Land-cover classification with high-resolution remote sensing images using transferable deep models

In recent years, large amount of high spatial-resolution remote sensing (HRRS) images are available for land-cover mapping. However, due to the complex information brought by the increased spatial resolution and the data disturbances caused by different conditions of image acquisition, it is often d...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote sensing of environment Ročník 237; s. 111322
Hlavní autori: Tong, Xin-Yi, Xia, Gui-Song, Lu, Qikai, Shen, Huanfeng, Li, Shengyang, You, Shucheng, Zhang, Liangpei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Inc 01.02.2020
Elsevier BV
Predmet:
ISSN:0034-4257, 1879-0704
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent years, large amount of high spatial-resolution remote sensing (HRRS) images are available for land-cover mapping. However, due to the complex information brought by the increased spatial resolution and the data disturbances caused by different conditions of image acquisition, it is often difficult to find an efficient method for achieving accurate land-cover classification with high-resolution and heterogeneous remote sensing images. In this paper, we propose a scheme to apply deep model obtained from labeled land-cover dataset to classify unlabeled HRRS images. The main idea is to rely on deep neural networks for presenting the contextual information contained in different types of land-covers and propose a pseudo-labeling and sample selection scheme for improving the transferability of deep models. More precisely, a deep Convolutional Neural Networks (CNNs) is first pre-trained with a well-annotated land-cover dataset, referred to as the source data. Then, given a target image with no labels, the pre-trained CNN model is utilized to classify the image in a patch-wise manner. The patches with high confidence are assigned with pseudo-labels and employed as the queries to retrieve related samples from the source data. The pseudo-labels confirmed with the retrieved results are regarded as supervised information for fine-tuning the pre-trained deep model. To obtain a pixel-wise land-cover classification with the target image, we rely on the fine-tuned CNN and develop a hybrid classification by combining patch-wise classification and hierarchical segmentation. In addition, we create a large-scale land-cover dataset containing 150 Gaofen-2 satellite images for CNN pre-training. Experiments on multi-source HRRS images, including Gaofen-2, Gaofen-1, Jilin-1, Ziyuan-3, Sentinel-2A, and Google Earth platform data, show encouraging results and demonstrate the applicability of the proposed scheme to land-cover classification with multi-source HRRS images. •A method to learn transferable deep model for 5-class land-cover (LC) classification.•A labeled dataset consisting of 150 Gaofen-2 images for LC classification.•It improves LC classification performance about 20% using multi-source RS images.•The method shows good transferability on different sensors and geolocations.
AbstractList In recent years, large amount of high spatial-resolution remote sensing (HRRS) images are available for land-cover mapping. However, due to the complex information brought by the increased spatial resolution and the data disturbances caused by different conditions of image acquisition, it is often difficult to find an efficient method for achieving accurate land-cover classification with high-resolution and heterogeneous remote sensing images. In this paper, we propose a scheme to apply deep model obtained from labeled land-cover dataset to classify unlabeled HRRS images. The main idea is to rely on deep neural networks for presenting the contextual information contained in different types of land-covers and propose a pseudo-labeling and sample selection scheme for improving the transferability of deep models. More precisely, a deep Convolutional Neural Networks (CNNs) is first pre-trained with a well-annotated land-cover dataset, referred to as the source data. Then, given a target image with no labels, the pre-trained CNN model is utilized to classify the image in a patch-wise manner. The patches with high confidence are assigned with pseudo-labels and employed as the queries to retrieve related samples from the source data. The pseudo-labels confirmed with the retrieved results are regarded as supervised information for fine-tuning the pre-trained deep model. To obtain a pixel-wise land-cover classification with the target image, we rely on the fine-tuned CNN and develop a hybrid classification by combining patch-wise classification and hierarchical segmentation. In addition, we create a large-scale land-cover dataset containing 150 Gaofen-2 satellite images for CNN pre-training. Experiments on multi-source HRRS images, including Gaofen-2, Gaofen-1, Jilin-1, Ziyuan-3, Sentinel-2A, and Google Earth platform data, show encouraging results and demonstrate the applicability of the proposed scheme to land-cover classification with multi-source HRRS images.
In recent years, large amount of high spatial-resolution remote sensing (HRRS) images are available for land-cover mapping. However, due to the complex information brought by the increased spatial resolution and the data disturbances caused by different conditions of image acquisition, it is often difficult to find an efficient method for achieving accurate land-cover classification with high-resolution and heterogeneous remote sensing images. In this paper, we propose a scheme to apply deep model obtained from labeled land-cover dataset to classify unlabeled HRRS images. The main idea is to rely on deep neural networks for presenting the contextual information contained in different types of land-covers and propose a pseudo-labeling and sample selection scheme for improving the transferability of deep models. More precisely, a deep Convolutional Neural Networks (CNNs) is first pre-trained with a well-annotated land-cover dataset, referred to as the source data. Then, given a target image with no labels, the pre-trained CNN model is utilized to classify the image in a patch-wise manner. The patches with high confidence are assigned with pseudo-labels and employed as the queries to retrieve related samples from the source data. The pseudo-labels confirmed with the retrieved results are regarded as supervised information for fine-tuning the pre-trained deep model. To obtain a pixel-wise land-cover classification with the target image, we rely on the fine-tuned CNN and develop a hybrid classification by combining patch-wise classification and hierarchical segmentation. In addition, we create a large-scale land-cover dataset containing 150 Gaofen-2 satellite images for CNN pre-training. Experiments on multi-source HRRS images, including Gaofen-2, Gaofen-1, Jilin-1, Ziyuan-3, Sentinel-2A, and Google Earth platform data, show encouraging results and demonstrate the applicability of the proposed scheme to land-cover classification with multi-source HRRS images. •A method to learn transferable deep model for 5-class land-cover (LC) classification.•A labeled dataset consisting of 150 Gaofen-2 images for LC classification.•It improves LC classification performance about 20% using multi-source RS images.•The method shows good transferability on different sensors and geolocations.
ArticleNumber 111322
Author Lu, Qikai
Li, Shengyang
Tong, Xin-Yi
Zhang, Liangpei
You, Shucheng
Shen, Huanfeng
Xia, Gui-Song
Author_xml – sequence: 1
  givenname: Xin-Yi
  surname: Tong
  fullname: Tong, Xin-Yi
  organization: State Key Laboratory LIESMARS, Wuhan University, China
– sequence: 2
  givenname: Gui-Song
  surname: Xia
  fullname: Xia, Gui-Song
  email: guisong.xia@whu.edu.cn
  organization: State Key Laboratory LIESMARS, Wuhan University, China
– sequence: 3
  givenname: Qikai
  surname: Lu
  fullname: Lu, Qikai
  organization: Electronic Information School, Wuhan University, China
– sequence: 4
  givenname: Huanfeng
  surname: Shen
  fullname: Shen, Huanfeng
  organization: School of Resource and Environmental Sciences, Wuhan University, China
– sequence: 5
  givenname: Shengyang
  surname: Li
  fullname: Li, Shengyang
  organization: Key Laboratory of Space Utilization, Tech. & Eng. Center for Space Utilization, Chinese Academy of Sciences, China
– sequence: 6
  givenname: Shucheng
  surname: You
  fullname: You, Shucheng
  organization: Remote Sensing Department, China Land Survey and Planning Institute, China
– sequence: 7
  givenname: Liangpei
  surname: Zhang
  fullname: Zhang, Liangpei
  organization: State Key Laboratory LIESMARS, Wuhan University, China
BookMark eNp9kD1v2zAQhokiBeq4_QHdBHTJIpdHipKITIWRfgAGuiQzQVEnm4ZMOjzJQf59abtThkw8Hp73cPfcspsQAzL2FfgKONTf96tEuBIc9AoApBAf2ALaRpe84dUNW3Auq7ISqvnEbon2nINqG1gwt7GhL108YSrcaIn84J2dfAzFi592xc5vd2VCiuN8aSY8xAkLwkA-bAt_sFukYr58pmQDDZhsN2LRIx6LQ-xxpM_s42BHwi__3yV7-vnwuP5dbv7--rP-sSmdVO1UOq5sbVsBfOhsXSvRVeC6XGvIhZa6dp3rqlZI3WoHlRp66Icu3zcAdErLJbu7zj2m-DwjTebgyeE42oBxJiOkEhXXUqmMfnuD7uOcQt7uQsm6bSXPVHOlXIpECQfj_HSRk0_1owFuzvLN3mT55izfXOXnJLxJHlN2lV7fzdxfM1kZnjwmQ85jcNj7hG4yffTvpP8BAP-fnA
CitedBy_id crossref_primary_10_1007_s10708_021_10374_w
crossref_primary_10_1080_22797254_2024_2341414
crossref_primary_10_1016_j_ecoinf_2025_103342
crossref_primary_10_3390_rs12071097
crossref_primary_10_1109_TGRS_2025_3560673
crossref_primary_10_1016_j_jhydrol_2023_129455
crossref_primary_10_1016_j_engappai_2023_107212
crossref_primary_10_1109_JSTARS_2024_3438620
crossref_primary_10_3390_ijgi9100571
crossref_primary_10_3390_s21051794
crossref_primary_10_3390_rs15041151
crossref_primary_10_3390_app11020543
crossref_primary_10_1109_TGRS_2024_3363742
crossref_primary_10_1016_j_optlaseng_2023_107995
crossref_primary_10_1007_s40328_022_00400_9
crossref_primary_10_1109_ACCESS_2023_3282778
crossref_primary_10_1016_j_jag_2022_102706
crossref_primary_10_1109_LGRS_2021_3075712
crossref_primary_10_1109_LGRS_2022_3198065
crossref_primary_10_1109_TGRS_2021_3110894
crossref_primary_10_1016_j_isprsjprs_2022_08_008
crossref_primary_10_3390_rs14225838
crossref_primary_10_1109_TGRS_2024_3365806
crossref_primary_10_1080_01431161_2021_1876272
crossref_primary_10_1109_TGRS_2025_3552802
crossref_primary_10_3390_rs12213547
crossref_primary_10_3390_s23208437
crossref_primary_10_1080_15481603_2025_2478689
crossref_primary_10_1109_LGRS_2025_3589242
crossref_primary_10_3390_rs13122290
crossref_primary_10_1016_j_rse_2023_113856
crossref_primary_10_1007_s12145_022_00891_8
crossref_primary_10_1016_j_asr_2022_07_061
crossref_primary_10_1016_j_ecolind_2022_108961
crossref_primary_10_3390_s25185655
crossref_primary_10_3390_rs15102641
crossref_primary_10_1080_01431161_2023_2285742
crossref_primary_10_1109_MGRS_2024_3470986
crossref_primary_10_1117_1_JRS_17_022205
crossref_primary_10_1109_LGRS_2023_3287866
crossref_primary_10_3390_rs16244642
crossref_primary_10_1109_TGRS_2023_3313883
crossref_primary_10_3390_rs14040879
crossref_primary_10_1016_j_cmpb_2025_108918
crossref_primary_10_1016_j_isprsjprs_2023_11_006
crossref_primary_10_1016_j_compag_2025_110308
crossref_primary_10_1109_TGRS_2024_3355908
crossref_primary_10_1080_17538947_2024_2356122
crossref_primary_10_1016_j_engappai_2025_111181
crossref_primary_10_3390_electronics14020349
crossref_primary_10_1109_TGRS_2024_3362680
crossref_primary_10_1016_j_isprsjprs_2024_12_001
crossref_primary_10_3390_rs16244627
crossref_primary_10_1016_j_jag_2024_104113
crossref_primary_10_1007_s11432_022_3599_y
crossref_primary_10_1016_j_isprsjprs_2024_12_009
crossref_primary_10_3390_rs17111868
crossref_primary_10_3390_f14091788
crossref_primary_10_1109_TGRS_2021_3076798
crossref_primary_10_1016_j_buildenv_2021_107949
crossref_primary_10_1109_LGRS_2022_3213406
crossref_primary_10_3390_rs13142818
crossref_primary_10_3390_su16135711
crossref_primary_10_1109_JSTARS_2022_3233105
crossref_primary_10_1016_j_ecoinf_2025_103111
crossref_primary_10_3390_rs14153546
crossref_primary_10_1038_s41597_023_02844_2
crossref_primary_10_1007_s00500_025_10890_8
crossref_primary_10_1109_JSTARS_2025_3581620
crossref_primary_10_1109_LGRS_2022_3187135
crossref_primary_10_3390_rs15102541
crossref_primary_10_1016_j_jag_2021_102400
crossref_primary_10_1109_ACCESS_2024_3354976
crossref_primary_10_1016_j_ecolind_2022_108989
crossref_primary_10_1109_TGRS_2023_3290411
crossref_primary_10_1109_JSTARS_2021_3081565
crossref_primary_10_1109_TGRS_2021_3099522
crossref_primary_10_1007_s12524_024_02099_3
crossref_primary_10_1016_j_jag_2021_102638
crossref_primary_10_1145_3707459
crossref_primary_10_3390_rs15235492
crossref_primary_10_1109_TGRS_2023_3323579
crossref_primary_10_1109_TGRS_2023_3241331
crossref_primary_10_1016_j_isprsjprs_2023_11_026
crossref_primary_10_1016_j_isprsjprs_2022_02_013
crossref_primary_10_1016_j_jag_2025_104659
crossref_primary_10_1016_j_jag_2025_104778
crossref_primary_10_1155_2021_9698371
crossref_primary_10_1016_j_inffus_2024_102830
crossref_primary_10_1080_10106049_2021_2017017
crossref_primary_10_1109_TGRS_2024_3393489
crossref_primary_10_1080_01431161_2025_2465917
crossref_primary_10_1080_17538947_2025_2521795
crossref_primary_10_1038_s41598_025_85125_9
crossref_primary_10_1016_j_eja_2024_127273
crossref_primary_10_3390_s24051587
crossref_primary_10_1007_s10661_023_11140_w
crossref_primary_10_1016_j_jhydrol_2025_133072
crossref_primary_10_1080_19479832_2023_2199005
crossref_primary_10_1109_ACCESS_2023_3243475
crossref_primary_10_1080_15481603_2025_2484829
crossref_primary_10_3390_e25040681
crossref_primary_10_1016_j_isprsjprs_2025_07_009
crossref_primary_10_3390_rs15194860
crossref_primary_10_1155_2022_2661231
crossref_primary_10_1080_01431161_2023_2249601
crossref_primary_10_1109_JSTARS_2020_3028158
crossref_primary_10_3390_rs14174127
crossref_primary_10_3390_s23115166
crossref_primary_10_1016_j_jag_2021_102500
crossref_primary_10_1109_JSTARS_2024_3509712
crossref_primary_10_3390_rs14040961
crossref_primary_10_3390_rs15235472
crossref_primary_10_1109_JSTARS_2023_3338484
crossref_primary_10_1007_s11263_024_02045_3
crossref_primary_10_1016_j_isprsjprs_2024_12_017
crossref_primary_10_3390_rs13204057
crossref_primary_10_1109_JSTARS_2024_3393531
crossref_primary_10_3390_app10186151
crossref_primary_10_1080_01431161_2022_2048319
crossref_primary_10_1016_j_jenvman_2022_115732
crossref_primary_10_1016_j_rse_2023_113653
crossref_primary_10_1017_eds_2023_30
crossref_primary_10_1080_01431161_2023_2274820
crossref_primary_10_1016_j_isprsjprs_2025_07_001
crossref_primary_10_1016_j_compag_2022_106977
crossref_primary_10_1080_14498596_2024_2386317
crossref_primary_10_1016_j_engappai_2023_107638
crossref_primary_10_1109_JSTARS_2021_3070368
crossref_primary_10_1007_s00521_022_06999_8
crossref_primary_10_1080_01431161_2025_2450564
crossref_primary_10_3390_rs14092157
crossref_primary_10_3390_land10111266
crossref_primary_10_3390_rs17172940
crossref_primary_10_1080_01431161_2020_1871094
crossref_primary_10_1109_JSTARS_2024_3359656
crossref_primary_10_1109_TGRS_2020_3006872
crossref_primary_10_1109_ACCESS_2020_3041645
crossref_primary_10_1109_JSTARS_2022_3144339
crossref_primary_10_1109_JSTARS_2022_3190316
crossref_primary_10_7780_kjrs_2024_40_5_1_20
crossref_primary_10_1109_TGRS_2022_3144165
crossref_primary_10_1109_TGRS_2023_3268944
crossref_primary_10_1109_JSTARS_2024_3447886
crossref_primary_10_1117_1_JRS_18_032403
crossref_primary_10_3390_rs16010098
crossref_primary_10_1109_TGRS_2022_3194505
crossref_primary_10_1109_TNNLS_2022_3201820
crossref_primary_10_1016_j_cosrev_2023_100596
crossref_primary_10_1109_JSTARS_2020_3033944
crossref_primary_10_1016_j_jag_2025_104743
crossref_primary_10_3390_rs17111935
crossref_primary_10_1109_LGRS_2024_3467260
crossref_primary_10_3390_land11111919
crossref_primary_10_1016_j_rse_2020_111716
crossref_primary_10_1109_TGRS_2025_3601164
crossref_primary_10_1109_TGRS_2022_3220755
crossref_primary_10_1016_j_engappai_2025_111029
crossref_primary_10_3390_app10103456
crossref_primary_10_1016_j_culher_2023_11_005
crossref_primary_10_1016_j_compenvurbsys_2022_101845
crossref_primary_10_1109_JSTARS_2025_3572960
crossref_primary_10_3390_f15111959
crossref_primary_10_1016_j_ecolind_2025_113506
crossref_primary_10_3390_s21113848
crossref_primary_10_32604_cmc_2022_026881
crossref_primary_10_1080_13658816_2022_2087223
crossref_primary_10_1016_j_isprsjprs_2023_05_026
crossref_primary_10_1016_j_scitotenv_2022_160943
crossref_primary_10_1109_JSTARS_2021_3053603
crossref_primary_10_3390_app14051844
crossref_primary_10_1038_s41598_024_69022_1
crossref_primary_10_1109_JSTARS_2023_3339642
crossref_primary_10_1109_JSTARS_2024_3459958
crossref_primary_10_1029_2023WR034545
crossref_primary_10_3390_rs14225675
crossref_primary_10_3390_rs17173062
crossref_primary_10_3390_rs12071128
crossref_primary_10_1109_ACCESS_2025_3556746
crossref_primary_10_1016_j_cj_2022_01_009
crossref_primary_10_3138_cart_2024_0010
crossref_primary_10_3390_rs14030699
crossref_primary_10_1016_j_isprsjprs_2022_11_012
crossref_primary_10_1016_j_rsase_2020_100340
crossref_primary_10_1016_j_asoc_2022_109695
crossref_primary_10_1080_01431161_2020_1871100
crossref_primary_10_1109_ACCESS_2020_3012701
crossref_primary_10_3390_rs15133427
crossref_primary_10_1155_2021_8011565
crossref_primary_10_1016_j_ecolind_2024_112027
crossref_primary_10_1007_s11356_021_17956_8
crossref_primary_10_1038_s41598_024_84795_1
crossref_primary_10_1371_journal_pone_0320090
crossref_primary_10_1016_j_isprsjprs_2024_07_028
crossref_primary_10_3390_rs17142442
crossref_primary_10_1007_s00138_022_01335_5
crossref_primary_10_3390_rs15051348
crossref_primary_10_1109_LGRS_2020_2972313
crossref_primary_10_1109_TGRS_2022_3154390
crossref_primary_10_3390_rs16214052
crossref_primary_10_1080_10106049_2021_1959655
crossref_primary_10_1080_10095020_2021_2017237
crossref_primary_10_1109_JSTARS_2024_3476990
crossref_primary_10_1109_TGRS_2020_3001401
crossref_primary_10_3390_rs16111974
crossref_primary_10_1080_10095020_2022_2162980
crossref_primary_10_1109_TGRS_2021_3107542
crossref_primary_10_1109_TGRS_2024_3502401
crossref_primary_10_3390_rs13245052
crossref_primary_10_3390_rs16111850
crossref_primary_10_1109_TGRS_2024_3352908
crossref_primary_10_3390_cli9040058
crossref_primary_10_1080_13658816_2024_2387200
crossref_primary_10_1109_MGRS_2022_3145854
crossref_primary_10_1080_02564602_2025_2485918
crossref_primary_10_1109_TGRS_2021_3116147
crossref_primary_10_1080_01431161_2023_2274318
crossref_primary_10_1109_JSTARS_2023_3316302
crossref_primary_10_1016_j_jag_2021_102370
crossref_primary_10_1016_j_jag_2022_102777
crossref_primary_10_1080_15481603_2023_2185980
crossref_primary_10_3390_rs16132443
crossref_primary_10_1364_AO_476978
crossref_primary_10_1109_TBDATA_2022_3196314
crossref_primary_10_1016_j_cities_2021_103163
crossref_primary_10_1080_22797254_2024_2361768
crossref_primary_10_3390_rs15133402
crossref_primary_10_1016_j_isprsjprs_2023_04_008
crossref_primary_10_1109_JSTARS_2024_3408154
crossref_primary_10_1080_22797254_2021_2017799
crossref_primary_10_1109_TGRS_2022_3168697
crossref_primary_10_3390_rs13214466
crossref_primary_10_1016_j_rse_2023_113485
crossref_primary_10_1109_ACCESS_2023_3349285
crossref_primary_10_1109_TGRS_2021_3064606
crossref_primary_10_1109_LGRS_2023_3233979
crossref_primary_10_3390_rs15215148
crossref_primary_10_1016_j_isprsjprs_2024_06_001
crossref_primary_10_1109_ACCESS_2024_3461871
crossref_primary_10_5194_tc_16_4273_2022
crossref_primary_10_1016_j_jag_2024_104087
crossref_primary_10_1007_s10489_024_06139_w
crossref_primary_10_1016_j_isprsjprs_2021_10_023
crossref_primary_10_3390_rs12020216
crossref_primary_10_1016_j_isprsjprs_2025_08_019
crossref_primary_10_1007_s42979_021_00929_6
crossref_primary_10_1016_j_dsp_2025_105174
crossref_primary_10_1016_j_isprsjprs_2024_06_005
crossref_primary_10_1016_j_ecoinf_2023_102078
crossref_primary_10_1038_s42256_025_01078_8
crossref_primary_10_1109_ACCESS_2025_3556632
crossref_primary_10_3390_s25061793
crossref_primary_10_3233_MGS_230034
crossref_primary_10_1038_s41598_024_55482_y
crossref_primary_10_1016_j_isprsjprs_2022_11_006
crossref_primary_10_1109_TGRS_2025_3589235
crossref_primary_10_3390_land12081616
crossref_primary_10_1109_JSTARS_2024_3469728
crossref_primary_10_1155_2022_6994179
crossref_primary_10_1016_j_rse_2022_113058
crossref_primary_10_3390_rs17081398
crossref_primary_10_1016_j_cageo_2022_105251
crossref_primary_10_1049_ipr2_70139
crossref_primary_10_1016_j_geomorph_2023_108626
crossref_primary_10_1109_TGRS_2023_3251659
crossref_primary_10_3390_rs14030646
crossref_primary_10_3390_rs17142354
crossref_primary_10_1109_TGRS_2024_3463433
crossref_primary_10_3390_ijgi9090527
crossref_primary_10_1109_JSTARS_2024_3459916
crossref_primary_10_1109_JSTARS_2022_3220875
crossref_primary_10_1016_j_rse_2025_114991
crossref_primary_10_1109_JSTARS_2023_3347595
crossref_primary_10_1080_19475705_2022_2116357
crossref_primary_10_3390_rs14246298
crossref_primary_10_1109_TGRS_2024_3453868
crossref_primary_10_1109_TGRS_2025_3580479
crossref_primary_10_1109_TGRS_2021_3108781
crossref_primary_10_1109_TGRS_2021_3068280
crossref_primary_10_1109_ACCESS_2024_3436620
crossref_primary_10_1109_TGRS_2024_3407200
crossref_primary_10_3390_rs15082192
crossref_primary_10_1109_JSTARS_2023_3257836
crossref_primary_10_3390_app15179641
crossref_primary_10_1016_j_scitotenv_2024_176783
crossref_primary_10_1007_s12145_022_00788_6
crossref_primary_10_1016_j_jvcir_2025_104429
crossref_primary_10_1080_01431161_2023_2227320
crossref_primary_10_1016_j_compag_2024_109042
crossref_primary_10_1109_TGRS_2024_3415371
crossref_primary_10_3390_rs15133232
crossref_primary_10_3390_rs14112688
crossref_primary_10_7717_peerj_cs_1222
crossref_primary_10_1016_j_landurbplan_2023_104691
crossref_primary_10_1109_JAS_2025_125324
crossref_primary_10_1109_JSTARS_2024_3424954
crossref_primary_10_1109_LGRS_2022_3228287
crossref_primary_10_3390_rs15164071
crossref_primary_10_1016_j_earscirev_2025_105070
crossref_primary_10_1109_JSTARS_2024_3424831
crossref_primary_10_3390_s25154660
crossref_primary_10_1109_JSTARS_2023_3278862
crossref_primary_10_3390_su141912465
crossref_primary_10_1109_TGRS_2024_3388199
crossref_primary_10_3390_land11020263
crossref_primary_10_1080_01431161_2023_2249596
crossref_primary_10_1109_JSTARS_2021_3051569
crossref_primary_10_1093_comjnl_bxac077
crossref_primary_10_1080_10095020_2024_2328100
crossref_primary_10_1016_j_envres_2024_120095
crossref_primary_10_1109_JSTARS_2021_3063788
crossref_primary_10_1016_j_procs_2025_04_319
crossref_primary_10_1109_ACCESS_2022_3163535
crossref_primary_10_1109_TGRS_2024_3523537
crossref_primary_10_1007_s12517_021_08420_5
crossref_primary_10_1016_j_cageo_2023_105340
crossref_primary_10_1016_j_compag_2021_106253
crossref_primary_10_1109_TGRS_2024_3427370
crossref_primary_10_1038_s41598_024_84937_5
crossref_primary_10_3390_electronics12051215
crossref_primary_10_1016_j_isprsjprs_2023_12_011
crossref_primary_10_1109_JSTARS_2025_3528650
crossref_primary_10_3390_rs15051207
crossref_primary_10_3390_rs15051328
crossref_primary_10_3390_rs15133452
crossref_primary_10_1016_j_isprsjprs_2024_07_001
crossref_primary_10_1016_j_isprsjprs_2022_04_019
crossref_primary_10_1109_TGRS_2021_3113912
crossref_primary_10_3390_land11060905
crossref_primary_10_3390_rs14164068
crossref_primary_10_1109_ACCESS_2022_3203405
crossref_primary_10_1109_TGRS_2022_3224733
crossref_primary_10_1109_TGRS_2025_3546808
crossref_primary_10_3390_rs14184514
crossref_primary_10_3390_rs17081357
crossref_primary_10_1155_2022_5303872
crossref_primary_10_3390_rs14184639
crossref_primary_10_1016_j_isprsjprs_2024_01_013
crossref_primary_10_1016_j_cageo_2023_105335
crossref_primary_10_1109_TGRS_2023_3297850
crossref_primary_10_3390_rs15030810
crossref_primary_10_1109_TGRS_2023_3272552
crossref_primary_10_3390_s22155853
crossref_primary_10_1109_ACCESS_2024_3441850
crossref_primary_10_1109_JSTARS_2024_3456854
crossref_primary_10_1016_j_sigpro_2023_109272
crossref_primary_10_1016_j_isprsjprs_2024_08_008
crossref_primary_10_1109_JSTARS_2021_3078631
crossref_primary_10_1109_LGRS_2023_3302432
crossref_primary_10_1109_TIP_2023_3326400
crossref_primary_10_1016_j_jag_2024_103915
crossref_primary_10_1016_j_rsase_2025_101679
crossref_primary_10_1109_ACCESS_2023_3300967
crossref_primary_10_1016_j_asr_2024_07_066
crossref_primary_10_3390_rs16224251
crossref_primary_10_1109_TGRS_2023_3328339
crossref_primary_10_1109_TGRS_2025_3542433
crossref_primary_10_3390_rs14215455
crossref_primary_10_1109_TGRS_2024_3369621
crossref_primary_10_1109_TGRS_2024_3387393
crossref_primary_10_3390_rs15030828
crossref_primary_10_1080_10095020_2023_2244005
crossref_primary_10_1109_TGRS_2025_3544736
crossref_primary_10_3390_s22062416
crossref_primary_10_1109_TGRS_2024_3392737
crossref_primary_10_3390_su141811187
crossref_primary_10_1109_TGRS_2025_3529129
crossref_primary_10_3390_jimaging11050156
crossref_primary_10_1016_j_landusepol_2020_104957
crossref_primary_10_1109_TGRS_2025_3589773
crossref_primary_10_3390_rs17050838
crossref_primary_10_1109_TGRS_2022_3163278
crossref_primary_10_1109_TGRS_2022_3201755
crossref_primary_10_1109_TGRS_2022_3225843
crossref_primary_10_1109_TGRS_2023_3298924
crossref_primary_10_1109_TGRS_2025_3564216
crossref_primary_10_1109_ACCESS_2024_3520428
crossref_primary_10_3390_rs15010074
crossref_primary_10_3390_su13169462
crossref_primary_10_1016_j_knosys_2024_111966
crossref_primary_10_3390_rs12233928
crossref_primary_10_3390_rs13224668
crossref_primary_10_1016_j_jag_2023_103540
crossref_primary_10_3390_agriculture15101072
crossref_primary_10_3390_rs15030840
crossref_primary_10_3390_rs14010102
crossref_primary_10_1007_s11042_020_10188_x
crossref_primary_10_1109_TGRS_2025_3565552
crossref_primary_10_3390_land11030351
crossref_primary_10_1016_j_atech_2025_101292
crossref_primary_10_1080_01431161_2022_2161856
crossref_primary_10_3390_rs15205056
crossref_primary_10_1109_JSTARS_2022_3146275
crossref_primary_10_3390_rs16101725
crossref_primary_10_1080_17499518_2024_2316265
crossref_primary_10_3390_rs14163968
crossref_primary_10_1016_j_jag_2024_103716
crossref_primary_10_1016_j_knosys_2024_112702
crossref_primary_10_1109_TGRS_2024_3423010
crossref_primary_10_3390_electronics11172790
crossref_primary_10_1016_j_jag_2022_103113
crossref_primary_10_1007_s12517_021_08555_5
crossref_primary_10_1109_JSTARS_2023_3265365
crossref_primary_10_1109_TGRS_2022_3208166
crossref_primary_10_3390_rs15143607
crossref_primary_10_3390_ijgi12050206
crossref_primary_10_1109_TGRS_2024_3354031
crossref_primary_10_3390_rs17152652
crossref_primary_10_3390_land12081573
crossref_primary_10_1016_j_rsase_2024_101247
crossref_primary_10_1007_s00521_023_09343_w
crossref_primary_10_1038_s41598_024_67113_7
crossref_primary_10_1016_j_rsase_2025_101542
crossref_primary_10_1007_s00521_020_05561_8
crossref_primary_10_3390_rs16122134
crossref_primary_10_1016_j_asr_2023_05_007
crossref_primary_10_1080_17538947_2024_2353110
crossref_primary_10_1016_j_isprsjprs_2024_09_009
crossref_primary_10_1016_j_jag_2024_104097
crossref_primary_10_1109_JSTARS_2021_3112705
crossref_primary_10_3390_s23218966
crossref_primary_10_1016_j_isprsjprs_2022_12_027
crossref_primary_10_1109_TGRS_2022_3233133
crossref_primary_10_1016_j_inffus_2022_06_003
crossref_primary_10_1109_MGRS_2024_3383473
crossref_primary_10_1016_j_neucom_2022_03_062
crossref_primary_10_1109_JSTARS_2025_3561508
crossref_primary_10_1016_j_isprsjprs_2021_09_005
crossref_primary_10_1109_JSTARS_2024_3355943
crossref_primary_10_3390_rs15174156
crossref_primary_10_3390_rs17040711
crossref_primary_10_1016_j_isprsjprs_2022_12_011
crossref_primary_10_3390_rs17152669
crossref_primary_10_1109_LGRS_2024_3404393
crossref_primary_10_3390_rs15143559
crossref_primary_10_1109_JSTARS_2023_3335891
crossref_primary_10_1109_JSTARS_2025_3567287
crossref_primary_10_1080_15481603_2023_2166396
crossref_primary_10_1109_TCSVT_2022_3227172
crossref_primary_10_1016_j_isprsjprs_2025_02_021
crossref_primary_10_1016_j_isprsjprs_2025_02_024
crossref_primary_10_1109_JSTARS_2024_3382096
crossref_primary_10_1109_LGRS_2020_3038771
crossref_primary_10_3390_rs17142411
crossref_primary_10_1016_j_rsase_2021_100599
crossref_primary_10_1109_JSTARS_2025_3545365
crossref_primary_10_3390_s25030763
crossref_primary_10_3390_rs17152579
crossref_primary_10_3390_rs15143645
crossref_primary_10_3390_rs15174142
crossref_primary_10_1016_j_cageo_2021_104742
crossref_primary_10_1109_TGRS_2024_3364381
crossref_primary_10_1109_TGRS_2024_3494796
crossref_primary_10_1016_j_rse_2024_114373
crossref_primary_10_1016_j_cag_2024_104014
crossref_primary_10_1007_s12524_022_01496_w
crossref_primary_10_1109_TGRS_2023_3317016
crossref_primary_10_3390_rs17050742
crossref_primary_10_1080_01431161_2023_2275326
crossref_primary_10_1080_10106049_2025_2538802
crossref_primary_10_3390_rs15112940
crossref_primary_10_1007_s00521_024_10165_7
crossref_primary_10_1109_TGRS_2023_3301494
crossref_primary_10_1109_JSTARS_2024_3417211
crossref_primary_10_1109_LGRS_2022_3161360
crossref_primary_10_1016_j_engappai_2025_111949
crossref_primary_10_1109_TGRS_2022_3197334
crossref_primary_10_1109_JSTARS_2024_3399741
crossref_primary_10_1109_JSTARS_2020_2995445
crossref_primary_10_1109_TGRS_2024_3482688
crossref_primary_10_1016_j_isprsjprs_2022_06_008
crossref_primary_10_1016_j_cageo_2021_104969
crossref_primary_10_1080_17538947_2025_2509090
crossref_primary_10_1007_s12204_024_2721_4
crossref_primary_10_3390_rs15112811
crossref_primary_10_1016_j_ins_2025_122639
crossref_primary_10_3390_rs15205023
crossref_primary_10_1109_TGRS_2023_3265186
crossref_primary_10_1007_s12665_022_10376_y
crossref_primary_10_1007_s41324_021_00425_2
crossref_primary_10_1109_JSTARS_2024_3491335
crossref_primary_10_1109_TGRS_2024_3520879
crossref_primary_10_1109_TGRS_2025_3565600
crossref_primary_10_1109_JSTARS_2022_3164771
crossref_primary_10_1002_joc_7926
crossref_primary_10_1186_s40537_020_00331_8
crossref_primary_10_1007_s12145_025_01828_7
crossref_primary_10_1109_LGRS_2022_3215200
crossref_primary_10_1007_s11227_022_04961_y
crossref_primary_10_1109_TGRS_2021_3133258
crossref_primary_10_1038_s41597_024_03009_5
crossref_primary_10_1109_TGRS_2024_3352582
crossref_primary_10_1109_TGRS_2025_3600249
crossref_primary_10_3390_app13116585
crossref_primary_10_3390_rs15153711
crossref_primary_10_1016_j_jag_2023_103358
crossref_primary_10_1080_13658816_2020_1737702
crossref_primary_10_3390_agronomy13122871
crossref_primary_10_1109_LGRS_2023_3261402
crossref_primary_10_3389_fpls_2024_1502863
crossref_primary_10_1007_s10462_022_10331_0
crossref_primary_10_1109_JSTARS_2025_3601148
crossref_primary_10_1109_TGRS_2025_3599841
crossref_primary_10_1109_JSTARS_2021_3126082
crossref_primary_10_3390_rs17122048
crossref_primary_10_1155_2021_4356957
crossref_primary_10_1080_01431161_2021_1951879
crossref_primary_10_1016_j_rse_2022_112999
crossref_primary_10_1109_TGRS_2024_3367850
crossref_primary_10_1109_TGRS_2024_3443247
crossref_primary_10_3390_rs15010236
crossref_primary_10_1016_j_jag_2023_103265
crossref_primary_10_1109_TII_2023_3309030
crossref_primary_10_3390_app13148161
crossref_primary_10_3390_w17182760
crossref_primary_10_1016_j_rse_2024_114290
crossref_primary_10_3390_rs17020344
crossref_primary_10_3390_atmos15030252
crossref_primary_10_3390_w17182763
crossref_primary_10_1016_j_compag_2024_109677
crossref_primary_10_3390_rs14153704
crossref_primary_10_1080_01431161_2024_2408496
crossref_primary_10_3390_rs13234875
crossref_primary_10_1016_j_isprsjprs_2022_07_011
crossref_primary_10_1080_13658816_2021_1980883
crossref_primary_10_1080_17538947_2024_2303354
crossref_primary_10_1002_rse2_432
crossref_primary_10_1080_22797254_2025_2495314
crossref_primary_10_1109_ACCESS_2024_3451153
crossref_primary_10_1109_TGRS_2024_3376432
crossref_primary_10_3390_rs13071312
crossref_primary_10_3390_rs17060963
crossref_primary_10_1109_TGRS_2024_3446628
crossref_primary_10_1016_j_rse_2024_114190
crossref_primary_10_1109_JSEN_2022_3156097
crossref_primary_10_1109_TCSVT_2024_3508768
crossref_primary_10_3390_rs15163961
crossref_primary_10_1109_TGRS_2023_3285912
crossref_primary_10_1109_TGRS_2024_3509735
crossref_primary_10_1109_LGRS_2024_3365468
crossref_primary_10_1080_07038992_2024_2418091
crossref_primary_10_1109_TGRS_2023_3260873
crossref_primary_10_1111_tgis_13150
crossref_primary_10_1109_TGRS_2025_3560391
crossref_primary_10_1016_j_ecolind_2023_111246
crossref_primary_10_1016_j_jag_2022_103165
crossref_primary_10_1109_TGRS_2023_3328889
crossref_primary_10_3390_agronomy13112741
crossref_primary_10_4018_IJGHPC_2020070106
crossref_primary_10_1016_j_isprsjprs_2023_09_007
crossref_primary_10_1016_j_jhydrol_2022_128202
crossref_primary_10_1080_01431161_2024_2338232
crossref_primary_10_3390_rs16122096
crossref_primary_10_1007_s13042_025_02536_w
crossref_primary_10_1109_TIP_2023_3243853
crossref_primary_10_1109_TGRS_2022_3233885
crossref_primary_10_3389_fenvs_2023_1118953
crossref_primary_10_3390_rs14010127
crossref_primary_10_3390_rs13091666
crossref_primary_10_1109_TGRS_2024_3455008
crossref_primary_10_3390_rs14163864
crossref_primary_10_1109_JSTARS_2022_3215730
crossref_primary_10_1109_TGRS_2023_3281503
crossref_primary_10_3390_ijerph20054636
crossref_primary_10_1109_JSTARS_2022_3214889
crossref_primary_10_1016_j_sasc_2025_200303
crossref_primary_10_1155_2021_3490254
crossref_primary_10_3390_rs17050927
crossref_primary_10_1109_TGRS_2025_3565657
crossref_primary_10_3390_rs16213959
crossref_primary_10_1016_j_jag_2022_103054
crossref_primary_10_1109_JSTARS_2023_3260448
crossref_primary_10_1016_j_displa_2025_103157
crossref_primary_10_1109_JSTARS_2023_3247455
crossref_primary_10_3390_app11209691
crossref_primary_10_1080_01431161_2022_2030071
crossref_primary_10_1109_MGRS_2022_3171836
crossref_primary_10_3390_rs14081786
crossref_primary_10_1109_JSTARS_2025_3591848
crossref_primary_10_1016_j_rse_2025_115034
crossref_primary_10_1109_TGRS_2020_3033816
crossref_primary_10_1109_TGRS_2023_3279663
crossref_primary_10_3390_rs14071638
crossref_primary_10_1016_j_inffus_2025_102938
crossref_primary_10_1109_TGRS_2025_3591926
crossref_primary_10_1016_j_isprsjprs_2022_09_010
crossref_primary_10_1016_j_jag_2023_103345
crossref_primary_10_3390_electronics12173660
crossref_primary_10_1109_TGRS_2021_3126428
crossref_primary_10_1080_01431161_2024_2349266
crossref_primary_10_1080_10106049_2024_2400493
crossref_primary_10_1109_TGRS_2025_3539499
crossref_primary_10_3847_1538_4365_ad1760
crossref_primary_10_1109_TGRS_2021_3063287
crossref_primary_10_3390_rs12050852
crossref_primary_10_1016_j_isprsjprs_2020_05_009
crossref_primary_10_3390_rs16010003
crossref_primary_10_3390_rs12091358
crossref_primary_10_1007_s10661_022_10379_z
crossref_primary_10_1016_j_nhres_2025_09_006
crossref_primary_10_1109_ACCESS_2022_3205327
crossref_primary_10_1080_01431161_2023_2255354
crossref_primary_10_1080_15481603_2023_2251704
crossref_primary_10_5194_essd_15_4749_2023
crossref_primary_10_1016_j_scs_2022_104349
crossref_primary_10_1016_j_rse_2023_113838
crossref_primary_10_3390_rs15071836
crossref_primary_10_1109_LGRS_2021_3070426
crossref_primary_10_1016_j_jag_2022_103152
crossref_primary_10_1080_01431161_2023_2225710
crossref_primary_10_3390_land13111842
crossref_primary_10_1109_JSTARS_2024_3378301
crossref_primary_10_1109_TWC_2024_3427377
crossref_primary_10_1016_j_isprsjprs_2023_01_018
crossref_primary_10_1109_TGRS_2024_3525044
crossref_primary_10_3390_sym16070900
crossref_primary_10_1109_TGRS_2021_3097148
crossref_primary_10_3390_math13030331
crossref_primary_10_1155_2022_2054877
crossref_primary_10_1080_08839514_2021_2014192
crossref_primary_10_1109_LGRS_2022_3177778
crossref_primary_10_1016_j_rse_2021_112383
crossref_primary_10_3390_electronics13234629
Cites_doi 10.1109/TGRS.2011.2168534
10.1109/LGRS.2012.2227297
10.1016/j.isprsjprs.2016.01.004
10.1109/MCI.2006.1626490
10.1109/TPAMI.2002.1017623
10.1109/JPROC.2012.2211551
10.1016/j.isprsjprs.2009.06.004
10.3390/rs70505611
10.1109/MGRS.2017.2762307
10.1109/TGRS.2015.2496185
10.1007/s11263-009-0312-3
10.3390/rs8070555
10.1109/TGRS.2014.2377785
10.1016/j.isprsjprs.2003.10.002
10.1109/LGRS.2015.2439696
10.1016/j.rse.2009.02.014
10.1080/01431161.2017.1399472
10.1016/j.rse.2018.06.034
10.3390/rs9101030
10.3390/rs5116026
10.1080/10106048709354084
10.1080/2150704X.2017.1375610
10.1109/TSMC.1973.4309314
10.1080/01431161.2013.845925
10.1016/j.rse.2014.02.015
10.1109/JSTARS.2016.2582921
10.1016/0034-4257(92)90011-8
10.1109/TGRS.2016.2612821
10.5194/isprsarchives-XL-7-W3-45-2015
10.1109/TSMCB.2009.2037132
10.1016/j.isprsjprs.2017.06.001
10.1109/LGRS.2017.2691013
10.1038/nature14539
10.1016/j.rse.2018.04.050
10.1109/LGRS.2017.2763738
10.1109/JSTARS.2016.2646138
10.1080/01431160600702632
10.1109/TPAMI.2015.2389848
10.1016/j.rse.2015.12.023
10.1080/01431160050144947
10.1109/JSTARS.2015.2449738
10.1109/LGRS.2008.916070
10.1109/JPROC.2012.2197589
10.1007/s11263-013-0620-5
10.1109/TPAMI.2017.2699184
10.3390/rs8030259
10.1007/s11390-017-1754-7
10.1109/TGRS.2011.2105490
10.1016/j.landurbplan.2006.11.009
10.1109/LGRS.2009.2015341
10.1080/0143116021000035021
10.1109/MGRS.2016.2548504
10.1016/j.rse.2015.12.041
10.1080/2150704X.2015.1062157
10.1109/TGRS.2015.2400449
10.1109/TGRS.2017.2692281
10.1109/LGRS.2015.2499239
10.1007/s11119-012-9274-5
10.1109/TGRS.2012.2192740
10.3390/rs71114988
10.1016/j.isprsjprs.2017.07.014
10.1016/j.rse.2011.11.020
10.1109/TIP.2017.2726182
10.1109/TGRS.2014.2305805
10.1109/TGRS.2017.2685945
10.1109/TGRS.2014.2306692
10.1109/TPAMI.2016.2644615
10.1109/TGRS.2006.877950
10.1109/LGRS.2017.2681128
10.3390/rs71114680
10.1109/TGRS.2006.875360
10.1109/LGRS.2016.2521418
10.1109/TGRS.2013.2249522
10.1016/j.isprsjprs.2011.08.002
10.1109/TGRS.2016.2616585
10.1109/LGRS.2010.2047711
10.1023/B:VISI.0000022288.19776.77
10.1109/TGRS.2004.842478
10.1109/TGRS.2009.2019636
10.1016/j.rse.2010.12.017
10.1016/S0304-3800(03)00139-X
10.1109/TGRS.2006.876704
10.3390/rs9060522
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright Elsevier BV Feb 2020
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright Elsevier BV Feb 2020
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2019.111322
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2019_111322
S0034425719303414
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c358t-c05a6a8210fba6652b41cbfba9141c9396cbcb4823989c145fd1dfb704f11b593
ISICitedReferencesCount 753
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509819300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Thu Oct 02 12:12:33 EDT 2025
Wed Aug 13 08:45:47 EDT 2025
Sat Nov 29 07:30:11 EST 2025
Tue Nov 18 22:12:44 EST 2025
Fri Feb 23 02:48:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
High-resolution remote sensing
land-cover classification
Gaofen-2 satellite images
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-c05a6a8210fba6652b41cbfba9141c9396cbcb4823989c145fd1dfb704f11b593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2352368830
PQPubID 2045405
ParticipantIDs proquest_miscellaneous_2352409355
proquest_journals_2352368830
crossref_citationtrail_10_1016_j_rse_2019_111322
crossref_primary_10_1016_j_rse_2019_111322
elsevier_sciencedirect_doi_10_1016_j_rse_2019_111322
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2020
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Shao, Lunetta, Wheeler, Iiames, Campbell (bib71) 2016; 174
Shao, Yang, Xia (bib70) 2013; 34
Persello, Bruzzone (bib68) 2014; 52
Uijlings, Van De Sande, Gevers, Smeulders (bib81) 2013; 104
Yang, Crawford (bib93) 2016; 9
Krizhevsky, Sutskever, Hinton (bib38) 2012
Chen, Papandreou, Kokkinos, Murphy, Yuille (bib14) 2018; 40
Napoletano (bib59) 2018; 39
Yu, Yang, Xia, Liu (bib95) 2016; 8
Zhao, Zhong, Xia, Zhang (bib102) 2016; 54
Zhong, Wu, Zhao (bib105) 2017; 9
Deng, Dong, Socher, Li, Li, Fei-Fei (bib17) 2009
Gómez-Chova, Camps-Valls, Munoz-Mari, Calpe (bib24) 2008; 5
Xia, Delon, Gousseau (bib85) 2010; 88
Huang, Zhao, Song (bib33) 2018; 214
Paisitkriangkrai, Sherrah, Janney, van den Hengel (bib66) 2016; 9
Zhao, Du (bib103) 2016; 113
Duro, Franklin, Dubé (bib18) 2012; 118
Maggiori, Tarabalka, Charpiat, Alliez (bib51) 2017; 55
Wu, Yap (bib84) 2006; 1
Marmanis, Datcu, Esch, Stilla (bib52) 2016; 13
Zhang, Huang, Huang, Li (bib100) 2006; 44
Shi, Chen, Bi, Chen, Yu (bib74) 2015; 12
Zhong, Zhao, Zhang (bib106) 2014; 52
Zhang, Sargent, Pan, Li, Gardiner, Hare, Atkinson (bib99) 2018; 216
Fauvel, Tarabalka, Benediktsson, Chanussot, Tilton (bib19) 2013; 101
Demir, Minello, Bruzzone (bib16) 2014; 52
Hu, Xia, Hu, Zhong, Xu (bib29) 2016; 8
Persello, Bruzzone (bib67) 2012; 50
Olofsson, Foody, Herold, Stehman, Woodcock, Wulder (bib61) 2014; 148
Lu, Ma, Xia (bib46) 2017; 8
Demir, Bovolo, Bruzzone (bib15) 2012; 50
Blaschke (bib6) 2001; 6
Xue, Liao, Carin, Krishnapuram (bib91) 2007; 8
Casals-Carrasco, Kubo, Madhavan (bib12) 2000; 21
Xia, Bai, Ding, Zhu, Belongie, Luo, Datcu, Pelillo, Zhang (bib89) 2018
Maggiori, Tarabalka, Charpiat, Alliez (bib50) 2017
Pacifici, Chini, Emery (bib64) 2009; 113
Burnett, Blaschke (bib11) 2003; 168
Xia, Hu, Hu, Shi, Bai, Zhong, Zhang, Lu (bib90) 2017; 55
Li, Zhang, Du, Zhang, Shi (bib43) 2017; 10
Zeiler, Fergus (bib96) 2014
Benz, Hofmann, Willhauck, Lingenfelder, Heynen (bib5) 2004; 58
Giada, De Groeve, Ehrlich, Soille (bib23) 2003; 24
Xia, Yang, Delon, Gousseau, Sun, Maitre (bib88) 2010
Yang, Yin, Xia (bib94) 2015; 53
Lu, Huang, Li, Zhang (bib45) 2016; 13
Mnih (bib56) 2013
Yan, Mas, Maathuis, Xiangmin, Van Dijk (bib92) 2006; 27
Ojala, Pietikäinen, Maenpaa (bib60) 2002; 24
Kussul, Lavreniuk, Skakun, Shelestov (bib39) 2017; 14
Ma, Li, Ma, Cheng, Du, Liu (bib48) 2017; 130
Zhang, Pan, Li, Gardiner, Sargent, Hare, Atkinson (bib98) 2018; 140
Jensen, Lulla (bib35) 1986; 2
Gerke, Rottensteiner, Wegner, Sohn (bib22) 2014
Myint, Gober, Brazel, Grossman-Clarke, Weng (bib58) 2011; 115
Moser, Serpico, Benediktsson (bib57) 2013; 101
Volpi, Tuia (bib82) 2017; 55
Bruzzone, Chi, Marconcini (bib9) 2006; 44
Tuia, Camps-Valls (bib78) 2016; 11
Jun, Ghosh (bib37) 2011; 49
Sherrah (bib73) 2016
Benediktsson, Palmason, Sveinsson (bib4) 2005; 43
Hu, Wu, Xia, Yu, Yang, Li, Song (bib32) 2013; 5
Xia, Liu, Bai, Zhang (bib86) 2017; 26
Hu, Xia, Zhang (bib30) 2017
Chakraborty, Balasubramanian, Sun, Panchanathan, Ye (bib13) 2015; 37
Ardila, Tolpekin, Bijker, Stein (bib1) 2011; 66
Othman, Bazi, Melgani, Alhichri, Alajlan, Zuair (bib62) 2017; 55
Paisitkriangkrai, Sherrah, Janney, Hengel (bib65) 2015
Ge, Yu (bib21) 2017; vol. 6
Zhao, Huang, Zhong (bib101) 2017; 14
Sheng, Song, Wang, Lyons, Knox, Cox, Gao (bib72) 2016; 185
Tarabalka, Fauvel, Chanussot, Benediktsson (bib76) 2010; 7
Tuia, Ratle, Pozdnoukhov, Camps-Valls (bib80) 2010; 7
Zhu, Tuia, Mou, Xia, Zhang, Xu, Fraundorfer (bib107) 2017; 5
Mattyus, Wang, Fidler, Urtasun (bib55) 2015
Izquierdo-Verdiguier, Laparra, Gomez-Chova, Camps-Valls (bib34) 2013; 10
Hu, Xia, Hu, Zhang (bib28) 2015; 7
Tarabalka, Chanussot, Benediktsson (bib75) 2010; 40
Zhang, Kovacs (bib97) 2012; 13
Persello, Stein (bib69) 2017; 14
Tong, Lu, Xia, Zhang (bib77) 2018
Lee (bib42) 2013; vol. 3
Liu, Minh Nguyen, Deligiannis, Ding, Munteanu (bib44) 2017; 9
Matasci, Volpi, Kanevski, Bruzzone, Tuia (bib53) 2015; 53
Ma, Li, Ma, Cheng, Du, Liu (bib47) 2017; 130
Blaschke (bib7) 2010; 65
Jiang, Xia, Lu, Shen, Jul (bib36) 2017; 32
Vuolo, Neuwirth, Immitzer, Atzberger, Ng (bib83) 2018; 72
Hu, Xia, Hu, Zhang (bib31) 2015; 7
Ozdarici-Ok, Ok, Schindler (bib63) 2015; 7
Zhao, Guo, Yue, Zhang, Luo (bib104) 2015; 36
Kussul, Skakun, Shelestov, Lavreniuk, Yailymov, Kussul (bib40) 2015; 40
Badrinarayanan, Kendall, Cipolla (bib3) 2017; 39
Mathieu, Freeman, Aryal (bib54) 2007; 81
Haralick, Shanmugam (bib26) 1973
He, Zhang, Ren, Sun (bib27) 2016
Gong, Marceau, Howarth (bib25) 1992; 40
LeCun, Bengio, Hinton (bib41) 2015; 521
Xia, Tong, Hu, Zhong, Datcu, Zhang (bib87) 2017
Bruzzone, Carlin (bib8) 2006; 44
Bruzzone, Persello (bib10) 2009; 47
Audebert, Le Saux, Lefevre (bib2) 2016
Felzenszwalb, Huttenlocher (bib20) 2004; 59
Maggiori, Tarabalka, Charpiat, Alliez (bib49) 2016
Tuia, Persello, Bruzzone (bib79) 2016; 4
Maggiori (10.1016/j.rse.2019.111322_bib49) 2016
Krizhevsky (10.1016/j.rse.2019.111322_bib38) 2012
Xia (10.1016/j.rse.2019.111322_bib88) 2010
Ardila (10.1016/j.rse.2019.111322_bib1) 2011; 66
Ge (10.1016/j.rse.2019.111322_bib21) 2017; vol. 6
Tuia (10.1016/j.rse.2019.111322_bib78) 2016; 11
Felzenszwalb (10.1016/j.rse.2019.111322_bib20) 2004; 59
Zhao (10.1016/j.rse.2019.111322_bib102) 2016; 54
Tuia (10.1016/j.rse.2019.111322_bib80) 2010; 7
Zhao (10.1016/j.rse.2019.111322_bib104) 2015; 36
Li (10.1016/j.rse.2019.111322_bib43) 2017; 10
Zhong (10.1016/j.rse.2019.111322_bib106) 2014; 52
Burnett (10.1016/j.rse.2019.111322_bib11) 2003; 168
Zhang (10.1016/j.rse.2019.111322_bib100) 2006; 44
Mnih (10.1016/j.rse.2019.111322_bib56) 2013
Chen (10.1016/j.rse.2019.111322_bib14) 2018; 40
Demir (10.1016/j.rse.2019.111322_bib15) 2012; 50
Myint (10.1016/j.rse.2019.111322_bib58) 2011; 115
Marmanis (10.1016/j.rse.2019.111322_bib52) 2016; 13
Xia (10.1016/j.rse.2019.111322_bib86) 2017; 26
Xue (10.1016/j.rse.2019.111322_bib91) 2007; 8
Persello (10.1016/j.rse.2019.111322_bib69) 2017; 14
Fauvel (10.1016/j.rse.2019.111322_bib19) 2013; 101
Zhao (10.1016/j.rse.2019.111322_bib103) 2016; 113
Lee (10.1016/j.rse.2019.111322_bib42) 2013; vol. 3
Hu (10.1016/j.rse.2019.111322_bib28) 2015; 7
Ma (10.1016/j.rse.2019.111322_bib47) 2017; 130
Pacifici (10.1016/j.rse.2019.111322_bib64) 2009; 113
Ma (10.1016/j.rse.2019.111322_bib48) 2017; 130
Izquierdo-Verdiguier (10.1016/j.rse.2019.111322_bib34) 2013; 10
Yang (10.1016/j.rse.2019.111322_bib93) 2016; 9
Ozdarici-Ok (10.1016/j.rse.2019.111322_bib63) 2015; 7
Bruzzone (10.1016/j.rse.2019.111322_bib9) 2006; 44
Olofsson (10.1016/j.rse.2019.111322_bib61) 2014; 148
Giada (10.1016/j.rse.2019.111322_bib23) 2003; 24
LeCun (10.1016/j.rse.2019.111322_bib41) 2015; 521
Badrinarayanan (10.1016/j.rse.2019.111322_bib3) 2017; 39
Maggiori (10.1016/j.rse.2019.111322_bib50) 2017
Matasci (10.1016/j.rse.2019.111322_bib53) 2015; 53
Gong (10.1016/j.rse.2019.111322_bib25) 1992; 40
Sherrah (10.1016/j.rse.2019.111322_bib73) 2016
Demir (10.1016/j.rse.2019.111322_bib16) 2014; 52
Othman (10.1016/j.rse.2019.111322_bib62) 2017; 55
Sheng (10.1016/j.rse.2019.111322_bib72) 2016; 185
Lu (10.1016/j.rse.2019.111322_bib45) 2016; 13
Yu (10.1016/j.rse.2019.111322_bib95) 2016; 8
Volpi (10.1016/j.rse.2019.111322_bib82) 2017; 55
Mattyus (10.1016/j.rse.2019.111322_bib55) 2015
Zhong (10.1016/j.rse.2019.111322_bib105) 2017; 9
Bruzzone (10.1016/j.rse.2019.111322_bib10) 2009; 47
Kussul (10.1016/j.rse.2019.111322_bib39) 2017; 14
Napoletano (10.1016/j.rse.2019.111322_bib59) 2018; 39
Ojala (10.1016/j.rse.2019.111322_bib60) 2002; 24
Hu (10.1016/j.rse.2019.111322_bib29) 2016; 8
Zhang (10.1016/j.rse.2019.111322_bib99) 2018; 216
Hu (10.1016/j.rse.2019.111322_bib31) 2015; 7
Hu (10.1016/j.rse.2019.111322_bib30) 2017
Persello (10.1016/j.rse.2019.111322_bib68) 2014; 52
Vuolo (10.1016/j.rse.2019.111322_bib83) 2018; 72
Zeiler (10.1016/j.rse.2019.111322_bib96) 2014
Jiang (10.1016/j.rse.2019.111322_bib36) 2017; 32
Mathieu (10.1016/j.rse.2019.111322_bib54) 2007; 81
Kussul (10.1016/j.rse.2019.111322_bib40) 2015; 40
Benediktsson (10.1016/j.rse.2019.111322_bib4) 2005; 43
Wu (10.1016/j.rse.2019.111322_bib84) 2006; 1
Zhang (10.1016/j.rse.2019.111322_bib97) 2012; 13
Tarabalka (10.1016/j.rse.2019.111322_bib75) 2010; 40
Xia (10.1016/j.rse.2019.111322_bib89) 2018
Huang (10.1016/j.rse.2019.111322_bib33) 2018; 214
Jensen (10.1016/j.rse.2019.111322_bib35) 1986; 2
Maggiori (10.1016/j.rse.2019.111322_bib51) 2017; 55
Shao (10.1016/j.rse.2019.111322_bib71) 2016; 174
Shi (10.1016/j.rse.2019.111322_bib74) 2015; 12
Benz (10.1016/j.rse.2019.111322_bib5) 2004; 58
Deng (10.1016/j.rse.2019.111322_bib17) 2009
Liu (10.1016/j.rse.2019.111322_bib44) 2017; 9
Persello (10.1016/j.rse.2019.111322_bib67) 2012; 50
Zhu (10.1016/j.rse.2019.111322_bib107) 2017; 5
Xia (10.1016/j.rse.2019.111322_bib85) 2010; 88
Paisitkriangkrai (10.1016/j.rse.2019.111322_bib65) 2015
Tarabalka (10.1016/j.rse.2019.111322_bib76) 2010; 7
Paisitkriangkrai (10.1016/j.rse.2019.111322_bib66) 2016; 9
Xia (10.1016/j.rse.2019.111322_bib87) 2017
Tong (10.1016/j.rse.2019.111322_bib77) 2018
Casals-Carrasco (10.1016/j.rse.2019.111322_bib12) 2000; 21
Shao (10.1016/j.rse.2019.111322_bib70) 2013; 34
Zhang (10.1016/j.rse.2019.111322_bib98) 2018; 140
Hu (10.1016/j.rse.2019.111322_bib32) 2013; 5
Lu (10.1016/j.rse.2019.111322_bib46) 2017; 8
Xia (10.1016/j.rse.2019.111322_bib90) 2017; 55
Moser (10.1016/j.rse.2019.111322_bib57) 2013; 101
Uijlings (10.1016/j.rse.2019.111322_bib81) 2013; 104
Yan (10.1016/j.rse.2019.111322_bib92) 2006; 27
Tuia (10.1016/j.rse.2019.111322_bib79) 2016; 4
Zhao (10.1016/j.rse.2019.111322_bib101) 2017; 14
Bruzzone (10.1016/j.rse.2019.111322_bib8) 2006; 44
Yang (10.1016/j.rse.2019.111322_bib94) 2015; 53
Blaschke (10.1016/j.rse.2019.111322_bib7) 2010; 65
Haralick (10.1016/j.rse.2019.111322_bib26) 1973
Blaschke (10.1016/j.rse.2019.111322_bib6) 2001; 6
Jun (10.1016/j.rse.2019.111322_bib37) 2011; 49
Duro (10.1016/j.rse.2019.111322_bib18) 2012; 118
Gómez-Chova (10.1016/j.rse.2019.111322_bib24) 2008; 5
Gerke (10.1016/j.rse.2019.111322_bib22) 2014
Audebert (10.1016/j.rse.2019.111322_bib2) 2016
He (10.1016/j.rse.2019.111322_bib27) 2016
Chakraborty (10.1016/j.rse.2019.111322_bib13) 2015; 37
References_xml – volume: 10
  start-page: 2022
  year: 2017
  end-page: 2035
  ident: bib43
  article-title: Iterative reweighting heterogeneous transfer learning framework for supervised remote sensing image classification
  publication-title: IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing
– start-page: 1689
  year: 2015
  end-page: 1697
  ident: bib55
  article-title: Enhancing road maps by parsing aerial images around the world
  publication-title: IEEE International Conference on Computer Vision
– volume: 12
  start-page: 1948
  year: 2015
  end-page: 1952
  ident: bib74
  article-title: Accurate urban area detection in remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 66
  start-page: 762
  year: 2011
  end-page: 775
  ident: bib1
  article-title: Markov random field-based super-resolution mapping for identification of urban trees in vhr images
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 168
  start-page: 233
  year: 2003
  end-page: 249
  ident: bib11
  article-title: A multi-scale segmentation/object relationship modelling methodology for landscape analysis
  publication-title: Ecol. Model.
– volume: 118
  start-page: 259
  year: 2012
  end-page: 272
  ident: bib18
  article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using spot-5 hrg imagery
  publication-title: Remote Sens. Environ.
– year: 2010
  ident: bib88
  article-title: Structural High-Resolution Satellite Image Indexing. in: ISPRS TC VII Symposium C 100 Years ISPRS, Vienna, Austria
– volume: 11
  year: 2016
  ident: bib78
  article-title: Kernel manifold alignment for domain adaptation
  publication-title: Public Library of Science
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib38
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: International Conference on Neural Information Processing Systems
– volume: 148
  start-page: 42
  year: 2014
  end-page: 57
  ident: bib61
  article-title: Good practices for estimating area and assessing accuracy of land change
  publication-title: Remote Sens. Environ.
– volume: 113
  start-page: 155
  year: 2016
  end-page: 165
  ident: bib103
  article-title: Learning multiscale and deep representations for classifying remotely sensed imagery
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 2
  year: 1986
  ident: bib35
  article-title: Introductory digital image processing: a remote sensing perspective
  publication-title: Geocarto Int.
– volume: 115
  start-page: 1145
  year: 2011
  end-page: 1161
  ident: bib58
  article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery
  publication-title: Remote Sens. Environ.
– volume: 40
  start-page: 137
  year: 1992
  end-page: 151
  ident: bib25
  article-title: A comparison of spatial feature extraction algorithms for land-use classification with spot hrv data
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 522
  year: 2017
  ident: bib44
  article-title: Hourglass-shapenetwork based semantic segmentation for high resolution aerial imagery
  publication-title: Remote Sens.
– volume: 65
  start-page: 2
  year: 2010
  end-page: 16
  ident: bib7
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 174
  start-page: 258
  year: 2016
  end-page: 265
  ident: bib71
  article-title: An evaluation of time-series smoothing algorithms for land-cover classifications using modis-ndvi multi-temporal data
  publication-title: Remote Sens. Environ.
– volume: 37
  start-page: 1945
  year: 2015
  end-page: 1958
  ident: bib13
  article-title: Active batch selection via convex relaxations with guaranteed solution bounds
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 58
  start-page: 239
  year: 2004
  end-page: 258
  ident: bib5
  article-title: Multi-resolution, object-oriented fuzzy analysis of remote sensing data for gis-ready information
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 24
  start-page: 971
  year: 2002
  end-page: 987
  ident: bib60
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 104
  start-page: 154
  year: 2013
  end-page: 171
  ident: bib81
  article-title: Selective search for object recognition
  publication-title: Int. J. Comput. Vis.
– volume: 13
  start-page: 105
  year: 2016
  end-page: 109
  ident: bib52
  article-title: Deep learning earth observation classification using imagenet pretrained networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 5
  start-page: 8
  year: 2017
  end-page: 36
  ident: bib107
  article-title: Deep learning in remote sensing: a comprehensive review and list of resources
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– volume: 49
  start-page: 2662
  year: 2011
  end-page: 2673
  ident: bib37
  article-title: Spatially adaptive classification of land cover with remote sensing data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 130
  start-page: 277
  year: 2017
  end-page: 293
  ident: bib47
  article-title: A review of supervised object-based land-cover image classification
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 55
  start-page: 3965
  year: 2017
  end-page: 3981
  ident: bib90
  article-title: Aid: a benchmark data set for performance evaluation of aerial scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 59
  start-page: 167
  year: 2004
  end-page: 181
  ident: bib20
  article-title: Efficient graph-based image segmentation
  publication-title: Int. J. Comput. Vis.
– volume: 101
  start-page: 631
  year: 2013
  end-page: 651
  ident: bib57
  article-title: Land-cover mapping by markov modeling of spatial–contextual information in very-high-resolution remote sensing images
  publication-title: Proc. IEEE
– volume: 44
  start-page: 2587
  year: 2006
  end-page: 2600
  ident: bib8
  article-title: A multilevel context-based system for classification of very high spatial resolution images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 185
  start-page: 129
  year: 2016
  end-page: 141
  ident: bib72
  article-title: Representative lake water extent mapping at continental scales using multi-temporal landsat-8 imagery
  publication-title: Remote Sens. Environ.
– volume: 4
  start-page: 41
  year: 2016
  end-page: 57
  ident: bib79
  article-title: Domain adaptation for the classification of remote sensing data: an overview of recent advances
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– volume: 43
  start-page: 480
  year: 2005
  end-page: 491
  ident: bib4
  article-title: Classification of hyperspectral data from urban areas based on extended morphological profiles
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 14988
  year: 2015
  end-page: 15013
  ident: bib31
  article-title: A comparative study of sampling analysis in the scene classification of optical high-spatial resolution remote sensing imagery
  publication-title: Remote Sens.
– volume: 9
  start-page: 1030
  year: 2017
  ident: bib105
  article-title: Scene semantic understanding based on the spatial context relations of multiple objects
  publication-title: Remote Sens.
– volume: 24
  start-page: 4251
  year: 2003
  end-page: 4266
  ident: bib23
  article-title: Information extraction from very high resolution satellite imagery over lukole refugee camp, Tanzania
  publication-title: Int. J. Remote Sens.
– volume: 14
  start-page: 1436
  year: 2017
  end-page: 1440
  ident: bib101
  article-title: Transfer learning with fully pretrained deep convolution networks for land-use classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2017
  ident: bib87
  article-title: Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation. CoRR Abs/1707
– volume: 7
  start-page: 5611
  year: 2015
  end-page: 5638
  ident: bib63
  article-title: Mapping of agricultural crops from single high-resolution multispectral imagesdata-driven smoothing vs. parcel-based smoothing
  publication-title: Remote Sens.
– volume: 52
  start-page: 7023
  year: 2014
  end-page: 7037
  ident: bib106
  article-title: A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: bib3
  article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 1343
  year: 2018
  end-page: 1376
  ident: bib59
  article-title: Visual descriptors for content-based retrieval of remote-sensing images
  publication-title: Int. J. Remote Sens.
– volume: 7
  start-page: 14680
  year: 2015
  end-page: 14707
  ident: bib28
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
– volume: 113
  start-page: 1276
  year: 2009
  end-page: 1292
  ident: bib64
  article-title: A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification
  publication-title: Remote Sens. Environ.
– volume: 14
  start-page: 778
  year: 2017
  end-page: 782
  ident: bib39
  article-title: Deep learning classification of land cover and crop types using remote sensing data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 5
  start-page: 336
  year: 2008
  end-page: 340
  ident: bib24
  article-title: Semisupervised image classification with laplacian support vector machines
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 50
  start-page: 1930
  year: 2012
  end-page: 1941
  ident: bib15
  article-title: Detection of land-cover transitions in multitemporal remote sensing images with active-learning-based compound classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 32
  start-page: 726
  year: 2017
  end-page: 737
  ident: bib36
  article-title: Retrieving aerial scene images with learned deep image-sketch features
  publication-title: J. Comput. Sci. Technol.
– volume: 21
  start-page: 3039
  year: 2000
  end-page: 3055
  ident: bib12
  article-title: Application of spectral mixture analysis for terrain evaluation studies
  publication-title: Int. J. Remote Sens.
– volume: 34
  start-page: 8588
  year: 2013
  end-page: 8602
  ident: bib70
  article-title: Extreme value theory-based calibration for the fusion of multiple features in high-resolution satellite scene classification
  publication-title: Int. J. Remote Sens.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib27
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 130
  start-page: 277
  year: 2017
  end-page: 293
  ident: bib48
  article-title: A review of supervised object-based land-cover image classification
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 81
  start-page: 179
  year: 2007
  end-page: 192
  ident: bib54
  article-title: Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery
  publication-title: Landsc. Urban Plan.
– year: 2018
  ident: bib77
  article-title: Large-scale Land Cover Classification in Gaofen-2 Satellite Imagery
– start-page: 192
  year: 2017
  end-page: 197
  ident: bib30
  article-title: Deep sparse representations for land-use scene classification in remote sensing images
  publication-title: IEEE International Conference on Signal Processing
– volume: 54
  start-page: 2108
  year: 2016
  end-page: 2123
  ident: bib102
  article-title: Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 2325
  year: 2017
  end-page: 2329
  ident: bib69
  article-title: Deep fully convolutional networks for the detection of informal settlements in vhr images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 53
  start-page: 3550
  year: 2015
  end-page: 3564
  ident: bib53
  article-title: Semisupervised transfer component analysis for domain adaptation in remote sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: vol. 6
  year: 2017
  ident: bib21
  article-title: Borrowing treasures from the wealthy: deep transfer learning through selective joint fine-tuning
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 6
  start-page: 12
  year: 2001
  end-page: 17
  ident: bib6
  article-title: What's wrong with pixels? some recent developments interfacing remote sensing and gis
  publication-title: GeoBIT/GIS
– volume: 9
  start-page: 543
  year: 2016
  end-page: 555
  ident: bib93
  article-title: Domain adaptation with preservation of manifold geometry for hyperspectral image classification
  publication-title: IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing
– volume: vol. 3
  start-page: 2
  year: 2013
  ident: bib42
  article-title: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks
  publication-title: Workshop on Challenges in Representation Learning, ICML
– volume: 88
  start-page: 382
  year: 2010
  end-page: 403
  ident: bib85
  article-title: Shape-based invariant texture indexing
  publication-title: Int. J. Comput. Vis.
– volume: 53
  start-page: 4472
  year: 2015
  end-page: 4482
  ident: bib94
  article-title: Learning high-level features for satellite image classification with limited labeled samples
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 1
  start-page: 10
  year: 2006
  end-page: 16
  ident: bib84
  article-title: Fuzzy svm for content-based image retrieval: a pseudo-label support vector machine framework
  publication-title: IEEE Comput. Intell. Mag.
– volume: 8
  start-page: 259
  year: 2016
  ident: bib95
  article-title: A color-texture-structure descriptor for high-resolution satellite image classification
  publication-title: Remote Sens.
– volume: 521
  start-page: 436
  year: 2015
  ident: bib41
  article-title: Deep learning
  publication-title: Nature
– volume: 13
  start-page: 693
  year: 2012
  end-page: 712
  ident: bib97
  article-title: The application of small unmanned aerial systems for precision agriculture: a review
  publication-title: Precis. Agric.
– volume: 5
  start-page: 6026
  year: 2013
  end-page: 6042
  ident: bib32
  article-title: Exploring the use of google earth imagery and object-based methods in land use/cover mapping
  publication-title: Remote Sens.
– volume: 140
  start-page: 133
  year: 2018
  end-page: 144
  ident: bib98
  article-title: A hybrid mlp-cnn classifier for very fine resolution remotely sensed image classification
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– start-page: 5091
  year: 2016
  end-page: 5094
  ident: bib2
  article-title: How useful is region-based classification of remote sensing images in a deep learning framework?
  publication-title: IEEE International Geoscience and Remote Sensing Symposium
– start-page: 818
  year: 2014
  end-page: 833
  ident: bib96
  article-title: Visualizing and understanding convolutional networks
  publication-title: European Conference on Computer Vision
– start-page: 36
  year: 2015
  end-page: 43
  ident: bib65
  article-title: Effective semantic pixel labelling with convolutional networks and conditional random fields
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition Workshops
– year: 2013
  ident: bib56
  article-title: Machine Learning for Aerial Image Labeling
– volume: 27
  start-page: 4039
  year: 2006
  end-page: 4055
  ident: bib92
  article-title: Comparison of pixel-based and object-oriented image classification approachesa case study in a coal fire area, wuda, inner Mongolia, China
  publication-title: Int. J. Remote Sens.
– volume: 101
  start-page: 652
  year: 2013
  end-page: 675
  ident: bib19
  article-title: Advances in spectral-spatial classification of hyperspectral images
  publication-title: Proc. IEEE
– year: 2016
  ident: bib73
  article-title: Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery
– volume: 40
  start-page: 1267
  year: 2010
  end-page: 1279
  ident: bib75
  article-title: Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers
  publication-title: IEEE Trans. on Systems, Man, and Cybernetics, Part B (Cybernetics)
– volume: 55
  start-page: 645
  year: 2017
  end-page: 657
  ident: bib51
  article-title: Convolutional neural networks for large-scale remote-sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 8
  start-page: 555
  year: 2016
  ident: bib29
  article-title: Fast binary coding for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib17
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 8
  start-page: 35
  year: 2007
  end-page: 63
  ident: bib91
  article-title: Multi-task learning for classification with dirichlet process priors
  publication-title: J. Mach. Learn. Res.
– volume: 52
  start-page: 6937
  year: 2014
  end-page: 6956
  ident: bib68
  article-title: Active and semisupervised learning for the classification of remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 10
  start-page: 981
  year: 2013
  end-page: 985
  ident: bib34
  article-title: Encoding invariances in remote sensing image classification with svm
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 40
  start-page: 45
  year: 2015
  ident: bib40
  article-title: Regional scale crop mapping using multi-temporal satellite imagery
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– year: 2018
  ident: bib89
  article-title: Dota: a large-scale dataset for object detection in aerial images
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 610
  year: 1973
  end-page: 621
  ident: bib26
  article-title: Textural features for image classification
  publication-title: IEEE Trans. on Systems, Man, and Cybernetics
– volume: 47
  start-page: 3180
  year: 2009
  end-page: 3191
  ident: bib10
  article-title: A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 9
  start-page: 2868
  year: 2016
  end-page: 2881
  ident: bib66
  article-title: Semantic labeling of aerial and satellite imagery
  publication-title: IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 52
  start-page: 1272
  year: 2014
  end-page: 1284
  ident: bib16
  article-title: Definition of effective training sets for supervised classification of remote sensing images by a novel cost-sensitive active learning method
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 8
  start-page: 1210
  year: 2017
  end-page: 1219
  ident: bib46
  article-title: Active learning for training sample selection in remote sensing image classification using spatial information
  publication-title: Remote Sensing Letters
– volume: 26
  start-page: 5005
  year: 2017
  end-page: 5018
  ident: bib86
  article-title: Texture characterization using shape co-occurrence patterns
  publication-title: IEEE Trans. Image Process.
– volume: 72
  start-page: 122
  year: 2018
  end-page: 130
  ident: bib83
  article-title: How much does multi-temporal sentinel-2 data improve crop type classification?
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  start-page: 736
  year: 2010
  end-page: 740
  ident: bib76
  article-title: Svm-and mrf-based method for accurate classification of hyperspectral images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2014
  ident: bib22
  article-title: Isprs semantic labeling contest
  publication-title: Photogrammetric Computer Vision
– volume: 55
  start-page: 4441
  year: 2017
  end-page: 4456
  ident: bib62
  article-title: Domain adaptation network for cross-scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2016
  ident: bib49
  article-title: High-resolution Semantic Labeling with Convolutional Neural Networks
– volume: 214
  start-page: 73
  year: 2018
  end-page: 86
  ident: bib33
  article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
  publication-title: Remote Sens. Environ.
– volume: 55
  start-page: 881
  year: 2017
  end-page: 893
  ident: bib82
  article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 216
  start-page: 57
  year: 2018
  end-page: 70
  ident: bib99
  article-title: An object-based convolutional neural network (ocnn) for urban land use classification
  publication-title: Remote Sens. Environ.
– volume: 44
  start-page: 3363
  year: 2006
  end-page: 3373
  ident: bib9
  article-title: A novel transductive svm for semisupervised classification of remote-sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: bib14
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 13
  start-page: 515
  year: 2016
  end-page: 519
  ident: bib45
  article-title: A novel mrf-based multifeature fusion for classification of remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 44
  start-page: 2950
  year: 2006
  end-page: 2961
  ident: bib100
  article-title: A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 3226
  year: 2017
  end-page: 3229
  ident: bib50
  article-title: Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark
  publication-title: IEEE International Symposium on Geoscience and Remote Sensing
– volume: 50
  start-page: 4468
  year: 2012
  end-page: 4483
  ident: bib67
  article-title: Active learning for domain adaptation in the supervised classification of remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 88
  year: 2010
  end-page: 92
  ident: bib80
  article-title: Multisource composite kernels for urban-image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 36
  start-page: 3368
  year: 2015
  end-page: 3379
  ident: bib104
  article-title: On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery
  publication-title: Int. J. Remote Sens.
– volume: 50
  start-page: 1930
  issue: 5
  year: 2012
  ident: 10.1016/j.rse.2019.111322_bib15
  article-title: Detection of land-cover transitions in multitemporal remote sensing images with active-learning-based compound classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2168534
– volume: 10
  start-page: 981
  issue: 5
  year: 2013
  ident: 10.1016/j.rse.2019.111322_bib34
  article-title: Encoding invariances in remote sensing image classification with svm
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2012.2227297
– volume: 113
  start-page: 155
  year: 2016
  ident: 10.1016/j.rse.2019.111322_bib103
  article-title: Learning multiscale and deep representations for classifying remotely sensed imagery
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.004
– volume: 1
  start-page: 10
  issue: 2
  year: 2006
  ident: 10.1016/j.rse.2019.111322_bib84
  article-title: Fuzzy svm for content-based image retrieval: a pseudo-label support vector machine framework
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.1626490
– year: 2014
  ident: 10.1016/j.rse.2019.111322_bib22
  article-title: Isprs semantic labeling contest
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  ident: 10.1016/j.rse.2019.111322_bib60
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017623
– start-page: 1689
  year: 2015
  ident: 10.1016/j.rse.2019.111322_bib55
  article-title: Enhancing road maps by parsing aerial images around the world
– volume: 101
  start-page: 631
  issue: 3
  year: 2013
  ident: 10.1016/j.rse.2019.111322_bib57
  article-title: Land-cover mapping by markov modeling of spatial–contextual information in very-high-resolution remote sensing images
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2211551
– volume: 11
  issue: 2
  year: 2016
  ident: 10.1016/j.rse.2019.111322_bib78
  article-title: Kernel manifold alignment for domain adaptation
  publication-title: Public Library of Science
– volume: 65
  start-page: 2
  issue: 1
  year: 2010
  ident: 10.1016/j.rse.2019.111322_bib7
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.06.004
– volume: 7
  start-page: 5611
  issue: 5
  year: 2015
  ident: 10.1016/j.rse.2019.111322_bib63
  article-title: Mapping of agricultural crops from single high-resolution multispectral imagesdata-driven smoothing vs. parcel-based smoothing
  publication-title: Remote Sens.
  doi: 10.3390/rs70505611
– volume: 5
  start-page: 8
  issue: 4
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib107
  article-title: Deep learning in remote sensing: a comprehensive review and list of resources
  publication-title: IEEE Geoscience and Remote Sensing Magazine
  doi: 10.1109/MGRS.2017.2762307
– volume: 54
  start-page: 2108
  issue: 4
  year: 2016
  ident: 10.1016/j.rse.2019.111322_bib102
  article-title: Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2496185
– volume: 88
  start-page: 382
  issue: 3
  year: 2010
  ident: 10.1016/j.rse.2019.111322_bib85
  article-title: Shape-based invariant texture indexing
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0312-3
– volume: 8
  start-page: 555
  issue: 7
  year: 2016
  ident: 10.1016/j.rse.2019.111322_bib29
  article-title: Fast binary coding for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs8070555
– volume: 53
  start-page: 3550
  issue: 7
  year: 2015
  ident: 10.1016/j.rse.2019.111322_bib53
  article-title: Semisupervised transfer component analysis for domain adaptation in remote sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2377785
– volume: 58
  start-page: 239
  issue: 3–4
  year: 2004
  ident: 10.1016/j.rse.2019.111322_bib5
  article-title: Multi-resolution, object-oriented fuzzy analysis of remote sensing data for gis-ready information
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2003.10.002
– volume: 12
  start-page: 1948
  issue: 9
  year: 2015
  ident: 10.1016/j.rse.2019.111322_bib74
  article-title: Accurate urban area detection in remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2439696
– year: 2016
  ident: 10.1016/j.rse.2019.111322_bib49
– volume: 113
  start-page: 1276
  issue: 6
  year: 2009
  ident: 10.1016/j.rse.2019.111322_bib64
  article-title: A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.02.014
– volume: 39
  start-page: 1343
  issue: 5
  year: 2018
  ident: 10.1016/j.rse.2019.111322_bib59
  article-title: Visual descriptors for content-based retrieval of remote-sensing images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1399472
– volume: 216
  start-page: 57
  year: 2018
  ident: 10.1016/j.rse.2019.111322_bib99
  article-title: An object-based convolutional neural network (ocnn) for urban land use classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.034
– volume: 9
  start-page: 1030
  issue: 10
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib105
  article-title: Scene semantic understanding based on the spatial context relations of multiple objects
  publication-title: Remote Sens.
  doi: 10.3390/rs9101030
– volume: 5
  start-page: 6026
  issue: 11
  year: 2013
  ident: 10.1016/j.rse.2019.111322_bib32
  article-title: Exploring the use of google earth imagery and object-based methods in land use/cover mapping
  publication-title: Remote Sens.
  doi: 10.3390/rs5116026
– volume: 2
  issue: 1
  year: 1986
  ident: 10.1016/j.rse.2019.111322_bib35
  article-title: Introductory digital image processing: a remote sensing perspective
  publication-title: Geocarto Int.
  doi: 10.1080/10106048709354084
– volume: 8
  start-page: 1210
  issue: 12
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib46
  article-title: Active learning for training sample selection in remote sensing image classification using spatial information
  publication-title: Remote Sensing Letters
  doi: 10.1080/2150704X.2017.1375610
– start-page: 610
  issue: 6
  year: 1973
  ident: 10.1016/j.rse.2019.111322_bib26
  article-title: Textural features for image classification
  publication-title: IEEE Trans. on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1973.4309314
– year: 2018
  ident: 10.1016/j.rse.2019.111322_bib89
  article-title: Dota: a large-scale dataset for object detection in aerial images
– volume: 34
  start-page: 8588
  issue: 23
  year: 2013
  ident: 10.1016/j.rse.2019.111322_bib70
  article-title: Extreme value theory-based calibration for the fusion of multiple features in high-resolution satellite scene classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2013.845925
– volume: 148
  start-page: 42
  year: 2014
  ident: 10.1016/j.rse.2019.111322_bib61
  article-title: Good practices for estimating area and assessing accuracy of land change
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.015
– start-page: 770
  year: 2016
  ident: 10.1016/j.rse.2019.111322_bib27
  article-title: Deep residual learning for image recognition
– start-page: 1097
  year: 2012
  ident: 10.1016/j.rse.2019.111322_bib38
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 9
  start-page: 2868
  issue: 7
  year: 2016
  ident: 10.1016/j.rse.2019.111322_bib66
  article-title: Semantic labeling of aerial and satellite imagery
  publication-title: IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2016.2582921
– volume: 40
  start-page: 137
  issue: 2
  year: 1992
  ident: 10.1016/j.rse.2019.111322_bib25
  article-title: A comparison of spatial feature extraction algorithms for land-use classification with spot hrv data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(92)90011-8
– volume: 55
  start-page: 645
  issue: 2
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib51
  article-title: Convolutional neural networks for large-scale remote-sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2612821
– volume: 40
  start-page: 45
  issue: 7
  year: 2015
  ident: 10.1016/j.rse.2019.111322_bib40
  article-title: Regional scale crop mapping using multi-temporal satellite imagery
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprsarchives-XL-7-W3-45-2015
– year: 2017
  ident: 10.1016/j.rse.2019.111322_bib87
– volume: 40
  start-page: 1267
  issue: 5
  year: 2010
  ident: 10.1016/j.rse.2019.111322_bib75
  article-title: Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers
  publication-title: IEEE Trans. on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2009.2037132
– volume: 130
  start-page: 277
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib48
  article-title: A review of supervised object-based land-cover image classification
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.06.001
– volume: 14
  start-page: 1436
  issue: 9
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib101
  article-title: Transfer learning with fully pretrained deep convolution networks for land-use classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2691013
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.rse.2019.111322_bib41
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 214
  start-page: 73
  year: 2018
  ident: 10.1016/j.rse.2019.111322_bib33
  article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.050
– volume: 14
  start-page: 2325
  issue: 12
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib69
  article-title: Deep fully convolutional networks for the detection of informal settlements in vhr images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2763738
– volume: 10
  start-page: 2022
  issue: 5
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib43
  article-title: Iterative reweighting heterogeneous transfer learning framework for supervised remote sensing image classification
  publication-title: IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2016.2646138
– volume: 27
  start-page: 4039
  issue: 18
  year: 2006
  ident: 10.1016/j.rse.2019.111322_bib92
  article-title: Comparison of pixel-based and object-oriented image classification approachesa case study in a coal fire area, wuda, inner Mongolia, China
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600702632
– year: 2016
  ident: 10.1016/j.rse.2019.111322_bib73
– volume: 37
  start-page: 1945
  issue: 10
  year: 2015
  ident: 10.1016/j.rse.2019.111322_bib13
  article-title: Active batch selection via convex relaxations with guaranteed solution bounds
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389848
– volume: 72
  start-page: 122
  year: 2018
  ident: 10.1016/j.rse.2019.111322_bib83
  article-title: How much does multi-temporal sentinel-2 data improve crop type classification?
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 174
  start-page: 258
  year: 2016
  ident: 10.1016/j.rse.2019.111322_bib71
  article-title: An evaluation of time-series smoothing algorithms for land-cover classifications using modis-ndvi multi-temporal data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.023
– volume: 21
  start-page: 3039
  issue: 16
  year: 2000
  ident: 10.1016/j.rse.2019.111322_bib12
  article-title: Application of spectral mixture analysis for terrain evaluation studies
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160050144947
– volume: 6
  start-page: 12
  year: 2001
  ident: 10.1016/j.rse.2019.111322_bib6
  article-title: What's wrong with pixels? some recent developments interfacing remote sensing and gis
  publication-title: GeoBIT/GIS
– volume: 9
  start-page: 543
  issue: 2
  year: 2016
  ident: 10.1016/j.rse.2019.111322_bib93
  article-title: Domain adaptation with preservation of manifold geometry for hyperspectral image classification
  publication-title: IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2015.2449738
– year: 2018
  ident: 10.1016/j.rse.2019.111322_bib77
– volume: 5
  start-page: 336
  issue: 3
  year: 2008
  ident: 10.1016/j.rse.2019.111322_bib24
  article-title: Semisupervised image classification with laplacian support vector machines
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2008.916070
– volume: 101
  start-page: 652
  issue: 3
  year: 2013
  ident: 10.1016/j.rse.2019.111322_bib19
  article-title: Advances in spectral-spatial classification of hyperspectral images
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2197589
– volume: 104
  start-page: 154
  issue: 2
  year: 2013
  ident: 10.1016/j.rse.2019.111322_bib81
  article-title: Selective search for object recognition
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0620-5
– volume: 130
  start-page: 277
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib47
  article-title: A review of supervised object-based land-cover image classification
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.06.001
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 10.1016/j.rse.2019.111322_bib14
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: 8
  start-page: 259
  issue: 3
  year: 2016
  ident: 10.1016/j.rse.2019.111322_bib95
  article-title: A color-texture-structure descriptor for high-resolution satellite image classification
  publication-title: Remote Sens.
  doi: 10.3390/rs8030259
– volume: 32
  start-page: 726
  issue: 4
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib36
  article-title: Retrieving aerial scene images with learned deep image-sketch features
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-017-1754-7
– start-page: 192
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib30
  article-title: Deep sparse representations for land-use scene classification in remote sensing images
– volume: 49
  start-page: 2662
  issue: 7
  year: 2011
  ident: 10.1016/j.rse.2019.111322_bib37
  article-title: Spatially adaptive classification of land cover with remote sensing data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2105490
– volume: 81
  start-page: 179
  issue: 3
  year: 2007
  ident: 10.1016/j.rse.2019.111322_bib54
  article-title: Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2006.11.009
– volume: 7
  start-page: 88
  issue: 1
  year: 2010
  ident: 10.1016/j.rse.2019.111322_bib80
  article-title: Multisource composite kernels for urban-image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2009.2015341
– volume: 24
  start-page: 4251
  issue: 22
  year: 2003
  ident: 10.1016/j.rse.2019.111322_bib23
  article-title: Information extraction from very high resolution satellite imagery over lukole refugee camp, Tanzania
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116021000035021
– volume: 4
  start-page: 41
  issue: 2
  year: 2016
  ident: 10.1016/j.rse.2019.111322_bib79
  article-title: Domain adaptation for the classification of remote sensing data: an overview of recent advances
  publication-title: IEEE Geoscience and Remote Sensing Magazine
  doi: 10.1109/MGRS.2016.2548504
– volume: 8
  start-page: 35
  issue: Jan
  year: 2007
  ident: 10.1016/j.rse.2019.111322_bib91
  article-title: Multi-task learning for classification with dirichlet process priors
  publication-title: J. Mach. Learn. Res.
– start-page: 3226
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib50
  article-title: Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark
– year: 2010
  ident: 10.1016/j.rse.2019.111322_bib88
– volume: 185
  start-page: 129
  year: 2016
  ident: 10.1016/j.rse.2019.111322_bib72
  article-title: Representative lake water extent mapping at continental scales using multi-temporal landsat-8 imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.041
– volume: 36
  start-page: 3368
  issue: 13
  year: 2015
  ident: 10.1016/j.rse.2019.111322_bib104
  article-title: On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/2150704X.2015.1062157
– start-page: 818
  year: 2014
  ident: 10.1016/j.rse.2019.111322_bib96
  article-title: Visualizing and understanding convolutional networks
– volume: 53
  start-page: 4472
  issue: 8
  year: 2015
  ident: 10.1016/j.rse.2019.111322_bib94
  article-title: Learning high-level features for satellite image classification with limited labeled samples
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2400449
– volume: 55
  start-page: 4441
  issue: 8
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib62
  article-title: Domain adaptation network for cross-scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2692281
– volume: 13
  start-page: 105
  issue: 1
  year: 2016
  ident: 10.1016/j.rse.2019.111322_bib52
  article-title: Deep learning earth observation classification using imagenet pretrained networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2499239
– start-page: 36
  year: 2015
  ident: 10.1016/j.rse.2019.111322_bib65
  article-title: Effective semantic pixel labelling with convolutional networks and conditional random fields
– volume: 13
  start-page: 693
  issue: 6
  year: 2012
  ident: 10.1016/j.rse.2019.111322_bib97
  article-title: The application of small unmanned aerial systems for precision agriculture: a review
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-012-9274-5
– volume: 50
  start-page: 4468
  issue: 11
  year: 2012
  ident: 10.1016/j.rse.2019.111322_bib67
  article-title: Active learning for domain adaptation in the supervised classification of remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2192740
– volume: 7
  start-page: 14988
  issue: 11
  year: 2015
  ident: 10.1016/j.rse.2019.111322_bib31
  article-title: A comparative study of sampling analysis in the scene classification of optical high-spatial resolution remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114988
– volume: 140
  start-page: 133
  year: 2018
  ident: 10.1016/j.rse.2019.111322_bib98
  article-title: A hybrid mlp-cnn classifier for very fine resolution remotely sensed image classification
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.07.014
– volume: 118
  start-page: 259
  year: 2012
  ident: 10.1016/j.rse.2019.111322_bib18
  article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using spot-5 hrg imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.020
– volume: 26
  start-page: 5005
  issue: 10
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib86
  article-title: Texture characterization using shape co-occurrence patterns
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2726182
– volume: 52
  start-page: 6937
  issue: 11
  year: 2014
  ident: 10.1016/j.rse.2019.111322_bib68
  article-title: Active and semisupervised learning for the classification of remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2305805
– volume: 55
  start-page: 3965
  issue: 7
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib90
  article-title: Aid: a benchmark data set for performance evaluation of aerial scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2685945
– volume: 52
  start-page: 7023
  issue: 11
  year: 2014
  ident: 10.1016/j.rse.2019.111322_bib106
  article-title: A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2306692
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib3
  article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 44
  start-page: 3363
  issue: 11
  year: 2006
  ident: 10.1016/j.rse.2019.111322_bib9
  article-title: A novel transductive svm for semisupervised classification of remote-sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.877950
– volume: 14
  start-page: 778
  issue: 5
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib39
  article-title: Deep learning classification of land cover and crop types using remote sensing data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2681128
– volume: 7
  start-page: 14680
  issue: 11
  year: 2015
  ident: 10.1016/j.rse.2019.111322_bib28
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
– volume: vol. 6
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib21
  article-title: Borrowing treasures from the wealthy: deep transfer learning through selective joint fine-tuning
– volume: 44
  start-page: 2587
  issue: 9
  year: 2006
  ident: 10.1016/j.rse.2019.111322_bib8
  article-title: A multilevel context-based system for classification of very high spatial resolution images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.875360
– volume: 13
  start-page: 515
  issue: 4
  year: 2016
  ident: 10.1016/j.rse.2019.111322_bib45
  article-title: A novel mrf-based multifeature fusion for classification of remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2521418
– volume: 52
  start-page: 1272
  issue: 2
  year: 2014
  ident: 10.1016/j.rse.2019.111322_bib16
  article-title: Definition of effective training sets for supervised classification of remote sensing images by a novel cost-sensitive active learning method
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2249522
– year: 2013
  ident: 10.1016/j.rse.2019.111322_bib56
– volume: 66
  start-page: 762
  issue: 6
  year: 2011
  ident: 10.1016/j.rse.2019.111322_bib1
  article-title: Markov random field-based super-resolution mapping for identification of urban trees in vhr images
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2011.08.002
– volume: 55
  start-page: 881
  issue: 2
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib82
  article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2616585
– volume: 7
  start-page: 736
  issue: 4
  year: 2010
  ident: 10.1016/j.rse.2019.111322_bib76
  article-title: Svm-and mrf-based method for accurate classification of hyperspectral images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2047711
– volume: 59
  start-page: 167
  issue: 2
  year: 2004
  ident: 10.1016/j.rse.2019.111322_bib20
  article-title: Efficient graph-based image segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000022288.19776.77
– volume: 43
  start-page: 480
  issue: 3
  year: 2005
  ident: 10.1016/j.rse.2019.111322_bib4
  article-title: Classification of hyperspectral data from urban areas based on extended morphological profiles
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.842478
– start-page: 5091
  year: 2016
  ident: 10.1016/j.rse.2019.111322_bib2
  article-title: How useful is region-based classification of remote sensing images in a deep learning framework?
– volume: 47
  start-page: 3180
  issue: 9
  year: 2009
  ident: 10.1016/j.rse.2019.111322_bib10
  article-title: A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2019636
– volume: 115
  start-page: 1145
  issue: 5
  year: 2011
  ident: 10.1016/j.rse.2019.111322_bib58
  article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.12.017
– start-page: 248
  year: 2009
  ident: 10.1016/j.rse.2019.111322_bib17
  article-title: Imagenet: a large-scale hierarchical image database
– volume: vol. 3
  start-page: 2
  year: 2013
  ident: 10.1016/j.rse.2019.111322_bib42
  article-title: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks
– volume: 168
  start-page: 233
  issue: 3
  year: 2003
  ident: 10.1016/j.rse.2019.111322_bib11
  article-title: A multi-scale segmentation/object relationship modelling methodology for landscape analysis
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(03)00139-X
– volume: 44
  start-page: 2950
  issue: 10
  year: 2006
  ident: 10.1016/j.rse.2019.111322_bib100
  article-title: A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.876704
– volume: 9
  start-page: 522
  issue: 6
  year: 2017
  ident: 10.1016/j.rse.2019.111322_bib44
  article-title: Hourglass-shapenetwork based semantic segmentation for high resolution aerial imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs9060522
SSID ssj0015871
Score 2.7261639
Snippet In recent years, large amount of high spatial-resolution remote sensing (HRRS) images are available for land-cover mapping. However, due to the complex...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111322
SubjectTerms Artificial neural networks
Classification
Datasets
Deep learning
Detection
Gaofen-2 satellite images
High resolution
High-resolution remote sensing
Image acquisition
Image classification
Image resolution
Image segmentation
Internet
Labels
Land cover
land-cover classification
Mapping
Neural networks
Remote sensing
Satellite imagery
Spatial data
Spatial resolution
Target recognition
Title Land-cover classification with high-resolution remote sensing images using transferable deep models
URI https://dx.doi.org/10.1016/j.rse.2019.111322
https://www.proquest.com/docview/2352368830
https://www.proquest.com/docview/2352409355
Volume 237
WOSCitedRecordID wos000509819300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdgA8EFwWCiMJCREAcqT3ESJ_FxQl0HqsrHOimcLNt1pG6QlqZB47_nOXbSroJpHLhElvOcRv398vxsvw-EXmc0KmgiKeFKxiQ2Oia8CFLCgE-MpZwy3QQKj9LxOMtz_sn7qlZNOYG0LLPLS774r1BDH4BtQ2f_Ae7uodABbQAdrgA7XG8E_EiWU6KtZ2ZfW9PY-gI5lJs9V5ufmMAa279Df2kALNOvrCO7DW_5Lm3Wh7ry9SPAqjVLH15lFq5wTrVp0X65Oh5sz43YufUetlMp-awkX2dtb-4cdYf1jJzO_QxqfYNq2_t5diE7yVMfQ3JSy7IwXtTvVcDCNOj8Prz-jYAQoUtJ3erfMEr7i8Om5H1I_qjV3QbD-eGysolNKffC6ymsPbYffxTHZ6ORmAzyyZvFD2KLi9lDeF9p5TbaDVPGQfntHr0f5B-64yaWpa60on-99vi7cQTc-tW_GTBbU3ljn0weogd-YYGPHCEeoVum3EP7gzUWcNMr8moP3Rsan6t8D90dNtWdfz1Ges0dfJU72HIHb3EHO-5gjz123MENd_Amd7DlDnbceYLOjgeTdyfEV-EgOmLZiuiAyURmIQ0KJZOEhSqmWkGbU2jwiCdaaRVnNpEk1zRmxZROC5UGcUGpYjzaRzvlvDRPEY5NYQJmQl7AMh70gEzDKTxWKiZlaJTqoaD9a4X2KeptpZRvovVFPBeAhrBoCIdGD73thixcfpbrhOMWL-ENTGc4CmDadcMOWmyF_9ArEcLKJUqyLAp66FV3G3SzPXCTpZnXTiZuKhg8u4HMc3R__c0coJ3VsjYv0B39czWrli89ZX8Dls6zeg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land-cover+classification+with+high-resolution+remote+sensing+images+using+transferable+deep+models&rft.jtitle=Remote+sensing+of+environment&rft.au=Tong%2C+Xin-Yi&rft.au=Xia%2C+Gui-Song&rft.au=Lu%2C+Qikai&rft.au=Shen%2C+Huanfeng&rft.date=2020-02-01&rft.issn=0034-4257&rft.volume=237+p.111322-&rft_id=info:doi/10.1016%2Fj.rse.2019.111322&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon