Cooperative Sensor-based Selective Graph Exploration Strategy for a Team of Quadrotors

This paper proposes an exploration strategy in unknown environments for a team of quadrotor Unmanned Aerial Vehicles (UAVs). Based on the frontier information, the proposed strategy builds a roadmap of the explored area in form of a Sensor-based Selective Graph (SSG) using simple data trees of the f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of intelligent & robotic systems Ročník 103; číslo 2; s. 24
Hlavní autoři: Kim, Jinho, Eggleton, Charles D., Wilkerson, Stephen A., Gadsden, S. Andrew
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.10.2021
Springer
Springer Nature B.V
Témata:
ISSN:0921-0296, 1573-0409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes an exploration strategy in unknown environments for a team of quadrotor Unmanned Aerial Vehicles (UAVs). Based on the frontier information, the proposed strategy builds a roadmap of the explored area in form of a Sensor-based Selective Graph (SSG) using simple data trees of the frontier and the hub node only. In particular, the frontier data tree is utilized to consider the adjacent frontier sectors as one frontier sector, and the next target node is generated maximizing the coverage of frontiers at each movement of quadrotors. In addition, to expand the proposed strategy to the three dimensional (3D) workspace with quadrotors, a Multiple Flight Levels (MFL) approach is proposed to increase the efficiency of the exploration. Moreover, when a quadrotor reaches a dead end where no frontier exists, the efficient backtracking algorithm chooses the best path to backtrack efficiently with a graph map provided by the SSG. With these contributions, we successfully develop the frontier-based exploration strategy for multiple quadrotors, and performance of the overall approach is validated by numerical simulations and experiments.
AbstractList This paper proposes an exploration strategy in unknown environments for a team of quadrotor Unmanned Aerial Vehicles (UAVs). Based on the frontier information, the proposed strategy builds a roadmap of the explored area in form of a Sensor-based Selective Graph (SSG) using simple data trees of the frontier and the hub node only. In particular, the frontier data tree is utilized to consider the adjacent frontier sectors as one frontier sector, and the next target node is generated maximizing the coverage of frontiers at each movement of quadrotors. In addition, to expand the proposed strategy to the three dimensional (3D) workspace with quadrotors, a Multiple Flight Levels (MFL) approach is proposed to increase the efficiency of the exploration. Moreover, when a quadrotor reaches a dead end where no frontier exists, the efficient backtracking algorithm chooses the best path to backtrack efficiently with a graph map provided by the SSG. With these contributions, we successfully develop the frontier-based exploration strategy for multiple quadrotors, and performance of the overall approach is validated by numerical simulations and experiments.
This paper proposes an exploration strategy in unknown environments for a team of quadrotor Unmanned Aerial Vehicles (UAVs). Based on the frontier information, the proposed strategy builds a roadmap of the explored area in form of a Sensor-based Selective Graph (SSG) using simple data trees of the frontier and the hub node only. In particular, the frontier data tree is utilized to consider the adjacent frontier sectors as one frontier sector, and the next target node is generated maximizing the coverage of frontiers at each movement of quadrotors. In addition, to expand the proposed strategy to the three dimensional (3D) workspace with quadrotors, a Multiple Flight Levels (MFL) approach is proposed to increase the efficiency of the exploration. Moreover, when a quadrotor reaches a dead end where no frontier exists, the efficient backtracking algorithm chooses the best path to backtrack efficiently with a graph map provided by the SSG. With these contributions, we successfully develop the frontier-based exploration strategy for multiple quadrotors, and performance of the overall approach is validated by numerical simulations and experiments. Keywords Cooperative robot exploration * Frontier-based exploration * Selective target node (STN) * Multiple flight levels (MFL) * Graph * Quadrotor * Unmanned aerial vehicle (UAV)
ArticleNumber 24
Audience Academic
Author Gadsden, S. Andrew
Wilkerson, Stephen A.
Kim, Jinho
Eggleton, Charles D.
Author_xml – sequence: 1
  givenname: Jinho
  orcidid: 0000-0001-7144-2760
  surname: Kim
  fullname: Kim, Jinho
  email: umbcjhkim@umbc.edu
  organization: University of Maryland
– sequence: 2
  givenname: Charles D.
  surname: Eggleton
  fullname: Eggleton, Charles D.
  organization: University of Maryland
– sequence: 3
  givenname: Stephen A.
  surname: Wilkerson
  fullname: Wilkerson, Stephen A.
  organization: York College of Pennsylvania
– sequence: 4
  givenname: S. Andrew
  surname: Gadsden
  fullname: Gadsden, S. Andrew
  organization: University of Guelph
BookMark eNp9kE1LxDAQhoMouK7-AU8Fz9VpkzTJURa_QBDx4xrSdLJ26TY16Yr-e7NbQfAgOUwy8z6TmfeI7Pe-R0JOCzgvAMRFLECyKoeyyKFgkuewR2YFFzQHBmqfzEBtS6WqDslRjCsAUJKrGXldeD9gMGP7gdkT9tGHvDYRm_To0O7SN8EMb9nV59D5rdD32dOYLrj8ypwPmcme0awz77LHjWmCH32Ix-TAmS7iyU-ck5frq-fFbX7_cHO3uLzPLeVyzK0oFWdNXQtj0VJHHReVkBSddUpV0jLGUo3WCqREzrGqbe1q6piiAhpK5-Rs6jsE_77BOOqV34Q-falLXqlSKElFUp1PqqXpULe982l-m06D69YmJ12b8peiZMAppTIBcgJs8DEGdNq24271BLadLkBvbdeT7TrZrne2a0ho-QcdQrs24et_iE5QTOJ-ieF3jX-ob24xl0U
CitedBy_id crossref_primary_10_1007_s10846_023_02043_6
Cites_doi 10.1016/j.robot.2009.11.005
10.1109/IROS.2011.6048764
10.1109/ICRA.2017.7989376
10.1177/0278364913494911
10.1109/ICCAR.2019.8813489
10.1109/SSRR.2011.6106794
10.1109/ICRA.2019.8793769
10.1080/01691864.2013.838333
10.1109/ICTAI.2015.60
10.1109/IROS.1995.525801
10.1016/j.robot.2011.09.005
10.1109/ICRA40945.2020.9196777
10.1109/IRC.2018.00016
10.1002/rob.21426
10.1016/j.robot.2016.08.015
10.1007/BF01386390
10.1007/s10514-017-9669-2
10.23919/ACC.2017.7963292
10.1117/12.2185196
10.1007/978-3-319-59147-6_51
10.1109/TSSC.1968.300136
10.1109/TMECH.2009.2013617
10.1007/978-3-319-60928-7_35
10.1177/02783640022066770
10.1177/0278364919846549
10.1117/12.2223350
10.1117/12.2223329
10.1109/ROBOT.2010.5509530
10.1109/IRIS.2017.8250106
10.1007/978-3-319-18299-5_2
10.1109/ROBOT.2004.1302457
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
COPYRIGHT 2021 Springer
Copyright Springer Nature B.V. Oct 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: COPYRIGHT 2021 Springer
– notice: Copyright Springer Nature B.V. Oct 2021
DBID AAYXX
CITATION
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10846-021-01485-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-0409
ExternalDocumentID A724053338
10_1007_s10846_021_01485_0
GrantInformation_xml – fundername: National Institute of Food and Agriculture
  grantid: NACA #58-8042-6-033
  funderid: https://doi.org/10.13039/100005825
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9P
PF0
PQQKQ
PROAC
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-c72954dbb7acec3f3f576783efcf9968c444b7a3b9088e55e6bcbfb3f49370d33
IEDL.DBID K7-
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000693076800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0921-0296
IngestDate Sat Oct 18 22:42:05 EDT 2025
Sat Nov 29 09:49:39 EST 2025
Sat Nov 29 01:33:01 EST 2025
Tue Nov 18 22:46:25 EST 2025
Fri Feb 21 02:47:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Unmanned aerial vehicle (UAV)
Graph
Selective target node (STN)
Multiple flight levels (MFL)
Frontier-based exploration
Cooperative robot exploration
Quadrotor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-c72954dbb7acec3f3f576783efcf9968c444b7a3b9088e55e6bcbfb3f49370d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7144-2760
PQID 2569279837
PQPubID 326251
ParticipantIDs proquest_journals_2569279837
gale_infotracacademiconefile_A724053338
crossref_citationtrail_10_1007_s10846_021_01485_0
crossref_primary_10_1007_s10846_021_01485_0
springer_journals_10_1007_s10846_021_01485_0
PublicationCentury 2000
PublicationDate 20211000
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle with a special section on Unmanned Systems
PublicationTitle Journal of intelligent & robotic systems
PublicationTitleAbbrev J Intell Robot Syst
PublicationYear 2021
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Kim, J., Bonadies, S., Lee, A., Gadsden, S.A.: A cooperative exploration strategy with efficient backtracking for mobile robots. In: IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), pp 104–110. IEEE (2017)
Optitrack: Prime 13W. https://optitrack.com/products/prime-13w/ (2021)
Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Visual slam with a rgb-d camera on a quadrotor uav using on-board processing. In: International Work-Conference on Artificial Neural Networks, Springer, pp. 596–606 (2017)
Kim, J., Wilkerson, S.A., Gadsden, S.A.: Comparison of gradient methods for gain tuning of a pd controller applied on a quadrotor system. In: Unmanned Systems Technology XVIII, Vol. 9837, International Society for Optics and Photonics, p. 98370V (2016)
Kim, D., Carballo, D., Di Carlo, J., Katz, B., Bledt, G., Lim, B., Kim, S.: Vision aided dynamic exploration of unstructured terrain with a small-scale quadruped robot. IEEE (2020)
Zeng, T., Si, B.: Mobile robot exploration based on rapidly-exploring random trees and dynamic window approach. IEEE, ICCAR (2019)
Preiss, J.A., Honig, W., Sukhatme, G.S., Ayanian, N.: Crazyswarm: A large nano-quadcopter swarm. In: Robotics and Automation (ICRA), 2017 IEEE International Conference on, pp 3299–3304. IEEE (2017)
Shrestha, R., Tian, F. -P., Feng, W., Tan, P., Vaughan, R.: Learned map prediction for enhanced mobile robot exploration. IEEE (2019)
Bitcraze: Crazyradio PA. https://www.bitcraze.io/crazyradio-pa/ (2021)
AmigoniFCagliotiVAn information-based exploration strategy for environment mapping with mobile robotsRobot. Auton. Syst.201058568469910.1016/j.robot.2009.11.005
Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 1398–1404 (1991)
Wang, H., Yu, Y., Yuan, Q.: Application of dijkstra algorithm in robot path-planning. In: 2011 Second International Conference on Mechanic Automation and Control Engineering, IEEE, pp. 1067–1069 (2011)
Nagatani, K., Kiribayashi, S., Okada, Y., Tadokoro, S., Nishimura, T., Yoshida, T., Koyanagi, E., Hada, Y.: Redesign of rescue mobile robot quince. IEEE (2011)
Kim, J., Seong, K.J., Kim, H.J.: An efficient backtracking strategy for frontier method in sensor-based random tree. In: Control, Automation and Systems (ICCAS), 2012 12th International Conference on, IEEE, pp. 970–974 (2012)
Goodman, J.M., Kim, J., Gadsden, S.A., Wilkerson, S.A.: System and mathematical modeling of quadrotor dynamics. In: Unmanned Systems Technology XVII, Vol. 9468, International Society for Optics and Photonics, p. 94680R (2015)
Quann, M., Ojeda, L., Smith, W., Rizzo, D., Castanier, M., Barton, K.: An energy-efficient method for multi-robot reconnaissance in an unknown environment. In: American Control Conference (ACC), 2017, IEEE, pp. 2279–2284 (2017)
OlsonEStromJMortonRRichardsonARanganathanPGoeddelRBulicMCrossmanJMarinierBProgress toward multi-robot reconnaissance and the magic 2010 competitionJ. Field Robot.201229576279210.1002/rob.21426
Korpela, C., Root, P., Kim, J., Wilkerson, S., Gadsden, S.A.: A framework for autonomous and continuous aerial intelligence, surveillance, and reconnaissance operations. In: Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications XIII, vol. 9828, International Society for Optics and Photonics, p. 982803 (2016)
SenthilkumarKBharadwajKMulti-robot exploration and terrain coverage in an unknown environmentRobot. Auton. Syst.201260112313210.1016/j.robot.2011.09.005
Khamis, A., Hussein, A., Elmogy, A.: Multi-robot task allocation: A review of the state-of-the-art. In: Cooperative Robots and Sensor Networks 2015, Springer, pp. 31–51 (2015)
FrancisGOttLMarchantRRamosFOccupancy map building through bayesian explorationInt. J. Robot. Res.201938776979210.1177/0278364919846549
Zhu, C., Ding, R., Lin, M., Wu, Y.: A 3d frontier-based exploration tool for mavs. IEEE (2015)
SugiyamaHTsujiokaTMurataMReal-time exploration of a multi-robot rescue system in disaster areasAdv. Robot.201327171313132310.1080/01691864.2013.838333
Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng, F.: Cooperative mobile robotics: Antecedents and directions. In: Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, vol. 1, IEEE, pp. 226–234 (1995)
Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), pp 146–151. IEEE (1997)
ChosetHBurdickJSensor-based exploration: The hierarchical generalized voronoi graphInt. J. Rob. Res.20001929612510.1177/02783640022066770
Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Real-time 3d modeling with a rgb-d camera and on-board processing. In: International Conference on Augmented Reality, Virtual Reality and Computer Graphics, Springer, pp. 410–419 (2017)
Butzke, J., Likhachev, M.: Planning for multi-robot exploration with multiple objective utility functions. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pp 3254–3259. IEEE (2011)
Freda, L., Oriolo, G.: Frontier-based probabilistic strategies for sensor-based exploration. In: Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pp 3881–3887. IEEE (2005)
Kaufman, E., Takami, K., Ai, Z., Lee, T.: Autonomous quadrotor 3d mapping and exploration using exact occupancy probabilities. In: 2018 Second IEEE International Conference on Robotic Computing (IRC), IEEE, pp. 49–55 (2018)
StrömDPBogoslavskyiIStachnissCRobust exploration and homing for autonomous robotsRobot. Auton. Syst.20179012513510.1016/j.robot.2016.08.015
Oriolo, G., Vendittelli, M., Freda, L., Troso, G.: The srt method: Randomized strategies for exploration. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 5, IEEE, pp. 4688–4694 (2004)
Doroodgar, B., Ficocelli, M., Mobedi, B., Nejat, G.: The search for survivors: Cooperative human-robot interaction in search and rescue environments using semi-autonomous robots. In: Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp 2858–2863. IEEE (2010)
SugiharaKApproximation of generalized voronoi diagrams by ordinary voronoi diagramsCVGIP: Graph. Models Image Process.1993556522531
HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Trans. Syst. Sci. Cybern.19684210010710.1109/TSSC.1968.300136
DijkstraEWA note on two problems in connexion with graphsNumerische mathematik19591126927110760910.1007/BF01386390
Warren, C.W.: Global path planning using artificial potential fields. In: Robotics and Automation, 1989. Proceedings. 1989 IEEE International Conference on, pp 316–321. IEEE (1989)
KeidarMKaminkaGAEfficient frontier detection for robot explorationInt. J. Robot. Res.201433221523610.1177/0278364913494911
FranchiAFredaLOrioloGVendittelliMThe sensor-based random graph method for cooperative robot explorationIEEE/ASME Trans. Mechatron.200914216317510.1109/TMECH.2009.2013617
Bitcraze: Crazyflie 2.0. https://www.bitcraze.io/crazyflie-2/ (2021)
NelsonECorahMMichaelNEnvironment model adaptation for mobile robot explorationAuton. Robot.201842225727210.1007/s10514-017-9669-2
1485_CR2
M Keidar (1485_CR10) 2014; 33
1485_CR5
1485_CR1
H Choset (1485_CR28) 2000; 19
1485_CR29
1485_CR6
1485_CR26
A Franchi (1485_CR14) 2009; 14
1485_CR8
1485_CR24
1485_CR25
H Sugiyama (1485_CR3) 2013; 27
1485_CR22
1485_CR23
1485_CR20
1485_CR21
1485_CR40
1485_CR41
PE Hart (1485_CR31) 1968; 4
K Sugihara (1485_CR27) 1993; 55
F Amigoni (1485_CR7) 2010; 58
G Francis (1485_CR19) 2019; 38
EW Dijkstra (1485_CR33) 1959; 1
1485_CR39
1485_CR15
1485_CR37
1485_CR16
1485_CR38
1485_CR13
1485_CR35
1485_CR36
1485_CR11
E Nelson (1485_CR18) 2018; 42
1485_CR12
1485_CR34
DP Ström (1485_CR17) 2017; 90
1485_CR32
1485_CR30
E Olson (1485_CR4) 2012; 29
K Senthilkumar (1485_CR9) 2012; 60
References_xml – reference: Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 1398–1404 (1991)
– reference: Bitcraze: Crazyradio PA. https://www.bitcraze.io/crazyradio-pa/ (2021)
– reference: Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng, F.: Cooperative mobile robotics: Antecedents and directions. In: Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, vol. 1, IEEE, pp. 226–234 (1995)
– reference: StrömDPBogoslavskyiIStachnissCRobust exploration and homing for autonomous robotsRobot. Auton. Syst.20179012513510.1016/j.robot.2016.08.015
– reference: Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Visual slam with a rgb-d camera on a quadrotor uav using on-board processing. In: International Work-Conference on Artificial Neural Networks, Springer, pp. 596–606 (2017)
– reference: KeidarMKaminkaGAEfficient frontier detection for robot explorationInt. J. Robot. Res.201433221523610.1177/0278364913494911
– reference: Kim, D., Carballo, D., Di Carlo, J., Katz, B., Bledt, G., Lim, B., Kim, S.: Vision aided dynamic exploration of unstructured terrain with a small-scale quadruped robot. IEEE (2020)
– reference: Preiss, J.A., Honig, W., Sukhatme, G.S., Ayanian, N.: Crazyswarm: A large nano-quadcopter swarm. In: Robotics and Automation (ICRA), 2017 IEEE International Conference on, pp 3299–3304. IEEE (2017)
– reference: Nagatani, K., Kiribayashi, S., Okada, Y., Tadokoro, S., Nishimura, T., Yoshida, T., Koyanagi, E., Hada, Y.: Redesign of rescue mobile robot quince. IEEE (2011)
– reference: HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Trans. Syst. Sci. Cybern.19684210010710.1109/TSSC.1968.300136
– reference: Kim, J., Seong, K.J., Kim, H.J.: An efficient backtracking strategy for frontier method in sensor-based random tree. In: Control, Automation and Systems (ICCAS), 2012 12th International Conference on, IEEE, pp. 970–974 (2012)
– reference: Quann, M., Ojeda, L., Smith, W., Rizzo, D., Castanier, M., Barton, K.: An energy-efficient method for multi-robot reconnaissance in an unknown environment. In: American Control Conference (ACC), 2017, IEEE, pp. 2279–2284 (2017)
– reference: FrancisGOttLMarchantRRamosFOccupancy map building through bayesian explorationInt. J. Robot. Res.201938776979210.1177/0278364919846549
– reference: Zeng, T., Si, B.: Mobile robot exploration based on rapidly-exploring random trees and dynamic window approach. IEEE, ICCAR (2019)
– reference: SugiharaKApproximation of generalized voronoi diagrams by ordinary voronoi diagramsCVGIP: Graph. Models Image Process.1993556522531
– reference: Doroodgar, B., Ficocelli, M., Mobedi, B., Nejat, G.: The search for survivors: Cooperative human-robot interaction in search and rescue environments using semi-autonomous robots. In: Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp 2858–2863. IEEE (2010)
– reference: NelsonECorahMMichaelNEnvironment model adaptation for mobile robot explorationAuton. Robot.201842225727210.1007/s10514-017-9669-2
– reference: Goodman, J.M., Kim, J., Gadsden, S.A., Wilkerson, S.A.: System and mathematical modeling of quadrotor dynamics. In: Unmanned Systems Technology XVII, Vol. 9468, International Society for Optics and Photonics, p. 94680R (2015)
– reference: SugiyamaHTsujiokaTMurataMReal-time exploration of a multi-robot rescue system in disaster areasAdv. Robot.201327171313132310.1080/01691864.2013.838333
– reference: OlsonEStromJMortonRRichardsonARanganathanPGoeddelRBulicMCrossmanJMarinierBProgress toward multi-robot reconnaissance and the magic 2010 competitionJ. Field Robot.201229576279210.1002/rob.21426
– reference: AmigoniFCagliotiVAn information-based exploration strategy for environment mapping with mobile robotsRobot. Auton. Syst.201058568469910.1016/j.robot.2009.11.005
– reference: Oriolo, G., Vendittelli, M., Freda, L., Troso, G.: The srt method: Randomized strategies for exploration. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 5, IEEE, pp. 4688–4694 (2004)
– reference: Shrestha, R., Tian, F. -P., Feng, W., Tan, P., Vaughan, R.: Learned map prediction for enhanced mobile robot exploration. IEEE (2019)
– reference: Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), pp 146–151. IEEE (1997)
– reference: Wang, H., Yu, Y., Yuan, Q.: Application of dijkstra algorithm in robot path-planning. In: 2011 Second International Conference on Mechanic Automation and Control Engineering, IEEE, pp. 1067–1069 (2011)
– reference: Zhu, C., Ding, R., Lin, M., Wu, Y.: A 3d frontier-based exploration tool for mavs. IEEE (2015)
– reference: ChosetHBurdickJSensor-based exploration: The hierarchical generalized voronoi graphInt. J. Rob. Res.20001929612510.1177/02783640022066770
– reference: Kaufman, E., Takami, K., Ai, Z., Lee, T.: Autonomous quadrotor 3d mapping and exploration using exact occupancy probabilities. In: 2018 Second IEEE International Conference on Robotic Computing (IRC), IEEE, pp. 49–55 (2018)
– reference: Kim, J., Wilkerson, S.A., Gadsden, S.A.: Comparison of gradient methods for gain tuning of a pd controller applied on a quadrotor system. In: Unmanned Systems Technology XVIII, Vol. 9837, International Society for Optics and Photonics, p. 98370V (2016)
– reference: Optitrack: Prime 13W. https://optitrack.com/products/prime-13w/ (2021)
– reference: FranchiAFredaLOrioloGVendittelliMThe sensor-based random graph method for cooperative robot explorationIEEE/ASME Trans. Mechatron.200914216317510.1109/TMECH.2009.2013617
– reference: Butzke, J., Likhachev, M.: Planning for multi-robot exploration with multiple objective utility functions. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pp 3254–3259. IEEE (2011)
– reference: Bitcraze: Crazyflie 2.0. https://www.bitcraze.io/crazyflie-2/ (2021)
– reference: Khamis, A., Hussein, A., Elmogy, A.: Multi-robot task allocation: A review of the state-of-the-art. In: Cooperative Robots and Sensor Networks 2015, Springer, pp. 31–51 (2015)
– reference: Kim, J., Bonadies, S., Lee, A., Gadsden, S.A.: A cooperative exploration strategy with efficient backtracking for mobile robots. In: IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), pp 104–110. IEEE (2017)
– reference: Warren, C.W.: Global path planning using artificial potential fields. In: Robotics and Automation, 1989. Proceedings. 1989 IEEE International Conference on, pp 316–321. IEEE (1989)
– reference: Korpela, C., Root, P., Kim, J., Wilkerson, S., Gadsden, S.A.: A framework for autonomous and continuous aerial intelligence, surveillance, and reconnaissance operations. In: Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications XIII, vol. 9828, International Society for Optics and Photonics, p. 982803 (2016)
– reference: SenthilkumarKBharadwajKMulti-robot exploration and terrain coverage in an unknown environmentRobot. Auton. Syst.201260112313210.1016/j.robot.2011.09.005
– reference: Freda, L., Oriolo, G.: Frontier-based probabilistic strategies for sensor-based exploration. In: Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pp 3881–3887. IEEE (2005)
– reference: Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Real-time 3d modeling with a rgb-d camera and on-board processing. In: International Conference on Augmented Reality, Virtual Reality and Computer Graphics, Springer, pp. 410–419 (2017)
– reference: DijkstraEWA note on two problems in connexion with graphsNumerische mathematik19591126927110760910.1007/BF01386390
– volume: 58
  start-page: 684
  issue: 5
  year: 2010
  ident: 1485_CR7
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2009.11.005
– ident: 1485_CR8
  doi: 10.1109/IROS.2011.6048764
– ident: 1485_CR40
  doi: 10.1109/ICRA.2017.7989376
– volume: 33
  start-page: 215
  issue: 2
  year: 2014
  ident: 1485_CR10
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913494911
– ident: 1485_CR22
  doi: 10.1109/ICCAR.2019.8813489
– ident: 1485_CR2
  doi: 10.1109/SSRR.2011.6106794
– ident: 1485_CR20
  doi: 10.1109/ICRA.2019.8793769
– volume: 55
  start-page: 522
  issue: 6
  year: 1993
  ident: 1485_CR27
  publication-title: CVGIP: Graph. Models Image Process.
– volume: 27
  start-page: 1313
  issue: 17
  year: 2013
  ident: 1485_CR3
  publication-title: Adv. Robot.
  doi: 10.1080/01691864.2013.838333
– ident: 1485_CR23
  doi: 10.1109/ICTAI.2015.60
– ident: 1485_CR41
– ident: 1485_CR32
– ident: 1485_CR15
  doi: 10.1109/IROS.1995.525801
– ident: 1485_CR30
– volume: 60
  start-page: 123
  issue: 1
  year: 2012
  ident: 1485_CR9
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2011.09.005
– ident: 1485_CR11
– ident: 1485_CR13
– ident: 1485_CR21
  doi: 10.1109/ICRA40945.2020.9196777
– ident: 1485_CR26
  doi: 10.1109/IRC.2018.00016
– ident: 1485_CR34
– volume: 29
  start-page: 762
  issue: 5
  year: 2012
  ident: 1485_CR4
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21426
– ident: 1485_CR38
– volume: 90
  start-page: 125
  year: 2017
  ident: 1485_CR17
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2016.08.015
– volume: 1
  start-page: 269
  issue: 1
  year: 1959
  ident: 1485_CR33
  publication-title: Numerische mathematik
  doi: 10.1007/BF01386390
– volume: 42
  start-page: 257
  issue: 2
  year: 2018
  ident: 1485_CR18
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-017-9669-2
– ident: 1485_CR6
  doi: 10.23919/ACC.2017.7963292
– ident: 1485_CR36
  doi: 10.1117/12.2185196
– ident: 1485_CR24
  doi: 10.1007/978-3-319-59147-6_51
– volume: 4
  start-page: 100
  issue: 2
  year: 1968
  ident: 1485_CR31
  publication-title: IEEE Trans. Syst. Sci. Cybern.
  doi: 10.1109/TSSC.1968.300136
– volume: 14
  start-page: 163
  issue: 2
  year: 2009
  ident: 1485_CR14
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2009.2013617
– ident: 1485_CR25
  doi: 10.1007/978-3-319-60928-7_35
– volume: 19
  start-page: 96
  issue: 2
  year: 2000
  ident: 1485_CR28
  publication-title: Int. J. Rob. Res.
  doi: 10.1177/02783640022066770
– ident: 1485_CR29
– volume: 38
  start-page: 769
  issue: 7
  year: 2019
  ident: 1485_CR19
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364919846549
– ident: 1485_CR5
  doi: 10.1117/12.2223350
– ident: 1485_CR37
  doi: 10.1117/12.2223329
– ident: 1485_CR1
  doi: 10.1109/ROBOT.2010.5509530
– ident: 1485_CR35
  doi: 10.1109/IRIS.2017.8250106
– ident: 1485_CR16
  doi: 10.1007/978-3-319-18299-5_2
– ident: 1485_CR12
  doi: 10.1109/ROBOT.2004.1302457
– ident: 1485_CR39
SSID ssj0009859
Score 2.2839
Snippet This paper proposes an exploration strategy in unknown environments for a team of quadrotor Unmanned Aerial Vehicles (UAVs). Based on the frontier information,...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 24
SubjectTerms Algorithms
Artificial Intelligence
Control
Drone aircraft
Electrical Engineering
Engineering
Exploration
Mechanical Engineering
Mechatronics
Numerical analysis
Regular Paper
Robotics
Robots
Rotary wing aircraft
Sensors
Simulation methods
Topical collection on Unmanned Systems
Unknown environments
Unmanned aerial vehicles
Unmanned helicopters
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS_QwEB_Ez4MefIvrixwEDxroNm2THkV8HER8Lt5CniDodtldhe-__yZt-q1v0GNpmoZ5ZGaSmd8A7KaJSaxKLHXaYICS6YQqViiqedemKM-FqPuQ9c75xYW4vy8vY1HYqM12b68k6536VbEb2koaUgrCKVhOMVD_g-ZOBHW8vulNoHZF3iDshZFpWcRSmc_neGOO3m_KH25Ha6NzsvC75S7CfHQyyWEjFUsw5frLsNA2cCBRn5dh7hUa4Qr0jqpq4BokcHKD4W01pMHIWXx4bPZFchrwrUmTuFfzlER4278EvV-iyK1TT6Ty5OpZ2WEVWvmswt3J8e3RGY1tF6hhuRhTw8Pdn9WaK-MM88xjTMIFc954jI6EyZClXDEdUqRcnrtCG-018xm6OollbA2m-1XfrQNB01ckqlsaK2ymswAWr7TyWWK5LnzhO9BtqS9NxCQPrTEe5QRNOZBRIhllTUaZdGD__zeDBpHj29F7gakyqCvObFSsOsD1BeArecjRpUGXl4kObLV8l1GPRxIdwjLlJUbxHTho-Tx5_fV_N342fBNm0yAqdZbgFkyPh89uG2bMy_hhNNyp5fsfPZTzGQ
  priority: 102
  providerName: Springer Nature
Title Cooperative Sensor-based Selective Graph Exploration Strategy for a Team of Quadrotors
URI https://link.springer.com/article/10.1007/s10846-021-01485-0
https://www.proquest.com/docview/2569279837
Volume 103
WOSCitedRecordID wos000693076800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: K7-
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: P5Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Online Journals
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOFAqIhbLyAYkDWDhxEicnVKoWJNBq6ZZVxcXyU0Iqm2V3i8S_ZyZxWB6iFy6WojiOpW88D3v8DcDTXDjhjfA8WIcBSmEFN7Iy3KrM5yjPVd3VIZu_V5NJfX7eTNOG2zqlVQ46sVPUvnW0R_4STXOTqwbjqVfLr5yqRtHpaiqhcR12szzPSM7fKb4l3a3Lnmsvx5A5b6p0aSZdnUPLyylBgfbUSi5-M0x_que_zkk783Oy978TvwO3k-PJDntJuQvXwmIf9oaiDiyt8X249QtD4T2YH7XtMvTs4GyGIW-74mT4PD5c9LqSvSHOa9Yn83U4s0R5-52hR8wMOwvmC2sj-3Bp_Kql8j734ePJ8dnRW55KMXAny3rDnaLzQG-tMi44GWXEOEXVMkQXMWKqXYEwKyMtpU2FsgyVdTZaGQt0f4SX8gHsLNpFeAgMzWElTNY4X_vCFkQgb6yJhfDKVrGKI8gGHLRLPOVULuNCbxmWCTuN2OkOOy1G8PznN8uepePK3s8IXk1LGEd2Jt1EwPkRGZY-VOjmoBss6xEcDJjqtLbXegvoCF4MUrF9_e__Prp6tMdwMyd57DIFD2Bns7oMT-CG-7b5vF6NYff18WR6Ou4kfEwpqjNsp-UnbE9n8x__BgHK
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk4tFBAbFvABxAHsMjGSZwcEKoKpdUuKxBL1ZvxU0JqN9vdLVX_FL-RmcRheYjeeuAYJXEe_jzfjD3-BuBJmtjE6cRxbywGKJlJuBaF5kb2XYp4LsqmDtnhUI5G5dFR9WEFvnd7YSitsrOJjaF2taU58pdIzVUqK4ynXk9POVWNotXVroRGC4uBvzjHkG3-6uAN9u_TNN17O97d57GqALciLxfcSlracsZIbb0VQQR0uWUpfLABnf_SZvjGUgtDGUA-z31hrAlGhAyZPHE0AYom_1omSkla_QPJlyK_Zd5q-6UYoqdVETfpxK16yPScEiJoDi_nyW9E-Ccd_LUu29Dd3vr_9qNuw1p0rNlOOxLuwIqfbMB6V7SCRRu2Abd-UWC8C4e7dT31rfo5-4QhfT3jROwOD45bLmDvSNObtcmKDY5ZlPS9YOjxM83GXp-wOrCPZ9rNaipfdA8-X8m33ofVST3xD4Ah3ReJ7lfWlS4zGQnka6NDljhpilCEHvS7flc26rBTOZBjtVSQJqwoxIpqsKKSHjz_ec-0VSG59OpnBCdFJgpbtjrutMD3I7EvtSPRjUM3X5Q92O4wpKLtmqslgHrwokPh8vS_n7t5eWuP4cb--P1QDQ9Ggy24mdJYaLIit2F1MTvzD-G6_bb4Op89akYVgy9Xjc4fCTZb8Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBSE4UCggFgr4AOIAVr15OTlUVdWyUG21KqJUvbl-SkjtZru7BfWv9dd1JnFYHqK3HjhGSRwn-TzfjD3-BuB1IqxwWjjujcUAJTOC67TQ3Mi-SxDPRdnUITvck6NReXRU7S_BZbcXhtIqO5vYGGpXW5ojX0dqrhJZYTy1HmJaxP7OYHNyxqmCFK20duU0WogM_cUPDN9mG7s7-K_fJMngw8H2Jx4rDHCb5uWcW0nLXM4Yqa23aUgDut-yTH2wAQOB0mbYe6lTQ9lAPs99YawJJg0ZsrpwNBmK5v8WsnBOY2wo-ULwt8xbnb8Ew_WkKuKGnbhtD1mfU3IEzeflXPxGin9Sw19rtA31DVb-54_2AO5Hh5tttSPkISz58SqsdMUsWLRtq3DvF2XGR3C4XdcT36qisy8Y6tdTToTv8OCk5Qj2kbS-WZvE2OCbRanfC4aRANPswOtTVgf2-Vy7aU1ljR7D1xt51yewPK7H_ikwdAMKofuVdaXLTEbC-drokAknTRGK0IN-hwFloz47lQk5UQtlacKNQtyoBjdK9ODdz3smrTrJtVe_JWgpMl3YstVxBwb2j0TA1JZE9w7d_7TswVqHJxVt2kwtwNSD9x0iF6f__dxn17f2Cu4gKNXe7mj4HO4mNCyaZMk1WJ5Pz_0LuG2_z7_Npi-bAcbg-KbBeQUfv2Sr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Sensor-based+Selective+Graph+Exploration+Strategy+for+a+Team+of+Quadrotors&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.date=2021-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=103&rft.issue=2&rft.spage=24&rft_id=info:doi/10.1007%2Fs10846-021-01485-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon