzOaZyoZnF45RrnESutEjbsE24zzsJkLfhcLZwMuy_kWQ4bFSGWFnu_93qBJa7zw892bvr3x_ACg126lg5hIXxx8QdwZL5HA9GH8f-J_sG9GbOvQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Localization+Based+on+Mixed-Norm+Minimization+Criterion&rft.jtitle=IEEE+access&rft.au=Park%2C+Chee-Hyun&rft.au=Chang%2C+Joon-Hyuk&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=57080&rft.epage=57093&rft_id=info:doi/10.1109%2FACCESS.2022.3177838&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3177838 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |