Cooperative Sensor-based Selective Graph Exploration Strategy for a Team of Quadrotors
This paper proposes an exploration strategy in unknown environments for a team of quadrotor Unmanned Aerial Vehicles (UAVs). Based on the frontier information, the proposed strategy builds a roadmap of the explored area in form of a Sensor-based Selective Graph (SSG) using simple data trees of the f...
Uloženo v:
| Vydáno v: | Journal of intelligent & robotic systems Ročník 103; číslo 2; s. 24 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.10.2021
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0921-0296, 1573-0409 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes an exploration strategy in unknown environments for a team of quadrotor Unmanned Aerial Vehicles (UAVs). Based on the frontier information, the proposed strategy builds a roadmap of the explored area in form of a Sensor-based Selective Graph (SSG) using simple data trees of the frontier and the hub node only. In particular, the frontier data tree is utilized to consider the adjacent frontier sectors as one frontier sector, and the next target node is generated maximizing the coverage of frontiers at each movement of quadrotors. In addition, to expand the proposed strategy to the three dimensional (3D) workspace with quadrotors, a Multiple Flight Levels (MFL) approach is proposed to increase the efficiency of the exploration. Moreover, when a quadrotor reaches a dead end where no frontier exists, the efficient backtracking algorithm chooses the best path to backtrack efficiently with a graph map provided by the SSG. With these contributions, we successfully develop the frontier-based exploration strategy for multiple quadrotors, and performance of the overall approach is validated by numerical simulations and experiments. |
|---|---|
| AbstractList | This paper proposes an exploration strategy in unknown environments for a team of quadrotor Unmanned Aerial Vehicles (UAVs). Based on the frontier information, the proposed strategy builds a roadmap of the explored area in form of a Sensor-based Selective Graph (SSG) using simple data trees of the frontier and the hub node only. In particular, the frontier data tree is utilized to consider the adjacent frontier sectors as one frontier sector, and the next target node is generated maximizing the coverage of frontiers at each movement of quadrotors. In addition, to expand the proposed strategy to the three dimensional (3D) workspace with quadrotors, a Multiple Flight Levels (MFL) approach is proposed to increase the efficiency of the exploration. Moreover, when a quadrotor reaches a dead end where no frontier exists, the efficient backtracking algorithm chooses the best path to backtrack efficiently with a graph map provided by the SSG. With these contributions, we successfully develop the frontier-based exploration strategy for multiple quadrotors, and performance of the overall approach is validated by numerical simulations and experiments. This paper proposes an exploration strategy in unknown environments for a team of quadrotor Unmanned Aerial Vehicles (UAVs). Based on the frontier information, the proposed strategy builds a roadmap of the explored area in form of a Sensor-based Selective Graph (SSG) using simple data trees of the frontier and the hub node only. In particular, the frontier data tree is utilized to consider the adjacent frontier sectors as one frontier sector, and the next target node is generated maximizing the coverage of frontiers at each movement of quadrotors. In addition, to expand the proposed strategy to the three dimensional (3D) workspace with quadrotors, a Multiple Flight Levels (MFL) approach is proposed to increase the efficiency of the exploration. Moreover, when a quadrotor reaches a dead end where no frontier exists, the efficient backtracking algorithm chooses the best path to backtrack efficiently with a graph map provided by the SSG. With these contributions, we successfully develop the frontier-based exploration strategy for multiple quadrotors, and performance of the overall approach is validated by numerical simulations and experiments. Keywords Cooperative robot exploration * Frontier-based exploration * Selective target node (STN) * Multiple flight levels (MFL) * Graph * Quadrotor * Unmanned aerial vehicle (UAV) |
| ArticleNumber | 24 |
| Audience | Academic |
| Author | Gadsden, S. Andrew Wilkerson, Stephen A. Kim, Jinho Eggleton, Charles D. |
| Author_xml | – sequence: 1 givenname: Jinho orcidid: 0000-0001-7144-2760 surname: Kim fullname: Kim, Jinho email: umbcjhkim@umbc.edu organization: University of Maryland – sequence: 2 givenname: Charles D. surname: Eggleton fullname: Eggleton, Charles D. organization: University of Maryland – sequence: 3 givenname: Stephen A. surname: Wilkerson fullname: Wilkerson, Stephen A. organization: York College of Pennsylvania – sequence: 4 givenname: S. Andrew surname: Gadsden fullname: Gadsden, S. Andrew organization: University of Guelph |
| BookMark | eNp9kE1LxDAQhoMouK7-AU8Fz9VpkzTJURa_QBDx4xrSdLJ26TY16Yr-e7NbQfAgOUwy8z6TmfeI7Pe-R0JOCzgvAMRFLECyKoeyyKFgkuewR2YFFzQHBmqfzEBtS6WqDslRjCsAUJKrGXldeD9gMGP7gdkT9tGHvDYRm_To0O7SN8EMb9nV59D5rdD32dOYLrj8ypwPmcme0awz77LHjWmCH32Ix-TAmS7iyU-ck5frq-fFbX7_cHO3uLzPLeVyzK0oFWdNXQtj0VJHHReVkBSddUpV0jLGUo3WCqREzrGqbe1q6piiAhpK5-Rs6jsE_77BOOqV34Q-falLXqlSKElFUp1PqqXpULe982l-m06D69YmJ12b8peiZMAppTIBcgJs8DEGdNq24271BLadLkBvbdeT7TrZrne2a0ho-QcdQrs24et_iE5QTOJ-ieF3jX-ob24xl0U |
| CitedBy_id | crossref_primary_10_1007_s10846_023_02043_6 |
| Cites_doi | 10.1016/j.robot.2009.11.005 10.1109/IROS.2011.6048764 10.1109/ICRA.2017.7989376 10.1177/0278364913494911 10.1109/ICCAR.2019.8813489 10.1109/SSRR.2011.6106794 10.1109/ICRA.2019.8793769 10.1080/01691864.2013.838333 10.1109/ICTAI.2015.60 10.1109/IROS.1995.525801 10.1016/j.robot.2011.09.005 10.1109/ICRA40945.2020.9196777 10.1109/IRC.2018.00016 10.1002/rob.21426 10.1016/j.robot.2016.08.015 10.1007/BF01386390 10.1007/s10514-017-9669-2 10.23919/ACC.2017.7963292 10.1117/12.2185196 10.1007/978-3-319-59147-6_51 10.1109/TSSC.1968.300136 10.1109/TMECH.2009.2013617 10.1007/978-3-319-60928-7_35 10.1177/02783640022066770 10.1177/0278364919846549 10.1117/12.2223350 10.1117/12.2223329 10.1109/ROBOT.2010.5509530 10.1109/IRIS.2017.8250106 10.1007/978-3-319-18299-5_2 10.1109/ROBOT.2004.1302457 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 COPYRIGHT 2021 Springer Copyright Springer Nature B.V. Oct 2021 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: COPYRIGHT 2021 Springer – notice: Copyright Springer Nature B.V. Oct 2021 |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10846-021-01485-0 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-0409 |
| ExternalDocumentID | A724053338 10_1007_s10846_021_01485_0 |
| GrantInformation_xml | – fundername: National Institute of Food and Agriculture grantid: NACA #58-8042-6-033 funderid: https://doi.org/10.13039/100005825 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAK LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9P PF0 PQQKQ PROAC PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8S Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFFHD AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c358t-c72954dbb7acec3f3f576783efcf9968c444b7a3b9088e55e6bcbfb3f49370d33 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000693076800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0921-0296 |
| IngestDate | Sat Oct 18 22:42:05 EDT 2025 Sat Nov 29 09:49:39 EST 2025 Sat Nov 29 01:33:01 EST 2025 Tue Nov 18 22:46:25 EST 2025 Fri Feb 21 02:47:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Unmanned aerial vehicle (UAV) Graph Selective target node (STN) Multiple flight levels (MFL) Frontier-based exploration Cooperative robot exploration Quadrotor |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-c72954dbb7acec3f3f576783efcf9968c444b7a3b9088e55e6bcbfb3f49370d33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7144-2760 |
| PQID | 2569279837 |
| PQPubID | 326251 |
| ParticipantIDs | proquest_journals_2569279837 gale_infotracacademiconefile_A724053338 crossref_citationtrail_10_1007_s10846_021_01485_0 crossref_primary_10_1007_s10846_021_01485_0 springer_journals_10_1007_s10846_021_01485_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20211000 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 20211000 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | with a special section on Unmanned Systems |
| PublicationTitle | Journal of intelligent & robotic systems |
| PublicationTitleAbbrev | J Intell Robot Syst |
| PublicationYear | 2021 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | Kim, J., Bonadies, S., Lee, A., Gadsden, S.A.: A cooperative exploration strategy with efficient backtracking for mobile robots. In: IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), pp 104–110. IEEE (2017) Optitrack: Prime 13W. https://optitrack.com/products/prime-13w/ (2021) Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Visual slam with a rgb-d camera on a quadrotor uav using on-board processing. In: International Work-Conference on Artificial Neural Networks, Springer, pp. 596–606 (2017) Kim, J., Wilkerson, S.A., Gadsden, S.A.: Comparison of gradient methods for gain tuning of a pd controller applied on a quadrotor system. In: Unmanned Systems Technology XVIII, Vol. 9837, International Society for Optics and Photonics, p. 98370V (2016) Kim, D., Carballo, D., Di Carlo, J., Katz, B., Bledt, G., Lim, B., Kim, S.: Vision aided dynamic exploration of unstructured terrain with a small-scale quadruped robot. IEEE (2020) Zeng, T., Si, B.: Mobile robot exploration based on rapidly-exploring random trees and dynamic window approach. IEEE, ICCAR (2019) Preiss, J.A., Honig, W., Sukhatme, G.S., Ayanian, N.: Crazyswarm: A large nano-quadcopter swarm. In: Robotics and Automation (ICRA), 2017 IEEE International Conference on, pp 3299–3304. IEEE (2017) Shrestha, R., Tian, F. -P., Feng, W., Tan, P., Vaughan, R.: Learned map prediction for enhanced mobile robot exploration. IEEE (2019) Bitcraze: Crazyradio PA. https://www.bitcraze.io/crazyradio-pa/ (2021) AmigoniFCagliotiVAn information-based exploration strategy for environment mapping with mobile robotsRobot. Auton. Syst.201058568469910.1016/j.robot.2009.11.005 Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 1398–1404 (1991) Wang, H., Yu, Y., Yuan, Q.: Application of dijkstra algorithm in robot path-planning. In: 2011 Second International Conference on Mechanic Automation and Control Engineering, IEEE, pp. 1067–1069 (2011) Nagatani, K., Kiribayashi, S., Okada, Y., Tadokoro, S., Nishimura, T., Yoshida, T., Koyanagi, E., Hada, Y.: Redesign of rescue mobile robot quince. IEEE (2011) Kim, J., Seong, K.J., Kim, H.J.: An efficient backtracking strategy for frontier method in sensor-based random tree. In: Control, Automation and Systems (ICCAS), 2012 12th International Conference on, IEEE, pp. 970–974 (2012) Goodman, J.M., Kim, J., Gadsden, S.A., Wilkerson, S.A.: System and mathematical modeling of quadrotor dynamics. In: Unmanned Systems Technology XVII, Vol. 9468, International Society for Optics and Photonics, p. 94680R (2015) Quann, M., Ojeda, L., Smith, W., Rizzo, D., Castanier, M., Barton, K.: An energy-efficient method for multi-robot reconnaissance in an unknown environment. In: American Control Conference (ACC), 2017, IEEE, pp. 2279–2284 (2017) OlsonEStromJMortonRRichardsonARanganathanPGoeddelRBulicMCrossmanJMarinierBProgress toward multi-robot reconnaissance and the magic 2010 competitionJ. Field Robot.201229576279210.1002/rob.21426 Korpela, C., Root, P., Kim, J., Wilkerson, S., Gadsden, S.A.: A framework for autonomous and continuous aerial intelligence, surveillance, and reconnaissance operations. In: Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications XIII, vol. 9828, International Society for Optics and Photonics, p. 982803 (2016) SenthilkumarKBharadwajKMulti-robot exploration and terrain coverage in an unknown environmentRobot. Auton. Syst.201260112313210.1016/j.robot.2011.09.005 Khamis, A., Hussein, A., Elmogy, A.: Multi-robot task allocation: A review of the state-of-the-art. In: Cooperative Robots and Sensor Networks 2015, Springer, pp. 31–51 (2015) FrancisGOttLMarchantRRamosFOccupancy map building through bayesian explorationInt. J. Robot. Res.201938776979210.1177/0278364919846549 Zhu, C., Ding, R., Lin, M., Wu, Y.: A 3d frontier-based exploration tool for mavs. IEEE (2015) SugiyamaHTsujiokaTMurataMReal-time exploration of a multi-robot rescue system in disaster areasAdv. Robot.201327171313132310.1080/01691864.2013.838333 Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng, F.: Cooperative mobile robotics: Antecedents and directions. In: Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, vol. 1, IEEE, pp. 226–234 (1995) Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), pp 146–151. IEEE (1997) ChosetHBurdickJSensor-based exploration: The hierarchical generalized voronoi graphInt. J. Rob. Res.20001929612510.1177/02783640022066770 Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Real-time 3d modeling with a rgb-d camera and on-board processing. In: International Conference on Augmented Reality, Virtual Reality and Computer Graphics, Springer, pp. 410–419 (2017) Butzke, J., Likhachev, M.: Planning for multi-robot exploration with multiple objective utility functions. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pp 3254–3259. IEEE (2011) Freda, L., Oriolo, G.: Frontier-based probabilistic strategies for sensor-based exploration. In: Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pp 3881–3887. IEEE (2005) Kaufman, E., Takami, K., Ai, Z., Lee, T.: Autonomous quadrotor 3d mapping and exploration using exact occupancy probabilities. In: 2018 Second IEEE International Conference on Robotic Computing (IRC), IEEE, pp. 49–55 (2018) StrömDPBogoslavskyiIStachnissCRobust exploration and homing for autonomous robotsRobot. Auton. Syst.20179012513510.1016/j.robot.2016.08.015 Oriolo, G., Vendittelli, M., Freda, L., Troso, G.: The srt method: Randomized strategies for exploration. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 5, IEEE, pp. 4688–4694 (2004) Doroodgar, B., Ficocelli, M., Mobedi, B., Nejat, G.: The search for survivors: Cooperative human-robot interaction in search and rescue environments using semi-autonomous robots. In: Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp 2858–2863. IEEE (2010) SugiharaKApproximation of generalized voronoi diagrams by ordinary voronoi diagramsCVGIP: Graph. Models Image Process.1993556522531 HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Trans. Syst. Sci. Cybern.19684210010710.1109/TSSC.1968.300136 DijkstraEWA note on two problems in connexion with graphsNumerische mathematik19591126927110760910.1007/BF01386390 Warren, C.W.: Global path planning using artificial potential fields. In: Robotics and Automation, 1989. Proceedings. 1989 IEEE International Conference on, pp 316–321. IEEE (1989) KeidarMKaminkaGAEfficient frontier detection for robot explorationInt. J. Robot. Res.201433221523610.1177/0278364913494911 FranchiAFredaLOrioloGVendittelliMThe sensor-based random graph method for cooperative robot explorationIEEE/ASME Trans. Mechatron.200914216317510.1109/TMECH.2009.2013617 Bitcraze: Crazyflie 2.0. https://www.bitcraze.io/crazyflie-2/ (2021) NelsonECorahMMichaelNEnvironment model adaptation for mobile robot explorationAuton. Robot.201842225727210.1007/s10514-017-9669-2 1485_CR2 M Keidar (1485_CR10) 2014; 33 1485_CR5 1485_CR1 H Choset (1485_CR28) 2000; 19 1485_CR29 1485_CR6 1485_CR26 A Franchi (1485_CR14) 2009; 14 1485_CR8 1485_CR24 1485_CR25 H Sugiyama (1485_CR3) 2013; 27 1485_CR22 1485_CR23 1485_CR20 1485_CR21 1485_CR40 1485_CR41 PE Hart (1485_CR31) 1968; 4 K Sugihara (1485_CR27) 1993; 55 F Amigoni (1485_CR7) 2010; 58 G Francis (1485_CR19) 2019; 38 EW Dijkstra (1485_CR33) 1959; 1 1485_CR39 1485_CR15 1485_CR37 1485_CR16 1485_CR38 1485_CR13 1485_CR35 1485_CR36 1485_CR11 E Nelson (1485_CR18) 2018; 42 1485_CR12 1485_CR34 DP Ström (1485_CR17) 2017; 90 1485_CR32 1485_CR30 E Olson (1485_CR4) 2012; 29 K Senthilkumar (1485_CR9) 2012; 60 |
| References_xml | – reference: Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 1398–1404 (1991) – reference: Bitcraze: Crazyradio PA. https://www.bitcraze.io/crazyradio-pa/ (2021) – reference: Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng, F.: Cooperative mobile robotics: Antecedents and directions. In: Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, vol. 1, IEEE, pp. 226–234 (1995) – reference: StrömDPBogoslavskyiIStachnissCRobust exploration and homing for autonomous robotsRobot. Auton. Syst.20179012513510.1016/j.robot.2016.08.015 – reference: Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Visual slam with a rgb-d camera on a quadrotor uav using on-board processing. In: International Work-Conference on Artificial Neural Networks, Springer, pp. 596–606 (2017) – reference: KeidarMKaminkaGAEfficient frontier detection for robot explorationInt. J. Robot. Res.201433221523610.1177/0278364913494911 – reference: Kim, D., Carballo, D., Di Carlo, J., Katz, B., Bledt, G., Lim, B., Kim, S.: Vision aided dynamic exploration of unstructured terrain with a small-scale quadruped robot. IEEE (2020) – reference: Preiss, J.A., Honig, W., Sukhatme, G.S., Ayanian, N.: Crazyswarm: A large nano-quadcopter swarm. In: Robotics and Automation (ICRA), 2017 IEEE International Conference on, pp 3299–3304. IEEE (2017) – reference: Nagatani, K., Kiribayashi, S., Okada, Y., Tadokoro, S., Nishimura, T., Yoshida, T., Koyanagi, E., Hada, Y.: Redesign of rescue mobile robot quince. IEEE (2011) – reference: HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Trans. Syst. Sci. Cybern.19684210010710.1109/TSSC.1968.300136 – reference: Kim, J., Seong, K.J., Kim, H.J.: An efficient backtracking strategy for frontier method in sensor-based random tree. In: Control, Automation and Systems (ICCAS), 2012 12th International Conference on, IEEE, pp. 970–974 (2012) – reference: Quann, M., Ojeda, L., Smith, W., Rizzo, D., Castanier, M., Barton, K.: An energy-efficient method for multi-robot reconnaissance in an unknown environment. In: American Control Conference (ACC), 2017, IEEE, pp. 2279–2284 (2017) – reference: FrancisGOttLMarchantRRamosFOccupancy map building through bayesian explorationInt. J. Robot. Res.201938776979210.1177/0278364919846549 – reference: Zeng, T., Si, B.: Mobile robot exploration based on rapidly-exploring random trees and dynamic window approach. IEEE, ICCAR (2019) – reference: SugiharaKApproximation of generalized voronoi diagrams by ordinary voronoi diagramsCVGIP: Graph. Models Image Process.1993556522531 – reference: Doroodgar, B., Ficocelli, M., Mobedi, B., Nejat, G.: The search for survivors: Cooperative human-robot interaction in search and rescue environments using semi-autonomous robots. In: Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp 2858–2863. IEEE (2010) – reference: NelsonECorahMMichaelNEnvironment model adaptation for mobile robot explorationAuton. Robot.201842225727210.1007/s10514-017-9669-2 – reference: Goodman, J.M., Kim, J., Gadsden, S.A., Wilkerson, S.A.: System and mathematical modeling of quadrotor dynamics. In: Unmanned Systems Technology XVII, Vol. 9468, International Society for Optics and Photonics, p. 94680R (2015) – reference: SugiyamaHTsujiokaTMurataMReal-time exploration of a multi-robot rescue system in disaster areasAdv. Robot.201327171313132310.1080/01691864.2013.838333 – reference: OlsonEStromJMortonRRichardsonARanganathanPGoeddelRBulicMCrossmanJMarinierBProgress toward multi-robot reconnaissance and the magic 2010 competitionJ. Field Robot.201229576279210.1002/rob.21426 – reference: AmigoniFCagliotiVAn information-based exploration strategy for environment mapping with mobile robotsRobot. Auton. Syst.201058568469910.1016/j.robot.2009.11.005 – reference: Oriolo, G., Vendittelli, M., Freda, L., Troso, G.: The srt method: Randomized strategies for exploration. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 5, IEEE, pp. 4688–4694 (2004) – reference: Shrestha, R., Tian, F. -P., Feng, W., Tan, P., Vaughan, R.: Learned map prediction for enhanced mobile robot exploration. IEEE (2019) – reference: Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), pp 146–151. IEEE (1997) – reference: Wang, H., Yu, Y., Yuan, Q.: Application of dijkstra algorithm in robot path-planning. In: 2011 Second International Conference on Mechanic Automation and Control Engineering, IEEE, pp. 1067–1069 (2011) – reference: Zhu, C., Ding, R., Lin, M., Wu, Y.: A 3d frontier-based exploration tool for mavs. IEEE (2015) – reference: ChosetHBurdickJSensor-based exploration: The hierarchical generalized voronoi graphInt. J. Rob. Res.20001929612510.1177/02783640022066770 – reference: Kaufman, E., Takami, K., Ai, Z., Lee, T.: Autonomous quadrotor 3d mapping and exploration using exact occupancy probabilities. In: 2018 Second IEEE International Conference on Robotic Computing (IRC), IEEE, pp. 49–55 (2018) – reference: Kim, J., Wilkerson, S.A., Gadsden, S.A.: Comparison of gradient methods for gain tuning of a pd controller applied on a quadrotor system. In: Unmanned Systems Technology XVIII, Vol. 9837, International Society for Optics and Photonics, p. 98370V (2016) – reference: Optitrack: Prime 13W. https://optitrack.com/products/prime-13w/ (2021) – reference: FranchiAFredaLOrioloGVendittelliMThe sensor-based random graph method for cooperative robot explorationIEEE/ASME Trans. Mechatron.200914216317510.1109/TMECH.2009.2013617 – reference: Butzke, J., Likhachev, M.: Planning for multi-robot exploration with multiple objective utility functions. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pp 3254–3259. IEEE (2011) – reference: Bitcraze: Crazyflie 2.0. https://www.bitcraze.io/crazyflie-2/ (2021) – reference: Khamis, A., Hussein, A., Elmogy, A.: Multi-robot task allocation: A review of the state-of-the-art. In: Cooperative Robots and Sensor Networks 2015, Springer, pp. 31–51 (2015) – reference: Kim, J., Bonadies, S., Lee, A., Gadsden, S.A.: A cooperative exploration strategy with efficient backtracking for mobile robots. In: IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), pp 104–110. IEEE (2017) – reference: Warren, C.W.: Global path planning using artificial potential fields. In: Robotics and Automation, 1989. Proceedings. 1989 IEEE International Conference on, pp 316–321. IEEE (1989) – reference: Korpela, C., Root, P., Kim, J., Wilkerson, S., Gadsden, S.A.: A framework for autonomous and continuous aerial intelligence, surveillance, and reconnaissance operations. In: Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications XIII, vol. 9828, International Society for Optics and Photonics, p. 982803 (2016) – reference: SenthilkumarKBharadwajKMulti-robot exploration and terrain coverage in an unknown environmentRobot. Auton. Syst.201260112313210.1016/j.robot.2011.09.005 – reference: Freda, L., Oriolo, G.: Frontier-based probabilistic strategies for sensor-based exploration. In: Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pp 3881–3887. IEEE (2005) – reference: Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Real-time 3d modeling with a rgb-d camera and on-board processing. In: International Conference on Augmented Reality, Virtual Reality and Computer Graphics, Springer, pp. 410–419 (2017) – reference: DijkstraEWA note on two problems in connexion with graphsNumerische mathematik19591126927110760910.1007/BF01386390 – volume: 58 start-page: 684 issue: 5 year: 2010 ident: 1485_CR7 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2009.11.005 – ident: 1485_CR8 doi: 10.1109/IROS.2011.6048764 – ident: 1485_CR40 doi: 10.1109/ICRA.2017.7989376 – volume: 33 start-page: 215 issue: 2 year: 2014 ident: 1485_CR10 publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913494911 – ident: 1485_CR22 doi: 10.1109/ICCAR.2019.8813489 – ident: 1485_CR2 doi: 10.1109/SSRR.2011.6106794 – ident: 1485_CR20 doi: 10.1109/ICRA.2019.8793769 – volume: 55 start-page: 522 issue: 6 year: 1993 ident: 1485_CR27 publication-title: CVGIP: Graph. Models Image Process. – volume: 27 start-page: 1313 issue: 17 year: 2013 ident: 1485_CR3 publication-title: Adv. Robot. doi: 10.1080/01691864.2013.838333 – ident: 1485_CR23 doi: 10.1109/ICTAI.2015.60 – ident: 1485_CR41 – ident: 1485_CR32 – ident: 1485_CR15 doi: 10.1109/IROS.1995.525801 – ident: 1485_CR30 – volume: 60 start-page: 123 issue: 1 year: 2012 ident: 1485_CR9 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2011.09.005 – ident: 1485_CR11 – ident: 1485_CR13 – ident: 1485_CR21 doi: 10.1109/ICRA40945.2020.9196777 – ident: 1485_CR26 doi: 10.1109/IRC.2018.00016 – ident: 1485_CR34 – volume: 29 start-page: 762 issue: 5 year: 2012 ident: 1485_CR4 publication-title: J. Field Robot. doi: 10.1002/rob.21426 – ident: 1485_CR38 – volume: 90 start-page: 125 year: 2017 ident: 1485_CR17 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2016.08.015 – volume: 1 start-page: 269 issue: 1 year: 1959 ident: 1485_CR33 publication-title: Numerische mathematik doi: 10.1007/BF01386390 – volume: 42 start-page: 257 issue: 2 year: 2018 ident: 1485_CR18 publication-title: Auton. Robot. doi: 10.1007/s10514-017-9669-2 – ident: 1485_CR6 doi: 10.23919/ACC.2017.7963292 – ident: 1485_CR36 doi: 10.1117/12.2185196 – ident: 1485_CR24 doi: 10.1007/978-3-319-59147-6_51 – volume: 4 start-page: 100 issue: 2 year: 1968 ident: 1485_CR31 publication-title: IEEE Trans. Syst. Sci. Cybern. doi: 10.1109/TSSC.1968.300136 – volume: 14 start-page: 163 issue: 2 year: 2009 ident: 1485_CR14 publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2009.2013617 – ident: 1485_CR25 doi: 10.1007/978-3-319-60928-7_35 – volume: 19 start-page: 96 issue: 2 year: 2000 ident: 1485_CR28 publication-title: Int. J. Rob. Res. doi: 10.1177/02783640022066770 – ident: 1485_CR29 – volume: 38 start-page: 769 issue: 7 year: 2019 ident: 1485_CR19 publication-title: Int. J. Robot. Res. doi: 10.1177/0278364919846549 – ident: 1485_CR5 doi: 10.1117/12.2223350 – ident: 1485_CR37 doi: 10.1117/12.2223329 – ident: 1485_CR1 doi: 10.1109/ROBOT.2010.5509530 – ident: 1485_CR35 doi: 10.1109/IRIS.2017.8250106 – ident: 1485_CR16 doi: 10.1007/978-3-319-18299-5_2 – ident: 1485_CR12 doi: 10.1109/ROBOT.2004.1302457 – ident: 1485_CR39 |
| SSID | ssj0009859 |
| Score | 2.2839 |
| Snippet | This paper proposes an exploration strategy in unknown environments for a team of quadrotor Unmanned Aerial Vehicles (UAVs). Based on the frontier information,... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 24 |
| SubjectTerms | Algorithms Artificial Intelligence Control Drone aircraft Electrical Engineering Engineering Exploration Mechanical Engineering Mechatronics Numerical analysis Regular Paper Robotics Robots Rotary wing aircraft Sensors Simulation methods Topical collection on Unmanned Systems Unknown environments Unmanned aerial vehicles Unmanned helicopters |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS_QwEB_Ez4MefIvrixwEDxroNm2THkV8HER8Lt5CniDodtldhe-__yZt-q1v0GNpmoZ5ZGaSmd8A7KaJSaxKLHXaYICS6YQqViiqedemKM-FqPuQ9c75xYW4vy8vY1HYqM12b68k6536VbEb2koaUgrCKVhOMVD_g-ZOBHW8vulNoHZF3iDshZFpWcRSmc_neGOO3m_KH25Ha6NzsvC75S7CfHQyyWEjFUsw5frLsNA2cCBRn5dh7hUa4Qr0jqpq4BokcHKD4W01pMHIWXx4bPZFchrwrUmTuFfzlER4278EvV-iyK1TT6Ty5OpZ2WEVWvmswt3J8e3RGY1tF6hhuRhTw8Pdn9WaK-MM88xjTMIFc954jI6EyZClXDEdUqRcnrtCG-018xm6OollbA2m-1XfrQNB01ckqlsaK2ymswAWr7TyWWK5LnzhO9BtqS9NxCQPrTEe5QRNOZBRIhllTUaZdGD__zeDBpHj29F7gakyqCvObFSsOsD1BeArecjRpUGXl4kObLV8l1GPRxIdwjLlJUbxHTho-Tx5_fV_N342fBNm0yAqdZbgFkyPh89uG2bMy_hhNNyp5fsfPZTzGQ priority: 102 providerName: Springer Nature |
| Title | Cooperative Sensor-based Selective Graph Exploration Strategy for a Team of Quadrotors |
| URI | https://link.springer.com/article/10.1007/s10846-021-01485-0 https://www.proquest.com/docview/2569279837 |
| Volume | 103 |
| WOSCitedRecordID | wos000693076800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: K7- dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: M7S dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: P5Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Online Journals customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOFAqIhbLyAYkDWDhxEicnVKoWJNBq6ZZVxcXyU0Iqm2V3i8S_ZyZxWB6iFy6WojiOpW88D3v8DcDTXDjhjfA8WIcBSmEFN7Iy3KrM5yjPVd3VIZu_V5NJfX7eTNOG2zqlVQ46sVPUvnW0R_4STXOTqwbjqVfLr5yqRtHpaiqhcR12szzPSM7fKb4l3a3Lnmsvx5A5b6p0aSZdnUPLyylBgfbUSi5-M0x_que_zkk783Oy978TvwO3k-PJDntJuQvXwmIf9oaiDiyt8X249QtD4T2YH7XtMvTs4GyGIW-74mT4PD5c9LqSvSHOa9Yn83U4s0R5-52hR8wMOwvmC2sj-3Bp_Kql8j734ePJ8dnRW55KMXAny3rDnaLzQG-tMi44GWXEOEXVMkQXMWKqXYEwKyMtpU2FsgyVdTZaGQt0f4SX8gHsLNpFeAgMzWElTNY4X_vCFkQgb6yJhfDKVrGKI8gGHLRLPOVULuNCbxmWCTuN2OkOOy1G8PznN8uepePK3s8IXk1LGEd2Jt1EwPkRGZY-VOjmoBss6xEcDJjqtLbXegvoCF4MUrF9_e__Prp6tMdwMyd57DIFD2Bns7oMT-CG-7b5vF6NYff18WR6Ou4kfEwpqjNsp-UnbE9n8x__BgHK |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk4tFBAbFvABxAHsMjGSZwcEKoKpdUuKxBL1ZvxU0JqN9vdLVX_FL-RmcRheYjeeuAYJXEe_jzfjD3-BuBJmtjE6cRxbywGKJlJuBaF5kb2XYp4LsqmDtnhUI5G5dFR9WEFvnd7YSitsrOJjaF2taU58pdIzVUqK4ynXk9POVWNotXVroRGC4uBvzjHkG3-6uAN9u_TNN17O97d57GqALciLxfcSlracsZIbb0VQQR0uWUpfLABnf_SZvjGUgtDGUA-z31hrAlGhAyZPHE0AYom_1omSkla_QPJlyK_Zd5q-6UYoqdVETfpxK16yPScEiJoDi_nyW9E-Ccd_LUu29Dd3vr_9qNuw1p0rNlOOxLuwIqfbMB6V7SCRRu2Abd-UWC8C4e7dT31rfo5-4QhfT3jROwOD45bLmDvSNObtcmKDY5ZlPS9YOjxM83GXp-wOrCPZ9rNaipfdA8-X8m33ofVST3xD4Ah3ReJ7lfWlS4zGQnka6NDljhpilCEHvS7flc26rBTOZBjtVSQJqwoxIpqsKKSHjz_ec-0VSG59OpnBCdFJgpbtjrutMD3I7EvtSPRjUM3X5Q92O4wpKLtmqslgHrwokPh8vS_n7t5eWuP4cb--P1QDQ9Ggy24mdJYaLIit2F1MTvzD-G6_bb4Op89akYVgy9Xjc4fCTZb8Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBSE4UCggFgr4AOIAVr15OTlUVdWyUG21KqJUvbl-SkjtZru7BfWv9dd1JnFYHqK3HjhGSRwn-TzfjD3-BuB1IqxwWjjujcUAJTOC67TQ3Mi-SxDPRdnUITvck6NReXRU7S_BZbcXhtIqO5vYGGpXW5ojX0dqrhJZYTy1HmJaxP7OYHNyxqmCFK20duU0WogM_cUPDN9mG7s7-K_fJMngw8H2Jx4rDHCb5uWcW0nLXM4Yqa23aUgDut-yTH2wAQOB0mbYe6lTQ9lAPs99YawJJg0ZsrpwNBmK5v8WsnBOY2wo-ULwt8xbnb8Ew_WkKuKGnbhtD1mfU3IEzeflXPxGin9Sw19rtA31DVb-54_2AO5Hh5tttSPkISz58SqsdMUsWLRtq3DvF2XGR3C4XdcT36qisy8Y6tdTToTv8OCk5Qj2kbS-WZvE2OCbRanfC4aRANPswOtTVgf2-Vy7aU1ljR7D1xt51yewPK7H_ikwdAMKofuVdaXLTEbC-drokAknTRGK0IN-hwFloz47lQk5UQtlacKNQtyoBjdK9ODdz3smrTrJtVe_JWgpMl3YstVxBwb2j0TA1JZE9w7d_7TswVqHJxVt2kwtwNSD9x0iF6f__dxn17f2Cu4gKNXe7mj4HO4mNCyaZMk1WJ5Pz_0LuG2_z7_Npi-bAcbg-KbBeQUfv2Sr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Sensor-based+Selective+Graph+Exploration+Strategy+for+a+Team+of+Quadrotors&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.date=2021-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=103&rft.issue=2&rft.spage=24&rft_id=info:doi/10.1007%2Fs10846-021-01485-0&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon |