On the Use of Two-Way Fixed Effects Regression Models for Causal Inference with Panel Data

The two-way linear fixed effects regression (2FE) has become a default method for estimating causal effects from panel data. Many applied researchers use the 2FE estimator to adjust for unobserved unit-specific and time-specific confounders at the same time. Unfortunately, we demonstrate that the ab...

Full description

Saved in:
Bibliographic Details
Published in:Political analysis Vol. 29; no. 3; pp. 405 - 415
Main Authors: Imai, Kosuke, Kim, In Song
Format: Journal Article
Language:English
Published: New York, USA Cambridge University Press 01.07.2021
Subjects:
ISSN:1047-1987, 1476-4989
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The two-way linear fixed effects regression (2FE) has become a default method for estimating causal effects from panel data. Many applied researchers use the 2FE estimator to adjust for unobserved unit-specific and time-specific confounders at the same time. Unfortunately, we demonstrate that the ability of the 2FE model to simultaneously adjust for these two types of unobserved confounders critically relies upon the assumption of linear additive effects. Another common justification for the use of the 2FE estimator is based on its equivalence to the difference-in-differences estimator under the simplest setting with two groups and two time periods. We show that this equivalence does not hold under more general settings commonly encountered in applied research. Instead, we prove that the multi-period difference-in-differences estimator is equivalent to the weighted 2FE estimator with some observations having negative weights. These analytical results imply that in contrast to the popular belief, the 2FE estimator does not represent a design-based, nonparametric estimation strategy for causal inference. Instead, its validity fundamentally rests on the modeling assumptions.
AbstractList The two-way linear fixed effects regression ( 2FE ) has become a default method for estimating causal effects from panel data. Many applied researchers use the 2FE estimator to adjust for unobserved unit-specific and time-specific confounders at the same time. Unfortunately, we demonstrate that the ability of the 2FE model to simultaneously adjust for these two types of unobserved confounders critically relies upon the assumption of linear additive effects. Another common justification for the use of the 2FE estimator is based on its equivalence to the difference-in-differences estimator under the simplest setting with two groups and two time periods. We show that this equivalence does not hold under more general settings commonly encountered in applied research. Instead, we prove that the multi-period difference-in-differences estimator is equivalent to the weighted 2FE estimator with some observations having negative weights. These analytical results imply that in contrast to the popular belief, the 2FE estimator does not represent a design-based, nonparametric estimation strategy for causal inference. Instead, its validity fundamentally rests on the modeling assumptions.
The two-way linear fixed effects regression (2FE) has become a default method for estimating causal effects from panel data. Many applied researchers use the 2FE estimator to adjust for unobserved unit-specific and time-specific confounders at the same time. Unfortunately, we demonstrate that the ability of the 2FE model to simultaneously adjust for these two types of unobserved confounders critically relies upon the assumption of linear additive effects. Another common justification for the use of the 2FE estimator is based on its equivalence to the difference-in-differences estimator under the simplest setting with two groups and two time periods. We show that this equivalence does not hold under more general settings commonly encountered in applied research. Instead, we prove that the multi-period difference-in-differences estimator is equivalent to theweighted 2FE estimator with some observations having negative weights. These analytical results imply that in contrast to the popular belief, the 2FE estimator does not represent a design based, nonparametric estimation strategy for causal inference. Instead, its validity fundamentally rests on the modeling assumptions.
The two-way linear fixed effects regression (2FE) has become a default method for estimating causal effects from panel data. Many applied researchers use the 2FE estimator to adjust for unobserved unit-specific and time-specific confounders at the same time. Unfortunately, we demonstrate that the ability of the 2FE model to simultaneously adjust for these two types of unobserved confounders critically relies upon the assumption of linear additive effects. Another common justification for the use of the 2FE estimator is based on its equivalence to the difference-in-differences estimator under the simplest setting with two groups and two time periods. We show that this equivalence does not hold under more general settings commonly encountered in applied research. Instead, we prove that the multi-period difference-in-differences estimator is equivalent to the weighted 2FE estimator with some observations having negative weights. These analytical results imply that in contrast to the popular belief, the 2FE estimator does not represent a design-based, nonparametric estimation strategy for causal inference. Instead, its validity fundamentally rests on the modeling assumptions.
Author Kim, In Song
Imai, Kosuke
Author_xml – sequence: 1
  givenname: Kosuke
  orcidid: 0000-0002-2748-1022
  surname: Imai
  fullname: Imai, Kosuke
  email: Imai@Harvard.Edu
  organization: 1Professor, Department of Government and Department of Statistics, Harvard University, 1737 Cambridge Street, Institute for Quantitative Social Science, Cambridge, MA 02138, USA. E-mail: Imai@Harvard.Edu, URL: https://imai.fas.harvard.edu/
– sequence: 2
  givenname: In Song
  orcidid: 0000-0002-5774-1585
  surname: Kim
  fullname: Kim, In Song
  email: insong@mit.edu
  organization: 2Associate Professor, Department of Political Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. E-mail: insong@mit.edu, URL: http://web.mit.edu/insong/www/
BookMark eNp1kNFLwzAQxoMouE2ffBYCPkpn0rRN-yhz08FkIhuCLyVLL1tHl8wkY-6_N2NDQfTpjrvffXf3tdGpNhoQuqKkSwnld2uhuzGJSZexE9SiCc-ipMiL05CThEe0yPk5aju3JIHmRdFC72ON_QLw1AE2Ck-2JnoTOzyoP6HCfaVAeodfYW7Budpo_GwqaBxWxuKe2DjR4KFWYEFLwNvaL_CL0NDgB-HFBTpTonFweYwdNB30J72naDR-HPbuR5Fkae6jmZoVSlCSEpakaUgEZBVXPKsIpUrmgmSzmHCZkTiWjOaJjItQpAWInEDCWAfdHHTX1nxswPlyaTZWh5VlnLKUZyQ4Eih6oKQ1zllQpay98OEnb0XdlJSUewvLYGG5t7Bke-XbXzNrW6-E3f1DXx_opfPGfqMxpzRL0yT0o6OaWM1sXc3h59C_9L4AUhaLGw
CitedBy_id crossref_primary_10_1016_j_ecolecon_2021_107318
crossref_primary_10_1111_ajps_12826
crossref_primary_10_1017_spq_2021_17
crossref_primary_10_1017_S0020818324000092
crossref_primary_10_1016_j_jeem_2023_102852
crossref_primary_10_1111_jifm_12207
crossref_primary_10_1002_rfe_1177
crossref_primary_10_1111_coep_12633
crossref_primary_10_3390_ijerph192214890
crossref_primary_10_1017_S0007123424000486
crossref_primary_10_1177_2212585X231213787
crossref_primary_10_1080_09692290_2023_2267051
crossref_primary_10_1016_j_eneco_2025_108827
crossref_primary_10_1177_00224294231206098
crossref_primary_10_1093_isq_sqae069
crossref_primary_10_1111_ajps_12820
crossref_primary_10_2139_ssrn_3773763
crossref_primary_10_1080_13547860_2022_2044658
crossref_primary_10_1108_PAR_10_2023_0137
crossref_primary_10_1177_00111287221083885
crossref_primary_10_1111_labr_12238
crossref_primary_10_1016_j_marpol_2024_106156
crossref_primary_10_3389_fpubh_2022_989625
crossref_primary_10_1177_10780874241241255
crossref_primary_10_1016_j_electstud_2025_102957
crossref_primary_10_1007_s11292_022_09508_y
crossref_primary_10_1086_718210
crossref_primary_10_1162_glep_a_00710
crossref_primary_10_1017_pan_2022_23
crossref_primary_10_1287_inte_2023_0028
crossref_primary_10_1016_j_eneco_2023_106624
crossref_primary_10_1177_10659129221145938
crossref_primary_10_1093_ser_mwad034
crossref_primary_10_1177_00223433231200918
crossref_primary_10_3390_su16093585
crossref_primary_10_1177_00031224231156190
crossref_primary_10_1080_09692290_2025_2519189
crossref_primary_10_1111_obes_12673
crossref_primary_10_1016_j_eap_2025_05_027
crossref_primary_10_1098_rsos_221001
crossref_primary_10_1016_j_buildenv_2024_111618
crossref_primary_10_1016_j_jclepro_2024_141871
crossref_primary_10_1016_j_ssresearch_2024_103011
crossref_primary_10_1001_jamanetworkopen_2023_24018
crossref_primary_10_1080_13501763_2024_2390701
crossref_primary_10_1177_0095327X241277209
crossref_primary_10_1146_annurev_polisci_051120_014235
crossref_primary_10_26794_2587_5671_2026_30_4_1706_01
crossref_primary_10_2139_ssrn_4522039
crossref_primary_10_1016_j_eneco_2023_106770
crossref_primary_10_1086_723818
crossref_primary_10_1016_j_tra_2025_104649
crossref_primary_10_1021_envhealth_5c00033
crossref_primary_10_1111_ajps_12721
crossref_primary_10_1038_s43856_025_00757_2
crossref_primary_10_1111_1475_6773_14023
crossref_primary_10_2139_ssrn_5082905
crossref_primary_10_1007_s10668_025_06628_z
crossref_primary_10_1007_s11127_023_01139_9
crossref_primary_10_1177_00104140231169018
crossref_primary_10_1016_j_electstud_2024_102878
crossref_primary_10_1038_s41467_024_49835_4
crossref_primary_10_3389_frsus_2025_1637126
crossref_primary_10_1093_sf_soaf102
crossref_primary_10_1111_coep_12645
crossref_primary_10_1111_poms_13863
crossref_primary_10_1016_j_jclepro_2023_139815
crossref_primary_10_1177_13691481251329774
crossref_primary_10_1007_s11187_024_00973_5
crossref_primary_10_1016_j_jdeveco_2025_103494
crossref_primary_10_1016_j_exis_2024_101442
crossref_primary_10_1016_j_labeco_2024_102547
crossref_primary_10_1080_17487870_2024_2326410
crossref_primary_10_1200_JCO_24_02121
crossref_primary_10_3390_rs16183407
crossref_primary_10_3389_fpubh_2024_1442304
crossref_primary_10_1080_07418825_2025_2557329
crossref_primary_10_1017_psrm_2021_45
crossref_primary_10_1215_00703370_11466849
crossref_primary_10_1186_s12992_025_01135_2
crossref_primary_10_3389_fsufs_2024_1460497
crossref_primary_10_1007_s10901_024_10115_8
crossref_primary_10_1016_j_socscimed_2021_114580
crossref_primary_10_1016_j_rssm_2024_100957
crossref_primary_10_1002_soej_12657
crossref_primary_10_1016_j_frl_2023_104599
crossref_primary_10_1371_journal_pone_0323565
crossref_primary_10_1016_j_eap_2021_12_020
crossref_primary_10_1111_lsq_70031
crossref_primary_10_1093_ser_mwac026
crossref_primary_10_17645_si_9638
crossref_primary_10_1007_s13132_025_02813_7
crossref_primary_10_3390_healthcare11030437
crossref_primary_10_1111_gove_12881
crossref_primary_10_1002_soej_12686
crossref_primary_10_1016_j_econlet_2025_112600
crossref_primary_10_1016_j_resourpol_2024_105091
crossref_primary_10_1017_S0022050723000359
crossref_primary_10_1038_s41558_024_02024_z
crossref_primary_10_1002_soej_12682
crossref_primary_10_1016_j_electstud_2025_102968
crossref_primary_10_1016_j_jfineco_2022_01_004
crossref_primary_10_1016_j_jeem_2025_103161
crossref_primary_10_1016_j_adiac_2025_100816
crossref_primary_10_1093_geront_gnae151
crossref_primary_10_1017_ehs_2023_35
crossref_primary_10_1215_00703370_11680156
crossref_primary_10_1007_s10980_024_01926_9
crossref_primary_10_1515_em_2024_0025
crossref_primary_10_1080_00036846_2023_2165618
crossref_primary_10_2139_ssrn_3773825
crossref_primary_10_3390_su17167376
crossref_primary_10_1086_733370
crossref_primary_10_1177_00223433231214427
crossref_primary_10_1111_1540_6229_12507
crossref_primary_10_1007_s11162_023_09748_5
crossref_primary_10_1007_s10668_021_01971_3
crossref_primary_10_1017_S0007123422000564
crossref_primary_10_1016_j_labeco_2023_102492
crossref_primary_10_1111_ropr_12458
crossref_primary_10_2139_ssrn_5355231
crossref_primary_10_1016_j_habitatint_2024_103274
crossref_primary_10_1017_S0003055422001290
crossref_primary_10_3389_fsufs_2025_1595161
crossref_primary_10_1007_s00181_022_02253_1
crossref_primary_10_1016_j_jeconom_2021_03_014
crossref_primary_10_1017_S0003055420000556
crossref_primary_10_1111_caje_12549
crossref_primary_10_1186_s13063_024_08572_1
crossref_primary_10_1111_pops_13015
crossref_primary_10_1093_ectj_utae014
crossref_primary_10_1016_j_ssresearch_2025_103223
crossref_primary_10_1016_j_jdeveco_2022_102850
crossref_primary_10_1017_S0020818322000261
crossref_primary_10_1086_736996
crossref_primary_10_1016_j_jclepro_2023_136508
crossref_primary_10_1016_j_econedurev_2022_102328
crossref_primary_10_1016_j_ecolecon_2023_108078
crossref_primary_10_1038_s41598_025_92502_x
crossref_primary_10_1016_j_ecolecon_2022_107367
crossref_primary_10_1016_j_jjie_2024_101338
crossref_primary_10_1002_soej_12742
crossref_primary_10_3102_00028312241275967
crossref_primary_10_1111_rssb_12448
crossref_primary_10_1108_IJESM_05_2023_0033
crossref_primary_10_1016_j_jeem_2024_102971
crossref_primary_10_1080_26395940_2024_2387682
crossref_primary_10_1093_ije_dyae137
crossref_primary_10_1080_01446193_2023_2291082
crossref_primary_10_1007_s11558_023_09510_7
crossref_primary_10_1016_j_jbef_2022_100719
crossref_primary_10_1371_journal_pwat_0000329
crossref_primary_10_1017_S0143814X25000121
crossref_primary_10_2139_ssrn_4487202
crossref_primary_10_1111_ele_70023
crossref_primary_10_1016_j_regsciurbeco_2024_104039
crossref_primary_10_1111_jofi_13412
crossref_primary_10_1080_09692290_2024_2442698
crossref_primary_10_1016_j_socscimed_2024_117252
crossref_primary_10_1093_isq_sqac047
crossref_primary_10_1007_s40797_023_00263_1
crossref_primary_10_1007_s10680_023_09687_y
crossref_primary_10_1257_jep_20241406
crossref_primary_10_1177_10659129241268816
crossref_primary_10_1093_isq_sqab073
crossref_primary_10_1007_s10668_025_06246_9
crossref_primary_10_1016_j_ribaf_2023_102025
crossref_primary_10_1016_j_worlddev_2023_106418
crossref_primary_10_1111_1467_9566_13755
crossref_primary_10_1073_pnas_2414767122
crossref_primary_10_1093_jopart_muae014
crossref_primary_10_1108_IJHMA_05_2023_0064
crossref_primary_10_1007_s40750_023_00221_2
crossref_primary_10_1016_j_jimonfin_2024_103263
crossref_primary_10_1007_s40865_025_00271_y
crossref_primary_10_1177_10591478251331095
crossref_primary_10_1016_j_socscimed_2023_116446
crossref_primary_10_1108_BPMJ_02_2024_0052
crossref_primary_10_1016_j_jenvman_2025_126286
crossref_primary_10_1007_s10101_022_00283_0
crossref_primary_10_1177_00323217241266029
crossref_primary_10_1016_j_eap_2024_10_056
crossref_primary_10_1001_jamanetworkopen_2020_36687
crossref_primary_10_1016_j_foodpol_2024_102626
crossref_primary_10_1214_25_AOAS2011
crossref_primary_10_1016_j_irfa_2024_103105
crossref_primary_10_1111_puar_13694
crossref_primary_10_1080_09638199_2024_2419406
crossref_primary_10_1111_ajps_12897
crossref_primary_10_1016_j_jinteco_2022_103685
crossref_primary_10_1017_psrm_2024_4
crossref_primary_10_1111_beer_12564
crossref_primary_10_1016_j_joclim_2025_100414
crossref_primary_10_1177_09589287251370494
crossref_primary_10_1007_s40750_024_00250_5
crossref_primary_10_1080_01402382_2025_2521582
crossref_primary_10_1093_poq_nfad052
crossref_primary_10_3390_su16198581
crossref_primary_10_1007_s11150_023_09657_7
crossref_primary_10_1111_ajae_12510
crossref_primary_10_1016_j_scs_2024_106097
crossref_primary_10_1093_isq_sqae126
crossref_primary_10_1093_isq_sqac067
crossref_primary_10_1177_10659129231205296
crossref_primary_10_1287_mnsc_2023_4811
crossref_primary_10_1111_ajes_12602
crossref_primary_10_1093_ser_mwae056
crossref_primary_10_1007_s11292_022_09527_9
crossref_primary_10_1111_ajps_12685
crossref_primary_10_1111_gove_12799
crossref_primary_10_1111_ecot_12436
crossref_primary_10_1111_1475_6773_13694
crossref_primary_10_1002_hec_4842
crossref_primary_10_1080_01900692_2022_2081177
crossref_primary_10_1111_jmcb_13244
crossref_primary_10_1016_j_jue_2024_103689
crossref_primary_10_1093_jrsssb_qkad136
crossref_primary_10_1002_smi_3216
crossref_primary_10_1007_s10668_024_05358_y
crossref_primary_10_1016_j_ijhm_2024_103896
crossref_primary_10_3390_su16103986
crossref_primary_10_1177_10659129241252811
crossref_primary_10_1002_csr_2488
crossref_primary_10_1016_j_futures_2025_103566
crossref_primary_10_3390_app13085198
crossref_primary_10_1007_s12116_023_09390_3
crossref_primary_10_1016_j_rssm_2024_100889
crossref_primary_10_3790_staa_57_1_119
crossref_primary_10_1080_00220388_2023_2253977
crossref_primary_10_1016_j_jce_2025_01_003
crossref_primary_10_1111_ecot_12308
crossref_primary_10_1086_734538
crossref_primary_10_1080_15582159_2022_2135843
crossref_primary_10_3390_logistics9030121
crossref_primary_10_1017_S0003055422001010
crossref_primary_10_1080_15582159_2022_2135844
crossref_primary_10_1111_gove_12782
crossref_primary_10_1073_pnas_2217323120
crossref_primary_10_1097_EDE_0000000000001611
crossref_primary_10_17657_jcr_2024_10_31_6
crossref_primary_10_1002_sd_3063
crossref_primary_10_1016_j_jeconom_2023_03_008
crossref_primary_10_1080_10941665_2023_2174034
crossref_primary_10_1007_s11558_024_09553_4
crossref_primary_10_2139_ssrn_3992810
crossref_primary_10_3390_math11061531
crossref_primary_10_3390_su14127343
crossref_primary_10_3390_en17102411
crossref_primary_10_1007_s00148_025_01080_9
crossref_primary_10_1007_s10964_024_01986_9
crossref_primary_10_1177_20531680251320073
crossref_primary_10_18778_2391_6478_3_35_03
crossref_primary_10_1080_01900692_2024_2431976
crossref_primary_10_1177_00223433221128846
crossref_primary_10_1007_s11192_025_05400_4
crossref_primary_10_1093_jeg_lbad012
crossref_primary_10_1177_10848223221140502
crossref_primary_10_1177_10911421211064676
crossref_primary_10_1093_jopart_muaf021
crossref_primary_10_1016_j_ejpoleco_2024_102512
crossref_primary_10_1093_ectj_utac017
crossref_primary_10_1093_forsci_fxad042
crossref_primary_10_1080_01402382_2022_2089963
crossref_primary_10_1111_brv_70011
crossref_primary_10_1017_psrm_2024_28
crossref_primary_10_1007_s10666_025_10019_z
crossref_primary_10_1016_j_eneco_2024_107776
crossref_primary_10_2139_ssrn_3794018
crossref_primary_10_1016_j_jeconom_2022_07_006
crossref_primary_10_1038_s41467_024_50630_4
crossref_primary_10_1016_j_eap_2025_07_025
crossref_primary_10_3790_staa_56_4_491
crossref_primary_10_1136_bmjph_2024_001595
crossref_primary_10_1016_j_worlddev_2024_106609
crossref_primary_10_1111_gove_12593
crossref_primary_10_1007_s43621_025_01783_9
crossref_primary_10_1177_10245294231221884
crossref_primary_10_1093_jnci_djae189
crossref_primary_10_1016_j_electstud_2023_102647
crossref_primary_10_1038_s41598_022_05482_7
crossref_primary_10_1080_01621459_2024_2395593
crossref_primary_10_1080_10242694_2025_2456798
crossref_primary_10_1016_j_eneco_2023_107028
crossref_primary_10_1016_j_jtrangeo_2025_104206
crossref_primary_10_1080_07350015_2020_1796395
crossref_primary_10_1080_13501763_2022_2061034
crossref_primary_10_1080_21565503_2023_2227438
crossref_primary_10_1017_S0003055420000957
crossref_primary_10_1016_j_isci_2024_110879
crossref_primary_10_1017_gov_2024_22
crossref_primary_10_1186_s12889_021_12474_1
crossref_primary_10_1186_s12913_024_11443_9
crossref_primary_10_1200_GO_20_00531
crossref_primary_10_1016_j_jenvman_2023_118213
crossref_primary_10_1080_09537325_2023_2196585
crossref_primary_10_1080_00036846_2024_2364119
crossref_primary_10_1371_journal_pone_0294453
crossref_primary_10_1007_s40974_024_00348_2
crossref_primary_10_1080_01402382_2021_1963139
crossref_primary_10_3390_rs17183208
crossref_primary_10_1177_00223433241279379
crossref_primary_10_1146_annurev_polisci_051120_104325
crossref_primary_10_1515_bejeap_2022_0241
crossref_primary_10_1017_pan_2022_8
crossref_primary_10_1080_1226508X_2023_2171458
crossref_primary_10_1177_17488958241276178
crossref_primary_10_1371_journal_pone_0297055
Cites_doi 10.1515/9781400829828
10.3386/w24963
10.3386/w25018
10.3386/w25904
10.1111/ajps.12417
10.2139/ssrn.2826228
10.1198/jasa.2009.ap08746
10.3368/jhr.50.2.301
10.2139/ssrn.3158747
10.1162/003355304772839588
10.1017/pan.2016.2
10.1111/ajps.12185
10.1080/07350015.2018.1546591
ContentType Journal Article
Copyright The Author(s) 2020. Published by Cambridge University Press on behalf of the Society for Political Methodology
The Author(s) 2020
Copyright_xml – notice: The Author(s) 2020. Published by Cambridge University Press on behalf of the Society for Political Methodology
– notice: The Author(s) 2020
DBID AAYXX
CITATION
0-V
3V.
7UB
7XB
88F
88J
8FK
8G5
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
DPSOV
DWQXO
GNUQQ
GUQSH
KC-
M1Q
M2L
M2O
M2R
MBDVC
PHGZM
PHGZT
PKEHL
POGQB
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
DOI 10.1017/pan.2020.33
DatabaseName CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
Worldwide Political Science Abstracts
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Social Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Politics Collection (OCUL)
ProQuest Central
ProQuest Central Student
ProQuest Research Library
ProQuest Politics Collection
Military Database
Political Science Database (OCUL)
Research Library
Social Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
ProQuest Sociology & Social Sciences Collection
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
Politics Collection
ProQuest Military Collection
Sociology & Social Sciences Collection
ProQuest Central China
ProQuest Central
ProQuest Central Korea
ProQuest Research Library
Worldwide Political Science Abstracts
ProQuest Central (New)
Social Science Premium Collection
ProQuest Political Science
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Military Collection (Alumni Edition)
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest Politics Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


Research Library Prep
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Political Science
EISSN 1476-4989
EndPage 415
ExternalDocumentID 10_1017_pan_2020_33
27116554
GroupedDBID -~X
.2P
.I3
0-V
09C
09D
0R~
123
1TH
29O
3V.
4.4
482
5VS
5WA
70D
8G5
8U8
9BT
AABES
AABWE
AAEED
AAFXQ
AAGFV
AAIYJ
AAJKP
AAKTX
AALKF
AAMVS
AAOGV
AAPYI
AASVR
AAUKB
AAUQX
AAXEK
ABBGM
ABBHK
ABBXU
ABIXL
ABJNI
ABJWI
ABLIL
ABMYL
ABNKS
ABQLI
ABQTQ
ABQWD
ABROB
ABSMQ
ABUWG
ABXAU
ABXSQ
ABYPY
ABZBJ
ABZCX
ACCHT
ACFCP
ACGFS
ACHQT
ACMRT
ACNCT
ACPQN
ACQFJ
ACUFI
ACUIJ
ACUYZ
ACWGA
ACYPW
ACYZP
ACZBM
ADACV
ADEYI
ADGEJ
ADHZD
ADKIL
ADNBY
ADOCK
ADOCW
ADOVH
ADRIX
ADTCA
ADULT
ADVJH
ADZXQ
AEBAK
AEBPU
AEFOJ
AEGPL
AEHGV
AEJOX
AEPUE
AEUPB
AEYYC
AFFNX
AFIYH
AFKQG
AFKRA
AFKRZ
AFKSM
AFLVW
AFVIK
AGABE
AGHGI
AGJUD
AGKEF
AGOOT
AGRIO
AGSYK
AHQXX
AHRGI
AHXPO
AIGNW
AIHIV
AIJHB
AJECE
AJPFC
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALUQC
ANFVQ
AOWSX
APHTQ
ARALO
ARZZG
ASPBG
ATRLI
ATUCA
AUXHV
AVDNQ
AVWKF
AWRMI
AWSUU
AYIQA
AYLYT
AZFZN
AZNXF
AZQEC
BBAJS
BBLKV
BBQHK
BENPR
BJBOZ
BMAJL
BPHCQ
CAG
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CFLAC
CHEAL
CJCSC
CKLRP
COF
CS3
CZ4
DDUBX
DOHLZ
DPSOV
DU5
DWQXO
D~K
EBD
EBS
EE~
EGQIC
EJD
F5P
F9B
FEDTE
GDOGT
GKAIP
GNUQQ
GUQSH
H5~
HAR
HOVLH
HVGLF
HW0
HZ~
IH6
IOEEP
IOO
IOX
IS6
J21
JAAYA
JBMMH
JENOY
JHFFW
JHPGK
JKQEH
JLEZI
JLXEF
JOSPZ
JPL
JPPIE
JQKCU
JRMXA
JSODD
JST
KAFGG
KAQDR
KC-
KC5
KSI
LW7
M-Z
M1Q
M2L
M2O
M2R
M49
N9A
NGC
NIKVX
NU-
O0~
O9-
OYBOY
O~Y
P2P
PB-
PQQKQ
PROAC
Q1.
Q5Y
R44
RCA
RD5
RIG
RNI
ROL
ROX
RW1
RXO
RZF
RZO
S6U
SA0
T9M
TJJ
TKY
TSS
UT1
WFFJZ
X7H
ZJOSE
ZKX
ZMEZD
ZYDXJ
~91
~D7
~SN
ABGDZ
ABVKB
ABXHF
ACDLN
AFZFC
AGTDA
AKMAY
CBIIA
IPSME
PHGZM
PHGZT
AAGQS
AAXMD
AAYXX
ABNGD
ACUKT
AEHUL
AFFHD
AGQPQ
AHHGH
CITATION
H13
PRQQA
7UB
7XB
8FK
MBDVC
PKEHL
POGQB
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-bfb9fa10503455a10ae6d7f76d011fc8a06b207c6022c3184c298a019ea80e433
IEDL.DBID BENPR
ISICitedReferencesCount 365
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000656899900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1047-1987
IngestDate Sun Nov 09 06:33:32 EST 2025
Sat Nov 29 03:06:28 EST 2025
Tue Nov 18 21:07:00 EST 2025
Thu Jul 03 21:36:54 EDT 2025
Wed Mar 13 05:59:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords difference-in-differences
unobserved confounding
weighted least squares
longitudinal data
matching
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-bfb9fa10503455a10ae6d7f76d011fc8a06b207c6022c3184c298a019ea80e433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2748-1022
0000-0002-5774-1585
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/F10006D0210407C5F9C7CAC1EEE3EF0D/S1047198720000339a.pdf/div-class-title-on-the-use-of-two-way-fixed-effects-regression-models-for-causal-inference-with-panel-data-div.pdf
PQID 2535760020
PQPubID 51675
PageCount 11
ParticipantIDs proquest_journals_2535760020
crossref_citationtrail_10_1017_pan_2020_33
crossref_primary_10_1017_pan_2020_33
jstor_primary_27116554
cambridge_journals_10_1017_pan_2020_33
PublicationCentury 2000
PublicationDate 20210700
20210701
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: Oxford
PublicationTitle Political analysis
PublicationTitleAlternate Polit. Anal
PublicationYear 2021
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2019; 38
2015; 60
2004; 119
2019; 63
2017; 25
2010; 105
2015; 50
S1047198720000339_r10
S1047198720000339_r11
S1047198720000339_r12
S1047198720000339_r13
S1047198720000339_r4
S1047198720000339_r14
S1047198720000339_r5
S1047198720000339_r2
S1047198720000339_r15
S1047198720000339_r3
S1047198720000339_r16
S1047198720000339_r17
S1047198720000339_r1
S1047198720000339_r18
S1047198720000339_r19
S1047198720000339_r8
S1047198720000339_r9
S1047198720000339_r6
S1047198720000339_r7
References_xml – volume: 38
  start-page: 613
  year: 2019
  end-page: 620
  article-title: The Promise and Pitfalls of Differences-in-Differences: Reflections on 16 and Pregnant and Other Applications
  publication-title: Journal of Business & Economic Statistics
– volume: 25
  start-page: 57
  issue: 1
  year: 2017
  end-page: 76
  article-title: Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models
  publication-title: Political Analysis
– volume: 60
  start-page: 250
  issue: 1
  year: 2015
  end-page: 267
  article-title: Does Regression Produce Representative Estimates of Causal Effects?
  publication-title: American Journal of Political Science
– volume: 50
  start-page: 301
  issue: 2
  year: 2015
  end-page: 316
  article-title: What are we weighting for?
  publication-title: Journal of Human Resources
– volume: 105
  start-page: 493
  issue: 490
  year: 2010
  end-page: 505
  article-title: Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program
  publication-title: Journal of the American Statistical Association
– volume: 119
  start-page: 249
  issue: 1
  year: 2004
  end-page: 275
  article-title: How Much Should We Trust Differences-in-Differences Estimates?
  publication-title: Quarterly Journal of Economics
– volume: 63
  start-page: 467
  issue: 2
  year: 2019
  end-page: 490
  article-title: When should we use linear unit fixed effects regression models for causal inference with longitudinal data?
  publication-title: American Journal of Political Science
– ident: S1047198720000339_r3
  doi: 10.1515/9781400829828
– ident: S1047198720000339_r5
  doi: 10.3386/w24963
– ident: S1047198720000339_r11
  doi: 10.3386/w25018
– ident: S1047198720000339_r10
  doi: 10.3386/w25904
– ident: S1047198720000339_r14
  doi: 10.1111/ajps.12417
– ident: S1047198720000339_r9
  doi: 10.2139/ssrn.2826228
– ident: S1047198720000339_r1
  doi: 10.1198/jasa.2009.ap08746
– ident: S1047198720000339_r18
  doi: 10.3368/jhr.50.2.301
– ident: S1047198720000339_r6
– ident: S1047198720000339_r8
– ident: S1047198720000339_r15
– ident: S1047198720000339_r2
  doi: 10.2139/ssrn.3158747
– ident: S1047198720000339_r7
  doi: 10.1162/003355304772839588
– ident: S1047198720000339_r19
  doi: 10.1017/pan.2016.2
– ident: S1047198720000339_r17
– ident: S1047198720000339_r4
  doi: 10.1111/ajps.12185
– ident: S1047198720000339_r16
  doi: 10.1080/07350015.2018.1546591
– ident: S1047198720000339_r13
– ident: S1047198720000339_r12
SSID ssj0017799
Score 2.6801355
Snippet The two-way linear fixed effects regression (2FE) has become a default method for estimating causal effects from panel data. Many applied researchers use the...
The two-way linear fixed effects regression ( 2FE ) has become a default method for estimating causal effects from panel data. Many applied researchers use the...
SourceID proquest
crossref
jstor
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 405
SubjectTerms Applied research
Causal models
Causality
Inference
Justification
Letter
Letters
Longitudinal studies
Panel data
Time periods
Title On the Use of Two-Way Fixed Effects Regression Models for Causal Inference with Panel Data
URI https://www.cambridge.org/core/product/identifier/S1047198720000339/type/journal_article
https://www.jstor.org/stable/27116554
https://www.proquest.com/docview/2535760020
Volume 29
WOSCitedRecordID wos000656899900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Military Database (ProQuest)
  customDbUrl:
  eissn: 1476-4989
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0017799
  issn: 1047-1987
  databaseCode: M1Q
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/military
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Political Science Database (OCUL)
  customDbUrl:
  eissn: 1476-4989
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0017799
  issn: 1047-1987
  databaseCode: M2L
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/politicalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4989
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0017799
  issn: 1047-1987
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1476-4989
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0017799
  issn: 1047-1987
  databaseCode: M2O
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Social Science Database
  customDbUrl:
  eissn: 1476-4989
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0017799
  issn: 1047-1987
  databaseCode: M2R
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/socscijournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509eDFt7i6Sg7iQSh200fak-jqoqDruiiKl5KmqQhLV-36-vfOpNlVUbx4CW0zlMAkk5nJl28AtsgN5ZlSjp8GGKAIHTtRSsC1PIxjHil8yUyxCdHpRDc3cdcm3EoLqxzZRGOos4GiHPkuD7zAHCK5ew-PDlWNotNVW0JjEqaIqcyvwdTBUafbG58jCGEqSBo-Agqv7Q09Io3GxYbhIceo1fvKq_Btf6ogij_MtNl72nP_HfU8zFqvk-1X02QBJnSxCPMW-4YddoUvwe15wdAlZFelZoOcXb4OnGv5ztr3bzpjFdNxyXr6rkLPFoxKqfVLhp4va8nnEn91MrpByCjFy7qy0H12KIdyGa7aR5etY8eWX3CUF0RDJ83TOJdNIozxgwAfpA4zkYswQ5uQq0i6YcpdoUJ0AxSaBl_xGD82Yy0jV_uetwK1YlDoVcJPadwIM4HOROoLiU6IjDTPUqlSrmI3r8P2WAGJXURlUgHQRIKaSkhTiefVYWeknURZEnOqpdH_XXhrLPxQcXf8LrZi1DyW4YI4iQK_Do2RUj8H9anRtb-712GGE_7FQHsbUBs-PesNmFYvw_vyadNO1E2YPGteUMtPTXtu2t4HDMvyHg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5FKRJcaCitCC2wh9BDJQtn_Vj7UCGUECVKmxaUioqLu16vUaTISeO0IX-K38jM2k5BVNx66M32jiw_vnntfjsD0KIwlCdKWW7sYYIidGgFMRHXUj8MeaDwJDHNJsRoFFxehuc1-FXthSFaZWUTjaFOZormyD9wz_HMIpL9cX5tUdcoWl2tWmgUsBjq9QpTtvx40MX_-57z3udxp2-VXQUs5XjB0orTOExlm-qguJ6HB1L7iUiFnyDUUxVI24-5LZSP3k0h4l3FQ7zYDrUMbO3SBCia_C0XIx3SqNP2l82qhRCmX6WpfkDJfLkfkEpUo2pjMsoxR3b-rOLwlzcsCJH_OAXj6Xrbj-0bNeB5GVOzT4USvICaznagUTL7cKC0Xy_h-1nGMOBlF7lms5SNVzPrm1yz3uSnTlhRxzlnX_WPghucMWoUN80ZxvWsI29yvNWg2h_JaAKbnctMT1lXLuUuXDzIK-5BPZtl-hWxwzS6-URgqBS7QmKIJQPNk1iqmKvQTptwuPnhUWki8qig14kIkRERMiLHacJRhYZIlSXaqVPI9H7h1kZ4XlQmuV9sz8BqI8MFVVzy3CYcVCC6e6g7BL3-__A7eNofn55EJ4PRcB-ecWL6GBLzAdSXixv9Bp6o2-UkX7w1KsLg6qHx9hvr00g3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5ERbz4FtdnDupBKNb0kfYgIq6Li7ouoiheapqmIixdtevrr_nrnEnbVVG8efDWNtPSNl_mkXyZAVglN5QnSllu7GGAInRoBTER11I_DHmg8CQxxSZEqxVcXobtAXir9sIQrbLSiUZRJ11Fc-Sb3HM8s4hkb6YlLaJdb-zc3VtUQYpWWqtyGgVEDvXrM4Zv-Xazjn29xnlj_2zvwCorDFjK8YKeFadxmMotyonieh4eSO0nIhV-grBPVSBtP-a2UD5aOoXodxUP8eJWqGVga5cmQ1H9Dwm8mUbXMT_tr2AIYWpXmkwIFNiXewMpXTUOcwxMOcbLzueMDl8sY0GO_GYgjNVrjP_n_zUBY6WvzXaLwTEJAzqbgomS8YcNpV6bhquTjKEjzM5zzbopO3vuWhfylTVuX3TCivzOOTvVNwVnOGNUQK6TM_T32Z58zPFRzWrfJKOJbdaWme6wuuzJGTj_k0-chcGsm-k5Yo1pNP-JQBcqdoVE10sGmiexVDFXoZ3WYL3f-VGpOvKooN2JCFESEUoix6nBRoWMSJWp26mCSOdn4dW-8F2RseRnsVkDsb4MF5SJyXNrsFgB6uOlPtA0_3vzCowgzKKjZutwAUY5EYAMt3kRBnsPj3oJhtVT7zZ_WDajhcH1X8PtHXacUQE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Use+of+Two-Way+Fixed+Effects+Regression+Models+for+Causal+Inference+with+Panel+Data&rft.jtitle=Political+analysis&rft.au=Imai%2C+Kosuke&rft.au=In+Song+Kim&rft.date=2021-07-01&rft.pub=Cambridge+University+Press&rft.issn=1047-1987&rft.eissn=1476-4989&rft.volume=29&rft.issue=3&rft.spage=405&rft.epage=415&rft_id=info:doi/10.1017%2Fpan.2020.33&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-1987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-1987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-1987&client=summon