Distance mean-regular graphs

We introduce the concept of distance mean-regular graph, which can be seen as a generalization of both vertex-transitive and distance-regular graphs. Let Γ be a graph with vertex set V , diameter D , adjacency matrix A , and adjacency algebra A . Then, Γ is distance mean-regular when, for a given u...

Full description

Saved in:
Bibliographic Details
Published in:Designs, codes, and cryptography Vol. 84; no. 1-2; pp. 55 - 71
Main Authors: Diego, V., Fiol, M. A.
Format: Journal Article Publication
Language:English
Published: New York Springer US 01.07.2017
Springer Nature B.V
Subjects:
ISSN:0925-1022, 1573-7586
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce the concept of distance mean-regular graph, which can be seen as a generalization of both vertex-transitive and distance-regular graphs. Let Γ be a graph with vertex set V , diameter D , adjacency matrix A , and adjacency algebra A . Then, Γ is distance mean-regular when, for a given u ∈ V , the averages of the intersection numbers p i j h ( u , v ) = | Γ i ( u ) ∩ Γ j ( v ) | (number of vertices at distance i from u and distance j from v ) computed over all vertices v at a given distance h ∈ { 0 , 1 , … , D } from u , do not depend on u . In this work we study some properties and characterizations of these graphs. For instance, it is shown that a distance mean-regular graph is always distance degree-regular, and we give a condition for the converse to be also true. Some algebraic and spectral properties of distance mean-regular graphs are also investigated. We show that, for distance mean regular-graphs, the role of the distance matrices of distance-regular graphs is played for the so-called distance mean-regular matrices. These matrices are computed from a sequence of orthogonal polynomials evaluated at the adjacency matrix of Γ and, hence, they generate a subalgebra of A . Some other algebras associated to distance mean-regular graphs are also characterized.
AbstractList We introduce the concept of distance mean-regular graph, which can be seen as a generalization of both vertex-transitive and distance-regular graphs. Let Γ be a graph with vertex set V , diameter D , adjacency matrix A , and adjacency algebra A . Then, Γ is distance mean-regular when, for a given u ∈ V , the averages of the intersection numbers p i j h ( u , v ) = | Γ i ( u ) ∩ Γ j ( v ) | (number of vertices at distance i from u and distance j from v ) computed over all vertices v at a given distance h ∈ { 0 , 1 , … , D } from u , do not depend on u . In this work we study some properties and characterizations of these graphs. For instance, it is shown that a distance mean-regular graph is always distance degree-regular, and we give a condition for the converse to be also true. Some algebraic and spectral properties of distance mean-regular graphs are also investigated. We show that, for distance mean regular-graphs, the role of the distance matrices of distance-regular graphs is played for the so-called distance mean-regular matrices. These matrices are computed from a sequence of orthogonal polynomials evaluated at the adjacency matrix of Γ and, hence, they generate a subalgebra of A . Some other algebras associated to distance mean-regular graphs are also characterized.
We introduce the concept of distance mean-regular graph, which can be seen as a generalization of both vertex-transitive and distance-regular graphs. Let Γ be a graph with vertex set V, diameter D, adjacency matrix A , and adjacency algebra A . Then, Γ is distance mean-regular when, for a given u ∈ V , the averages of the intersection numbers p i j h ( u , v ) = | Γ i ( u ) ∩ Γ j ( v ) | (number of vertices at distance i from u and distance j from v) computed over all vertices v at a given distance h ∈ { 0 , 1 , … , D } from u, do not depend on u. In this work we study some properties and characterizations of these graphs. For instance, it is shown that a distance mean-regular graph is always distance degree-regular, and we give a condition for the converse to be also true. Some algebraic and spectral properties of distance mean-regular graphs are also investigated. We show that, for distance mean regular-graphs, the role of the distance matrices of distance-regular graphs is played for the so-called distance mean-regular matrices. These matrices are computed from a sequence of orthogonal polynomials evaluated at the adjacency matrix of Γ and, hence, they generate a subalgebra of A . Some other algebras associated to distance mean-regular graphs are also characterized.
We introduce the concept of distance mean-regular graph, which can be seen as a generalization of both vertex-transitive and distance-regular graphs. Let G be a graph with vertex set V , diameter D, adjacency matrix A, and adjacency algebra A. Then, G is distance mean-regular when, for a given u ¿ V , the averages of the intersection numbers p h ij (u, v) = |Gi(u) n Gj (v)| (number of vertices at distance i from u and distance j from v) computed over all vertices v at a given distance h ¿ {0, 1, . . . , D} from u, do not depend on u. In this work we study some properties and characterizations of these graphs. For instance, it is shown that a distance mean-regular graph is always distance degree-regular, and we give a condition for the converse to be also true. Some algebraic and spectral properties of distance mean-regular graphs are also investigated. We show that, for distance mean regular-graphs, the role of the distance matrices of distance-regular graphs is played for the so-called distance mean-regular matrices. These matrices are computed from a sequence of orthogonal polynomials evaluated at the adjacency matrix of G and, hence, they generate a subalgebra of A. Some other algebras associated to distance mean-regular graphs are also characterized. Peer Reviewed
Author Diego, V.
Fiol, M. A.
Author_xml – sequence: 1
  givenname: V.
  surname: Diego
  fullname: Diego, V.
  organization: Departamento de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya
– sequence: 2
  givenname: M. A.
  surname: Fiol
  fullname: Fiol, M. A.
  email: fiol@ma4.upc.edu
  organization: Departamento de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Barcelona Graduate School of Mathematics
BookMark eNp9kM1LAzEQxYNUsK3-AYKHgufo5HtzlPoJBS96Dmk6qVva3ZrsHvzv3WUr9qKHYRjm_R6PNyGjqq6QkEsGNwzA3GYGmgsKTFPgUFB1QsZMGUGNKvSIjMFyRRlwfkYmOW8AgAngY3J1X-bGVwFnO_QVTbhutz7N1snvP_I5OY1-m_HisKfk_fHhbf5MF69PL_O7BQ1CFQ0NwJdBgWWIK--tFNJIjUoFa2MRDGKMLOruqXRcgtBRSR7VqihWMmobo5gSNviG3AaXMGAKvnG1L3-PfjgY7rg2kuuOuR6Yfao_W8yN29RtqrqYjllgErSUvcocnFOdc8LoQtn4pqyrJvly6xi4vj431Oe6-lxfn1NHmX7IfSp3Pn39y_CByZ22WmM6yvQn9A1b6oIn
CitedBy_id crossref_primary_10_1016_j_tcs_2020_12_030
Cites_doi 10.1007/978-3-642-74341-2
10.1006/jctb.1997.1778
10.1016/0095-8956(87)90027-X
10.1016/S0024-3795(98)10238-0
10.1016/j.laa.2012.07.019
10.1007/978-1-4614-1939-6
10.1016/0095-8956(82)90031-4
10.1016/0024-3795(95)00199-2
10.1016/0095-8956(84)90050-9
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Copyright Springer Science+Business Media New York 2016
Copyright Springer Science & Business Media 2017
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Copyright Springer Science & Business Media 2017
– notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID AAYXX
CITATION
JQ2
XX2
DOI 10.1007/s10623-016-0208-5
DatabaseName CrossRef
ProQuest Computer Science Collection
Recercat
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1573-7586
EndPage 71
ExternalDocumentID oai_recercat_cat_2072_267426
10_1007_s10623_016_0208_5
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
XX2
ID FETCH-LOGICAL-c358t-c02bc5091eedaa9434746e55c99f8c7eeff1f6eed56fb036f542f5d88d4f69ff3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401915300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-1022
IngestDate Fri Nov 07 13:51:09 EST 2025
Wed Sep 17 23:58:59 EDT 2025
Tue Nov 18 21:58:09 EST 2025
Sat Nov 29 02:35:53 EST 2025
Fri Feb 21 02:34:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 05E30
Vertex-transitive graph
05C50
Interlacing
Adjacency Algebra
Distance-regular graph
Intersection mean-matrix
Distance mean-regular graph
Spectrum
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-c02bc5091eedaa9434746e55c99f8c7eeff1f6eed56fb036f542f5d88d4f69ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://recercat.cat/handle/2072/267426
PQID 1901406446
PQPubID 2043752
PageCount 17
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_267426
proquest_journals_1901406446
crossref_citationtrail_10_1007_s10623_016_0208_5
crossref_primary_10_1007_s10623_016_0208_5
springer_journals_10_1007_s10623_016_0208_5
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Designs, codes, and cryptography
PublicationTitleAbbrev Des. Codes Cryptogr
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Godsil C.D., Shawe-Taylor J.: Distance-regularised graphs are distance-regular or distance-biregular. J. Comb. Theory Ser. B 43(1), 14–24 (1987).
Hilano T., Nomura K.: Distance degree regular graphs. J. Comb. Theory Ser. B 37, 96–100 (1984).
Fiol M.A.: Pseudo-distance-regularized graphs are distance-regular or distance-biregular. Linear Algebra Appl. 437, 2973–2977 (2012).
Biggs N.: Intersection matrices for linear graphs. In: Welsh D.J.A. (ed.) Combinatorial Mathematics and Its Applications, pp. 15–23. Academic Press, London (1971).
Weichsel P.: On distance-regularity in graphs. J. Comb. Theory Ser. B 32, 156–161 (1982).
Haemers W.H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226–228, 593–616 (1995).
Hazewinkel M., Gubareni N., Gubareni N.M., Kirichenko V.V.: Algebras, Rings and Modules, vol. 1. Springer, Heildelberg (2004).
Fiol M.A.: Eigenvalue interlacing and weight parameters of graphs. Linear Algebra Appl. 290, 275–301 (1999).
Biggs N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1974), 2nd edn. (1993).
Abiad A., van Dam E.R., Fiol M.A.: Some spectral and quasi-spectral characterizations of distance-regular graphs. Preprint, arXiv:1404.3973v3 [math.CO], (2014).
Godsil C.D.: Algebraic Combinatorics. Chapman and Hall, New York (1993).
Bannai E., Ito T.: Algebraic Combinatorics I: Association Schemes. Benjamin Cummings Lecture Notes Series, vol. 58. Benjammin-Cummings, London (1993).
Brouwer A.E., Haemers W.H.: Spectra of Graphs. Springer, New York. http://homepages.cwi.nl/~aeb/math/ipm/ (2012).
van Dam E.R., Koolen J.H., Tanaka H.: Distance-regular graphs. Preprint arXiv:1410.6294 [math.CO]. (2014).
Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs. Springer, Berlin (1989).
Fiol M.A., Garriga E.: From local adjacency polynomials to locally pseudo-distance-regular graphs. J. Comb. Theory Ser. B 71, 162–183 (1997).
Cámara M., Fàbrega J., Fiol M.A., Garriga E.: Some families of orthogonal polynomials of a discrete variable and their applications to graphs ans codes. Electron. J. Comb. 16, R83 (2009).
208_CR5
208_CR4
208_CR7
208_CR6
208_CR9
208_CR8
208_CR17
208_CR16
208_CR15
208_CR14
208_CR13
208_CR12
208_CR11
208_CR1
208_CR10
208_CR3
208_CR2
References_xml – reference: Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs. Springer, Berlin (1989).
– reference: van Dam E.R., Koolen J.H., Tanaka H.: Distance-regular graphs. Preprint arXiv:1410.6294 [math.CO]. (2014).
– reference: Haemers W.H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226–228, 593–616 (1995).
– reference: Hilano T., Nomura K.: Distance degree regular graphs. J. Comb. Theory Ser. B 37, 96–100 (1984).
– reference: Cámara M., Fàbrega J., Fiol M.A., Garriga E.: Some families of orthogonal polynomials of a discrete variable and their applications to graphs ans codes. Electron. J. Comb. 16, R83 (2009).
– reference: Fiol M.A.: Eigenvalue interlacing and weight parameters of graphs. Linear Algebra Appl. 290, 275–301 (1999).
– reference: Fiol M.A.: Pseudo-distance-regularized graphs are distance-regular or distance-biregular. Linear Algebra Appl. 437, 2973–2977 (2012).
– reference: Hazewinkel M., Gubareni N., Gubareni N.M., Kirichenko V.V.: Algebras, Rings and Modules, vol. 1. Springer, Heildelberg (2004).
– reference: Biggs N.: Intersection matrices for linear graphs. In: Welsh D.J.A. (ed.) Combinatorial Mathematics and Its Applications, pp. 15–23. Academic Press, London (1971).
– reference: Weichsel P.: On distance-regularity in graphs. J. Comb. Theory Ser. B 32, 156–161 (1982).
– reference: Bannai E., Ito T.: Algebraic Combinatorics I: Association Schemes. Benjamin Cummings Lecture Notes Series, vol. 58. Benjammin-Cummings, London (1993).
– reference: Fiol M.A., Garriga E.: From local adjacency polynomials to locally pseudo-distance-regular graphs. J. Comb. Theory Ser. B 71, 162–183 (1997).
– reference: Godsil C.D.: Algebraic Combinatorics. Chapman and Hall, New York (1993).
– reference: Godsil C.D., Shawe-Taylor J.: Distance-regularised graphs are distance-regular or distance-biregular. J. Comb. Theory Ser. B 43(1), 14–24 (1987).
– reference: Brouwer A.E., Haemers W.H.: Spectra of Graphs. Springer, New York. http://homepages.cwi.nl/~aeb/math/ipm/ (2012).
– reference: Abiad A., van Dam E.R., Fiol M.A.: Some spectral and quasi-spectral characterizations of distance-regular graphs. Preprint, arXiv:1404.3973v3 [math.CO], (2014).
– reference: Biggs N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1974), 2nd edn. (1993).
– ident: 208_CR5
– ident: 208_CR11
– ident: 208_CR2
– ident: 208_CR6
– ident: 208_CR3
  doi: 10.1007/978-3-642-74341-2
– ident: 208_CR7
– ident: 208_CR16
– ident: 208_CR14
– ident: 208_CR1
– ident: 208_CR8
  doi: 10.1006/jctb.1997.1778
– ident: 208_CR12
  doi: 10.1016/0095-8956(87)90027-X
– ident: 208_CR9
  doi: 10.1016/S0024-3795(98)10238-0
– ident: 208_CR10
  doi: 10.1016/j.laa.2012.07.019
– ident: 208_CR4
  doi: 10.1007/978-1-4614-1939-6
– ident: 208_CR17
  doi: 10.1016/0095-8956(82)90031-4
– ident: 208_CR13
  doi: 10.1016/0024-3795(95)00199-2
– ident: 208_CR15
  doi: 10.1016/0095-8956(84)90050-9
SSID ssj0001302
Score 2.1157105
Snippet We introduce the concept of distance mean-regular graph, which can be seen as a generalization of both vertex-transitive and distance-regular graphs. Let Γ be...
We introduce the concept of distance mean-regular graph, which can be seen as a generalization of both vertex-transitive and distance-regular graphs. Let Γ be...
We introduce the concept of distance mean-regular graph, which can be seen as a generalization of both vertex-transitive and distance-regular graphs. Let G be...
SourceID csuc
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 55
SubjectTerms 05 Combinatorics
05C Graph theory
05E Algebraic combinatorics
Adjacency Algebra
Algebra
Circuits
Classificació AMS
Coding and Information Theory
Combinacions (Matemàtica)
Combinatorial analysis
Combinatòria
Computation
Computer Science
Cryptology
Data Structures and Information Theory
Discrete Mathematics in Computer Science
Distance mean-regular graph
Distance-regular graph
Grafs, Teoria de
Graph theory
Graphs
Information and Communication
Interlacing
Intersection mean-matrix
Matemàtica discreta
Matemàtiques i estadística
Spectrum
Teoria de grafs
Vertex-transitive graph
Àrees temàtiques de la UPC
Title Distance mean-regular graphs
URI https://link.springer.com/article/10.1007/s10623-016-0208-5
https://www.proquest.com/docview/1901406446
https://recercat.cat/handle/2072/267426
Volume 84
WOSCitedRecordID wos000401915300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001302
  issn: 0925-1022
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9KAHp1OxOqUHT0qgTZs0PYo6POgQf4zdQpImIGiVdvPvN-nauokKeughJGlLXl6-F9573wM4xpFikQwFYljEKDaRRMKEBBkZZFlqj0RVpY-NrpPhkI3H6W2dx1020e6NS7I6qeeS3SxU26uvC5oNGCLLsGLRjrl6DXf3o_b4dZ64imAPO4pNjBtX5nevWACjjiqnasHQ_OIbrSBn0P3Xz27CRm1h-mezLbEFSzrvQbep3uDXytyD9TkqQtu6aflby23oXziz0g7zX7TIUVEVrC_8it263IHHweXD-RWq6yggFRE2QSrAUjnDwOKhEI4QLompJkSlqWEq0dqY0FDbSagVUUQNibEhGWNZbGhqTLQLnfw113vgGyZlInVEA5PGocoEyaxSZ5HUoZ2lmQdBs6Bc1STjrtbFM_-kR3Yrw11gmVsZTjw4aae8zRg2fh9spcQtGuhCiQl37Nhtwz04SDDH1N74qQf9Rpa81sySOwPIGjH2FuzBaSO7ue6fvrz_p9EHsIYd_ldxvX3oTIqpPoRV9T55KoujasN-AFAo4o4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS8MwED50CuqD06lYndoHn5RAmzZt-ijqmLgN0Tn2Fto0AUGrtJ2_3yRr5yYq6EMfQpK25HK5L9zddwCn2OPUS9wYURz7yJdegmLpEiQTJ00jdSRykz426oWDAR2Po7sqj7uoo91rl6Q5qeeS3ZSpVldfHTTrUESWYcVXBksT5t8_jGbHr_bEGYI9rCk2Ma5dmd-9YsEYNXgx4QtA84tv1JicTvNfP7sFmxXCtC-mW2IblkTWgmZdvcGulLkFG3NUhKrVn_G3FjvQvtKwUg2zX0ScodwUrM9tw25d7MJj53p42UVVHQXEPUJLxB2ccA0MlD2MY00IF_qBIIRHkaQ8FEJKVwaqkwRKRF4giY8lSSlNfRlEUnp70MheM7EPtqRJEibCCxwZ-S5PY5IqpU69RLhqlqAWOPWCMl6RjOtaF8_skx5ZrwzTgWV6ZRix4Gw25W3KsPH7YCUlpqyByHlcMs2OPWvoBzshZjhQN_7AgnYtS1ZpZsE0AFIgRt2CLTivZTfX_dOXD_40-gTWusN-j_VuBreHsI41FjAxvm1olPlEHMEqfy-fivzYbN4P9t3lcg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiDP6ZidWoffFKCbdq06aM4h6KOgTr2Fto0AUGrtNW_31zXzk1UEB_6EJK05S6X-8JdvgM4op7kXuLGhNPYJ772EhJrlxGdOGkamS1RVtfHhjdhv89Ho2hQ1zktmmz3JiQ5vtOALE1Zefqa6tOpi2_GbZtjMCbQOpyweVjwMY8ej-t3w8lWjFG5imyPIt0mpU1Y87tXzDimlize5Azo_BInrdxPb-3fP74OqzXytM_GS2UD5lTWhrWmqoNdG3kbVqYoCk3rdsLrWmxCp4tw0wyzn1WckbwqZJ_bFet1sQUPvYv780tS11cg0mO8JNKhiUTAYPxkHCNRXOgHijEZRZrLUCmtXR2YThYY1XmBZj7VLOU89XUQae1tQyt7ydQO2JonSZgoL3B05LsyjVlqjD31EuWaWYpb4DTCFbImH8caGE_ikzYZJSMw4QwlI5gFx5Mpr2Pmjd8HG40J4yVULuNSIGv2pIEPdUIqaBAaRGJBp9GrqC22EAiMDLgxp2MLTho9TnX_9OXdP40-hKVBtydurvrXe7BMESJUqb8daJX5m9qHRflePhb5QbWOPwAXte5W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distance+mean-regular+graphs&rft.jtitle=Designs%2C+codes%2C+and+cryptography&rft.au=Diego%2C+V.&rft.au=Fiol%2C+M.+A.&rft.date=2017-07-01&rft.pub=Springer+US&rft.issn=0925-1022&rft.eissn=1573-7586&rft.volume=84&rft.issue=1-2&rft.spage=55&rft.epage=71&rft_id=info:doi/10.1007%2Fs10623-016-0208-5&rft.externalDocID=10_1007_s10623_016_0208_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-1022&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-1022&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-1022&client=summon