Using machine learning for NEETs and sustainability studies: Determining best machine learning algorithms

In this study, we apply and compare different algorithms from machine learning to describe and predict NEET rates in 31 European countries in the period from 2005 to 2020. With this aim, we considered eleven indicators describing the socio-economic national context and the level of innovation of the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Socio-economic planning sciences Ročník 94; s. 101921
Hlavní autori: Berigel, Muhammet, Boztaş, Gizem Dilan, Rocca, Antonella, Neagu, Gabriela
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.08.2024
Predmet:
ISSN:0038-0121, 1873-6041
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this study, we apply and compare different algorithms from machine learning to describe and predict NEET rates in 31 European countries in the period from 2005 to 2020. With this aim, we considered eleven indicators describing the socio-economic national context and the level of innovation of the economies. Besides improving knowledge about the use of machine learning algorithms for the description of the NEET phenomenon, we discuss the connections between NEETs and other indicators that connect with other relevant sustainable development goals (SDGs), such as education, the reduction of inequalities, and decent work for everyone. The reduction of NEET rates is the only goal directly addressed to young people, The article underscores the need for evidence-based approaches to measure SDG achievement, especially concerning the heterogeneous NEET population. It emphasizes the importance of machine learning algorithms as a modern methodology for understanding and addressing the NEET phenomenon within the framework of SDGs, considering the complex interrelationships of socio-economic factors contributing to social and economic sustainability. •We identify the Best Machine Learning Algorithms for NEET and SDG studies.•We connect NEET paths in 2005–2020 with other relevant SDG goals.•We propose a complex approach, combining 31 countries and various indicators.
AbstractList In this study, we apply and compare different algorithms from machine learning to describe and predict NEET rates in 31 European countries in the period from 2005 to 2020. With this aim, we considered eleven indicators describing the socio-economic national context and the level of innovation of the economies. Besides improving knowledge about the use of machine learning algorithms for the description of the NEET phenomenon, we discuss the connections between NEETs and other indicators that connect with other relevant sustainable development goals (SDGs), such as education, the reduction of inequalities, and decent work for everyone. The reduction of NEET rates is the only goal directly addressed to young people, The article underscores the need for evidence-based approaches to measure SDG achievement, especially concerning the heterogeneous NEET population. It emphasizes the importance of machine learning algorithms as a modern methodology for understanding and addressing the NEET phenomenon within the framework of SDGs, considering the complex interrelationships of socio-economic factors contributing to social and economic sustainability. •We identify the Best Machine Learning Algorithms for NEET and SDG studies.•We connect NEET paths in 2005–2020 with other relevant SDG goals.•We propose a complex approach, combining 31 countries and various indicators.
ArticleNumber 101921
Author Neagu, Gabriela
Berigel, Muhammet
Boztaş, Gizem Dilan
Rocca, Antonella
Author_xml – sequence: 1
  givenname: Muhammet
  orcidid: 0000-0001-5682-8956
  surname: Berigel
  fullname: Berigel, Muhammet
  email: berigel@ktu.edu.tr
  organization: Karadeniz Technical University, Ortahisar, Trabzon, 61080, Turkiye
– sequence: 2
  givenname: Gizem Dilan
  surname: Boztaş
  fullname: Boztaş, Gizem Dilan
  email: gizemdilanboztas@ktu.edu.tr
  organization: Karadeniz Technical University, Ortahisar, Trabzon, 61080, Turkiye
– sequence: 3
  givenname: Antonella
  orcidid: 0000-0001-8171-3149
  surname: Rocca
  fullname: Rocca, Antonella
  email: antonella.rocca@uniparthenope.it
  organization: University of Naples Parthenope, Naples, 80142, Italy
– sequence: 4
  givenname: Gabriela
  orcidid: 0000-0001-6655-7256
  surname: Neagu
  fullname: Neagu, Gabriela
  email: gabi.neagu@iccv.ro
  organization: Research Institute for Quality of Life, Bucharest, 050711, Romania
BookMark eNp9kM1Kw0AUhQepYFt9AVd5gdT5SdJU3EitP1B0066HycxNe0s6KXNHoW9vYl0pdHXhcL4D9xuxgW89MHYr-ERwUdztJgQHmkgusz6YSXHBhqKcqrTgmRiwIeeqTLmQ4oqNiHacd02ZDxmuCf0m2Ru7RQ9JAyb4PqjbkLwvFitKjHcJfVI06E2FDcZjQvHTIdB98gQRwh5_iAoo_t8xzaYNGLd7umaXtWkIbn7vmK2fF6v5a7r8eHmbPy5Tq_IyphVALaxwyqpSCe7K3HHglleiqEBJDrJW0lVVF2dFJnJZdNWsmior7Sw3uRqz8rRrQ0sUoNYWo4nY-hgMNlpw3SvTO90r070yfVLWofIPegi4N-F4Hno4QdA99YUQNFkEb8FhABu1a_Ec_g2NW4mF
CitedBy_id crossref_primary_10_1007_s40435_025_01820_5
crossref_primary_10_1080_09654313_2025_2542416
crossref_primary_10_1002_jid_70006
crossref_primary_10_1007_s11483_025_09995_2
crossref_primary_10_1007_s43621_025_01720_w
crossref_primary_10_1016_j_jhazmat_2025_138202
crossref_primary_10_1177_01672533251362026
crossref_primary_10_1016_j_ces_2024_121147
crossref_primary_10_1016_j_seps_2025_102175
crossref_primary_10_11611_yead_1675761
Cites_doi 10.1016/j.seps.2023.101605
10.1007/s43151-021-00040-w
10.1007/s00521-022-07856-4
10.1002/jae.2910
10.1177/0044118X211056360
10.1007/s11205-020-02370-3
10.3390/su10124708
10.1007/s11205-021-02813-5
10.1177/13505084231177199
10.1016/j.ecolind.2015.08.003
10.1007/s42979-021-00592-x
10.1186/s41118-018-0031-0
10.1007/s11227-020-03481-x
10.1023/A:1010933404324
10.1186/s40537-020-00327-4
10.1109/ACCESS.2020.2969468
10.1080/00167223.2022.2068636
10.1007/s42979-020-00365-y
10.1080/13676261.2022.2080538
10.1016/j.techfore.2021.120658
10.1016/j.gsf.2021.101249
10.3389/fnagi.2017.00329
10.1002/for.2824
10.1109/TPDS.2016.2603511
10.1080/07038992.2020.1833186
10.1080/13662716.2023.2230222
10.1007/s11205-020-02270-6
10.1080/13676261.2021.1939287
10.1016/j.jjimei.2021.100029
10.1038/s41467-019-14108-y
10.1016/j.ijer.2023.102198
10.1109/72.788640
10.1080/01431161.2018.1433343
10.1016/j.cmpb.2018.12.032
10.1080/07421222.2018.1550557
10.2478/jaiscr-2022-0006
10.3390/math8101640
10.1155/2021/6647829
10.1093/cesifo/ifz004
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.seps.2024.101921
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Government
Sociology & Social History
EISSN 1873-6041
ExternalDocumentID 10_1016_j_seps_2024_101921
S0038012124001204
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
123
13V
1B1
1OL
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JO
9M8
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFFL
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAPFB
AAQFI
AAQXK
AARIN
AAXUO
ABFRF
ABJNI
ABKBG
ABMAC
ABMVD
ABPPZ
ABUCO
ABXDB
ACDAQ
ACGFO
ACGFS
ACHRH
ACNCT
ACNTT
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADMUD
AEBSH
AEFWE
AEKER
AETEA
AEYQN
AFFNX
AFKWA
AFODL
AFTJW
AGHFR
AGTHC
AGUBO
AGUMN
AGYEJ
AHHHB
AIEXJ
AIIAU
AIKHN
AITUG
AJOXV
AJWLA
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BEZPJ
BGSCR
BKOJK
BLXMC
BNSAS
BNTGB
BPUDD
BULVW
BZJEE
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMB
HVGLF
HZ~
IHE
J1W
KOM
LPU
LY1
LY5
M41
MO0
MS~
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDS
SEE
SES
SEW
SPCBC
SSB
SSD
SSF
SSL
SSZ
T5K
TAE
TN5
UHS
UNMZH
WUQ
YK3
YNT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c358t-beef1c1d3c38310d85d0e0c0b16be320e2f32dbb5d04641526d3c4b73c2c95a53
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001245898000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-0121
IngestDate Sat Nov 29 06:59:09 EST 2025
Tue Nov 18 22:03:06 EST 2025
Sat Jul 06 15:30:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Sustainability NEET
Machine learning algorithms
SDG
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-beef1c1d3c38310d85d0e0c0b16be320e2f32dbb5d04641526d3c4b73c2c95a53
ORCID 0000-0001-5682-8956
0000-0001-8171-3149
0000-0001-6655-7256
ParticipantIDs crossref_citationtrail_10_1016_j_seps_2024_101921
crossref_primary_10_1016_j_seps_2024_101921
elsevier_sciencedirect_doi_10_1016_j_seps_2024_101921
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Socio-economic planning sciences
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pennoni, Bal-Domańska (bib13) 2022; 162
Demir, Sahin (bib45) 2023; 35
Sen, Basu, Chatterjee, Banerjee, Pal, Mukhopadhyay, Dutta, Tarafdar (bib24) 2022
Sarker (bib20) 2021; 2
Gogas, Papadimitriou, Sofianos (bib22) 2022; 41
Klier, Klier, Thiel, Agarwal (bib27) 2019; 36
Lee (bib26) 2019; 8
Consoli, Castellacci, Santoalha (bib39) 2023; 30
Berigel, Boztaş, Rocca, Neagu (bib10) 2023; 87
Caroleo, Rocca, Mazzocchi, Quintano (bib18) 2020; 149
Mosavi, Faghan, Ghamisi, Duan, Ardabili, Salwana, Band (bib28) 2020; 8
Cieslik, Barford, Vira (bib32) 2022; 25
Pérez-Pons, Parra-Dominguez, Omatu, Herrera-Viedma, Corchado (bib64) 2022; 12
Guo, Shi, Huang, Fan, Huang (bib48) 2021; 12
Vapnik (bib55) 1999; 10
De Luca, Mazzocchi, Quintano, Rocca (bib17) 2020; 151
(bib31) 2023
Quintano, Mazzocchi, Rocca (bib12) 2018; 74
Maxwell, Warner, Fang (bib43) 2018; 39
(bib2) 2015
Caroleo, Rocca, Neagu, Keranova (bib6) 2021; 54
Chamasemani, Singh (bib58) 2011
Mussida, Sciulli (bib11) 2023
Hák, Janoušková, Moldan (bib30) 2016; 60
Avagianou, Kizos, Gialis (bib37) 2022; 122
Ruesga-Benito, González-Laxe, Picatoste (bib5) 2018; 10
Odoardi, Muratore (bib16) 2018; 48
Jabeur, Gharib, Mefteh-Wali, Arfi (bib61) 2021; 166
Jackins, Vimal, Kaliappan, Lee (bib49) 2021; 77
Shah, Patel, Bharti (bib50) 2020; 1
Nhat-Duc, Quoc-Lam, Dieu (bib59) 2018; 32
Wu, Yeh, Hsu, Islam, Nguyen, Alex, Poly, Wang, Yang, Jack, Li (bib44) 2019; 170
De Luca, Mazzocchi, Quintano, Rocca (bib15) 2019; 65
Tripathi, Goswami, Trivedi, Sharma (bib47) 2021; 1
Cinquegrana, De Luca, Mazzocchi, Quintano, Rocca (bib19) 2021; 61
Sieng, Cloutier, Irimata (bib3) 2018; 10
Szpakowicz (bib42) 2022; 26
Dang, Liu, Yue, Qian, Zhu (bib54) 2021; 47
Sharma, Lilhore (bib25) 2023
Sarica, Cerasa, Quattrone (bib52) 2017; 9
Dinh, Nguyen, Tran, Hoang (bib57) 2021
Bujlow, Riaz, Pedersen (bib46) 2012
Imperatives (bib1) 1987; vol. 10
Picatoste, Rodriguez-Crespo (bib36) 2020
Boland, Griffin (bib7) 2023; 30
Montañez, Hurst (bib29) 2020; 8
Chen, Li, Tang, Bilal, Yu, Weng, Li (bib53) 2016; 28
Chen, Dewi, Huang, Caraka (bib62) 2020; 7
Rahmani, Groot (bib9) 2023; 120
Chen, Guestrin (bib60) 2016
(bib35) 2012
Hindin-Miller (bib38) 2012
Coulombe, Leroux, Stevanovic, Surprenant (bib8) 2022; 37
Bonanomi, Luppi, Rosina (bib4) 2020
Shuai, Zhao, Chen, Liu, Zheng, Qu, Zou, Xu (bib34) 2022
(bib33) 2022
Kütük, Güloğlu (bib21) 2019; 3
Sharma, Anand, Kapoor (bib23) 2022
Breiman (bib51) 2001; 45
van Vugt, van der Velden, Levels, Brzinsky-Fay (bib41) 2022
Assmann, Broschinski (bib14) 2021; 4
Bishop (bib56) 2011
Vinuesa, Azizpour, Leite, Balaam, Dignum, Domisch, Felländer, Langhans, Tegmark, Fuso Nerini (bib63) 2020; 11
Sparreboom, Staneva (bib40) 2014
van Vugt (10.1016/j.seps.2024.101921_bib41) 2022
Bujlow (10.1016/j.seps.2024.101921_bib46) 2012
Caroleo (10.1016/j.seps.2024.101921_bib6) 2021; 54
Nhat-Duc (10.1016/j.seps.2024.101921_bib59) 2018; 32
Jackins (10.1016/j.seps.2024.101921_bib49) 2021; 77
Dang (10.1016/j.seps.2024.101921_bib54) 2021; 47
Consoli (10.1016/j.seps.2024.101921_bib39) 2023; 30
Vinuesa (10.1016/j.seps.2024.101921_bib63) 2020; 11
Cieslik (10.1016/j.seps.2024.101921_bib32) 2022; 25
Boland (10.1016/j.seps.2024.101921_bib7) 2023; 30
Lee (10.1016/j.seps.2024.101921_bib26) 2019; 8
Demir (10.1016/j.seps.2024.101921_bib45) 2023; 35
Rahmani (10.1016/j.seps.2024.101921_bib9) 2023; 120
Imperatives (10.1016/j.seps.2024.101921_bib1) 1987; vol. 10
(10.1016/j.seps.2024.101921_bib35) 2012
Quintano (10.1016/j.seps.2024.101921_bib12) 2018; 74
Mussida (10.1016/j.seps.2024.101921_bib11) 2023
Shuai (10.1016/j.seps.2024.101921_bib34) 2022
Sharma (10.1016/j.seps.2024.101921_bib23) 2022
Picatoste (10.1016/j.seps.2024.101921_bib36) 2020
(10.1016/j.seps.2024.101921_bib2) 2015
Chen (10.1016/j.seps.2024.101921_bib60) 2016
Assmann (10.1016/j.seps.2024.101921_bib14) 2021; 4
Berigel (10.1016/j.seps.2024.101921_bib10) 2023; 87
Pennoni (10.1016/j.seps.2024.101921_bib13) 2022; 162
Montañez (10.1016/j.seps.2024.101921_bib29) 2020; 8
Wu (10.1016/j.seps.2024.101921_bib44) 2019; 170
Chen (10.1016/j.seps.2024.101921_bib53) 2016; 28
Odoardi (10.1016/j.seps.2024.101921_bib16) 2018; 48
(10.1016/j.seps.2024.101921_bib33) 2022
De Luca (10.1016/j.seps.2024.101921_bib15) 2019; 65
Dinh (10.1016/j.seps.2024.101921_bib57) 2021
Breiman (10.1016/j.seps.2024.101921_bib51) 2001; 45
Tripathi (10.1016/j.seps.2024.101921_bib47) 2021; 1
Sieng (10.1016/j.seps.2024.101921_bib3) 2018; 10
Mosavi (10.1016/j.seps.2024.101921_bib28) 2020; 8
Hindin-Miller (10.1016/j.seps.2024.101921_bib38) 2012
Sen (10.1016/j.seps.2024.101921_bib24) 2022
Sharma (10.1016/j.seps.2024.101921_bib25) 2023
Avagianou (10.1016/j.seps.2024.101921_bib37) 2022; 122
Szpakowicz (10.1016/j.seps.2024.101921_bib42) 2022; 26
Sparreboom (10.1016/j.seps.2024.101921_bib40)
Guo (10.1016/j.seps.2024.101921_bib48) 2021; 12
De Luca (10.1016/j.seps.2024.101921_bib17) 2020; 151
Caroleo (10.1016/j.seps.2024.101921_bib18) 2020; 149
Jabeur (10.1016/j.seps.2024.101921_bib61) 2021; 166
Ruesga-Benito (10.1016/j.seps.2024.101921_bib5) 2018; 10
Hák (10.1016/j.seps.2024.101921_bib30) 2016; 60
Kütük (10.1016/j.seps.2024.101921_bib21) 2019; 3
Vapnik (10.1016/j.seps.2024.101921_bib55) 1999; 10
Chamasemani (10.1016/j.seps.2024.101921_bib58) 2011
Bonanomi (10.1016/j.seps.2024.101921_bib4)
Bishop (10.1016/j.seps.2024.101921_bib56) 2011
Coulombe (10.1016/j.seps.2024.101921_bib8) 2022; 37
Sarica (10.1016/j.seps.2024.101921_bib52) 2017; 9
Gogas (10.1016/j.seps.2024.101921_bib22) 2022; 41
Chen (10.1016/j.seps.2024.101921_bib62) 2020; 7
Cinquegrana (10.1016/j.seps.2024.101921_bib19) 2021; 61
Pérez-Pons (10.1016/j.seps.2024.101921_bib64) 2022; 12
Sarker (10.1016/j.seps.2024.101921_bib20) 2021; 2
Klier (10.1016/j.seps.2024.101921_bib27) 2019; 36
Shah (10.1016/j.seps.2024.101921_bib50) 2020; 1
Maxwell (10.1016/j.seps.2024.101921_bib43) 2018; 39
References_xml – volume: 48
  start-page: 323
  year: 2018
  end-page: 346
  ident: bib16
  article-title: The Italian regional dualism: a MARS and panel data analysis
  publication-title: Rev Reg Stud
– volume: 65
  start-page: 154
  year: 2019
  end-page: 176
  ident: bib15
  article-title: Italian NEETs in 2005–2016: have the recent Labour market reforms produced any effect?
  publication-title: CESifo Econ Stud
– volume: 32
  year: 2018
  ident: bib59
  article-title: Image processing–based classification of asphalt pavement cracks using support vector machine optimized by artificial bee Colony
  publication-title: J Comput Civ Eng
– volume: 25
  start-page: 1126
  year: 2022
  end-page: 1147
  ident: bib32
  article-title: Young people not in employment, education or training (NEET) in sub-saharan africa: sustainable development target 8.6 missed and reset
  publication-title: J Youth Stud
– start-page: 351
  year: 2011
  end-page: 356
  ident: bib58
  article-title: Multi-class support vector machine (SVM) classifiers -- an application in hypothyroid detection and classification
  publication-title: 2011 sixth international conference on bio-inspired computing: theories and applications
– volume: 87
  year: 2023
  ident: bib10
  article-title: A model for predicting determinants factors for NEET rates: support for the decision-makers
  publication-title: Soc Econ Plann Sci
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib60
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining
– year: 2014
  ident: bib40
  article-title: Is education the solution to decent work for youth in developing economies? Identifying qualifications mismatch from 28 school-to-work transition surveys
– volume: 39
  start-page: 2784
  year: 2018
  end-page: 2817
  ident: bib43
  article-title: Implementation of machine-learning classification in remote sensing: an applied review
  publication-title: Int J Rem Sens
– volume: 10
  start-page: 988
  year: 1999
  end-page: 999
  ident: bib55
  article-title: An overview of statistical learning theory
  publication-title: IEEE Trans Neural Network
– volume: 8
  start-page: 183
  year: 2019
  end-page: 190
  ident: bib26
  article-title: A study on research trend analysis and topic class prediction of digital transformation using text mining
  publication-title: International Journal of Advanced Smart Convergence
– year: 2023
  ident: bib31
  article-title: Database
– volume: 9
  year: 2017
  ident: bib52
  article-title: Random forest algorithm for the classification of neuroimaging data in alzheimer's disease: a systematic review
  publication-title: Front Aging Neurosci
– start-page: 1
  year: 2021
  end-page: 20
  ident: bib57
  article-title: Predicting rainfall-induced soil erosion based on a hybridization of adaptive differential evolution and support vector machine classification
  publication-title: Math Probl Eng
– volume: 120
  year: 2023
  ident: bib9
  article-title: Risk factors of being a youth not in education, employment or training (NEET): a scoping review
  publication-title: Int J Educ Res
– volume: 47
  start-page: 162
  year: 2021
  end-page: 181
  ident: bib54
  article-title: Autumn crop yield prediction using data-driven approaches:- support vector machines, random forest, and deep neural Network methods
  publication-title: Can J Rem Sens
– volume: 61
  start-page: 115
  year: 2021
  end-page: 132
  ident: bib19
  article-title: Italian NEETs an analysis of determinants based on the territorial districts
  publication-title: Scienze Reg
– volume: 60
  start-page: 565
  year: 2016
  end-page: 573
  ident: bib30
  article-title: Sustainable Development Goals: a need for relevant indicators
  publication-title: Ecol Indicat
– volume: 1
  start-page: 345
  year: 2020
  ident: bib50
  article-title: Heart disease prediction using machine learning techniques
  publication-title: SN Computer Science
– volume: 7
  start-page: 52
  year: 2020
  ident: bib62
  article-title: Selecting critical features for data classification based on machine learning methods
  publication-title: Journal of Big Data
– volume: 8
  start-page: 22525
  year: 2020
  end-page: 22536
  ident: bib29
  article-title: A machine learning approach for detecting unemployment using the smart metering infrastructure
  publication-title: IEEE Access
– volume: 166
  year: 2021
  ident: bib61
  article-title: CatBoost model and artificial intelligence techniques for corporate failure prediction
  publication-title: Technol Forecast Soc Change
– year: 2011
  ident: bib56
  article-title: Pattern recognition and machine learning (information science and statistics)
– volume: 74
  start-page: 5
  year: 2018
  ident: bib12
  article-title: The determinants of Italian NEETs and the effects of the economic crisis
  publication-title: Genus
– volume: 151
  start-page: 345
  year: 2020
  end-page: 363
  ident: bib17
  article-title: Going behind the high rates of NEETs in Italy and Spain: the role of early school leavers
  publication-title: Soc Indicat Res
– volume: 28
  start-page: 919
  year: 2016
  end-page: 933
  ident: bib53
  article-title: A parallel random forest algorithm for big data in a spark cloud computing environment
  publication-title: IEEE Trans Parallel Distr Syst
– year: 2022
  ident: bib33
  article-title: Employment and social developments in Europe 2022
– year: 2012
  ident: bib35
  article-title: NEETs – young people not in employment, education or training: characteristics, costs and policy responses in Europe
– volume: 149
  start-page: 991
  year: 2020
  end-page: 1024
  ident: bib18
  article-title: Being NEET in Europe before and after the economic crisis: an analysis of the micro and macro determinants
  publication-title: Soc Indicat Res
– volume: 10
  start-page: 7
  year: 2018
  ident: bib3
  article-title: Positive youth development sustainability scale (pydss): the development of an assessment tool
  publication-title: Journal of Sustainable Social Change
– start-page: 237
  year: 2012
  end-page: 241
  ident: bib46
  article-title: A method for classification of network traffic based on C5.0 Machine Learning Algorithm
– volume: 1
  year: 2021
  ident: bib47
  article-title: A multi class random forest (MCRF) model for classification of small plant peptides
  publication-title: International Journal of Information Management Data Insights
– volume: 37
  start-page: 920
  year: 2022
  end-page: 964
  ident: bib8
  article-title: How is machine learning useful for macroeconomic forecasting?
  publication-title: J Appl Econom
– volume: 12
  start-page: 79
  year: 2022
  end-page: 100
  ident: bib64
  article-title: Machine Learning and Traditional Econometric Models: A Systematic Mapping Study
  publication-title: J Artificial Intelligence Soft Comput Res
– volume: 4
  start-page: 95
  year: 2021
  end-page: 117
  ident: bib14
  article-title: Mapping young NEETs across europe: exploring the institutional configurations promoting youth disengagement from education and employment
  publication-title: Journal of Applied Youth Studies
– year: 2020
  ident: bib4
  article-title: . European Association for Population Studies
– volume: 35
  start-page: 3173
  year: 2023
  end-page: 3190
  ident: bib45
  article-title: An investigation of feature selection methods for soil liquefaction prediction based on tree-based ensemble algorithms using AdaBoost, gradient boosting, and XGBoost
  publication-title: Neural Comput Appl
– volume: 3
  start-page: 58
  year: 2019
  end-page: 75
  ident: bib21
  article-title: Prediction of transition probabilities from unemployment to employment for Turkey via machine learning and econometrics: a comparative study
  publication-title: Journal of Research in Economics
– start-page: 205
  year: 2022
  end-page: 218
  ident: bib41
  article-title: The role of education systems in preventing NEETs
  publication-title: The dynamics of marginalized youth
– volume: vol. 10
  start-page: 1
  year: 1987
  end-page: 300
  ident: bib1
  publication-title: Report of the world commission on environment and development: our common future
– start-page: 242
  year: 2022
  end-page: 249
  ident: bib23
  article-title: Student's employability indexing using machine learning approach
  publication-title: 2022 fifth international conference on computational intelligence and communication technologies (CCICT)
– start-page: 795
  year: 2023
  end-page: 799
  ident: bib25
  article-title: A better approach for students employability indexing using machine learning
  publication-title: 2023 10th international conference on signal processing and integrated networks (SPIN)
– volume: 12
  year: 2021
  ident: bib48
  article-title: Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management
  publication-title: Geosci Front
– volume: 77
  start-page: 5198
  year: 2021
  end-page: 5219
  ident: bib49
  article-title: AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes
  publication-title: J Supercomput
– volume: 162
  start-page: 739
  year: 2022
  end-page: 761
  ident: bib13
  article-title: NEETs and youth unemployment: a longitudinal comparison across European countries
  publication-title: Soc Indicat Res
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib51
  article-title: Random forests
  publication-title: Mach Learn
– start-page: 244
  year: 2020
  end-page: 253
  ident: bib36
  article-title: Decreasing youth unemployment as a way to achieve sustainable development
– volume: 8
  year: 2020
  ident: bib28
  article-title: Comprehensive review of deep reinforcement learning methods and applications in economics
  publication-title: Mathematics
– volume: 36
  start-page: 158
  year: 2019
  end-page: 193
  ident: bib27
  article-title: Power of mobile peer groups: a design-oriented approach to address youth unemployment
  publication-title: J Manag Inf Syst
– volume: 30
  start-page: 873
  year: 2023
  end-page: 891
  ident: bib7
  article-title: The future of work guaranteed: assembling NEETs in the apparatus of the welfare state
  publication-title: Organization
– volume: 54
  start-page: 109S
  year: 2021
  end-page: 129S
  ident: bib6
  article-title: NEETs and the process of transition from school to the labor market: a comparative analysis of Italy, Romania, and Bulgaria
  publication-title: Youth Soc
– volume: 30
  start-page: 919
  year: 2023
  end-page: 946
  ident: bib39
  article-title: E-skills and income inequality within European regions
  publication-title: Ind Innovat
– volume: 2
  start-page: 160
  year: 2021
  ident: bib20
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN computer science.
– volume: 26
  start-page: 1200
  year: 2022
  end-page: 1218
  ident: bib42
  article-title: Problematising engagement with technologies in transitions of young people identified as ‘Not in Education, Employment or Training’ (NEET) in Scotland
  publication-title: J Youth Stud
– year: 2022
  ident: bib34
  article-title: Quantifying the impacts of COVID-19 on Sustainable Development Goals using machine learning models
  publication-title: Fundamental Research
– start-page: 1
  year: 2022
  end-page: 5
  ident: bib24
  article-title: Prediction of unemployment using machine learning approach
  publication-title: 2022 OITS international conference on information technology (OCIT)
– volume: 170
  start-page: 23
  year: 2019
  end-page: 29
  ident: bib44
  article-title: Prediction of fatty liver disease using machine learning algorithms
  publication-title: Comput Methods Progr Biomed
– volume: 10
  start-page: 4708
  year: 2018
  ident: bib5
  article-title: Sustainable development, poverty, and risk of exclusion for young people in the European union: the case of NEETs
  publication-title: Sustainability
– year: 2012
  ident: bib38
  article-title: Re-storying identities: young women's narratives of teenage parenthood and educational support
  publication-title: Educational Studies and Human Development
– volume: 122
  start-page: 32
  year: 2022
  end-page: 45
  ident: bib37
  article-title: Young NEETs in the EU south: socio-spatial and gender divisions in between the great recession and the covid-19 pandemic
  publication-title: Geografisk Tidsskrift-Danish Journal of Geography
– year: 2015
  ident: bib2
  article-title: Transforming our world: The 2030 Agenda for Sustainable Development
– start-page: 1
  year: 2023
  end-page: 20
  ident: bib11
  article-title: Being poor and being NEET in Europe: are these two sides of the same coin?
  publication-title: J Econ Inequal
– volume: 41
  start-page: 551
  year: 2022
  end-page: 566
  ident: bib22
  article-title: Forecasting unemployment in the euro area with machine learning
  publication-title: J Forecast
– volume: 11
  start-page: 233
  year: 2020
  ident: bib63
  article-title: The role of artificial intelligence in achieving the Sustainable Development Goals
  publication-title: Nat Commun
– volume: 87
  year: 2023
  ident: 10.1016/j.seps.2024.101921_bib10
  article-title: A model for predicting determinants factors for NEET rates: support for the decision-makers
  publication-title: Soc Econ Plann Sci
  doi: 10.1016/j.seps.2023.101605
– volume: 4
  start-page: 95
  issue: 2
  year: 2021
  ident: 10.1016/j.seps.2024.101921_bib14
  article-title: Mapping young NEETs across europe: exploring the institutional configurations promoting youth disengagement from education and employment
  publication-title: Journal of Applied Youth Studies
  doi: 10.1007/s43151-021-00040-w
– start-page: 242
  year: 2022
  ident: 10.1016/j.seps.2024.101921_bib23
  article-title: Student's employability indexing using machine learning approach
– volume: 35
  start-page: 3173
  issue: 4
  year: 2023
  ident: 10.1016/j.seps.2024.101921_bib45
  article-title: An investigation of feature selection methods for soil liquefaction prediction based on tree-based ensemble algorithms using AdaBoost, gradient boosting, and XGBoost
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07856-4
– volume: 37
  start-page: 920
  issue: 5
  year: 2022
  ident: 10.1016/j.seps.2024.101921_bib8
  article-title: How is machine learning useful for macroeconomic forecasting?
  publication-title: J Appl Econom
  doi: 10.1002/jae.2910
– year: 2011
  ident: 10.1016/j.seps.2024.101921_bib56
– volume: 8
  start-page: 183
  issue: 2
  year: 2019
  ident: 10.1016/j.seps.2024.101921_bib26
  article-title: A study on research trend analysis and topic class prediction of digital transformation using text mining
  publication-title: International Journal of Advanced Smart Convergence
– volume: 54
  start-page: 109S
  issue: 2_suppl
  year: 2021
  ident: 10.1016/j.seps.2024.101921_bib6
  article-title: NEETs and the process of transition from school to the labor market: a comparative analysis of Italy, Romania, and Bulgaria
  publication-title: Youth Soc
  doi: 10.1177/0044118X211056360
– volume: 151
  start-page: 345
  issue: 1
  year: 2020
  ident: 10.1016/j.seps.2024.101921_bib17
  article-title: Going behind the high rates of NEETs in Italy and Spain: the role of early school leavers
  publication-title: Soc Indicat Res
  doi: 10.1007/s11205-020-02370-3
– volume: 10
  start-page: 4708
  issue: 12
  year: 2018
  ident: 10.1016/j.seps.2024.101921_bib5
  article-title: Sustainable development, poverty, and risk of exclusion for young people in the European union: the case of NEETs
  publication-title: Sustainability
  doi: 10.3390/su10124708
– volume: 162
  start-page: 739
  year: 2022
  ident: 10.1016/j.seps.2024.101921_bib13
  article-title: NEETs and youth unemployment: a longitudinal comparison across European countries
  publication-title: Soc Indicat Res
  doi: 10.1007/s11205-021-02813-5
– volume: 30
  start-page: 873
  issue: 5
  year: 2023
  ident: 10.1016/j.seps.2024.101921_bib7
  article-title: The future of work guaranteed: assembling NEETs in the apparatus of the welfare state
  publication-title: Organization
  doi: 10.1177/13505084231177199
– volume: 3
  start-page: 58
  issue: 1
  year: 2019
  ident: 10.1016/j.seps.2024.101921_bib21
  article-title: Prediction of transition probabilities from unemployment to employment for Turkey via machine learning and econometrics: a comparative study
  publication-title: Journal of Research in Economics
– volume: 60
  start-page: 565
  year: 2016
  ident: 10.1016/j.seps.2024.101921_bib30
  article-title: Sustainable Development Goals: a need for relevant indicators
  publication-title: Ecol Indicat
  doi: 10.1016/j.ecolind.2015.08.003
– volume: 2
  start-page: 160
  year: 2021
  ident: 10.1016/j.seps.2024.101921_bib20
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN computer science.
  doi: 10.1007/s42979-021-00592-x
– volume: 74
  start-page: 5
  issue: 1
  year: 2018
  ident: 10.1016/j.seps.2024.101921_bib12
  article-title: The determinants of Italian NEETs and the effects of the economic crisis
  publication-title: Genus
  doi: 10.1186/s41118-018-0031-0
– volume: 77
  start-page: 5198
  issue: 5
  year: 2021
  ident: 10.1016/j.seps.2024.101921_bib49
  article-title: AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03481-x
– ident: 10.1016/j.seps.2024.101921_bib40
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.seps.2024.101921_bib51
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 7
  start-page: 52
  issue: 1
  year: 2020
  ident: 10.1016/j.seps.2024.101921_bib62
  article-title: Selecting critical features for data classification based on machine learning methods
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-020-00327-4
– volume: 8
  start-page: 22525
  year: 2020
  ident: 10.1016/j.seps.2024.101921_bib29
  article-title: A machine learning approach for detecting unemployment using the smart metering infrastructure
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2969468
– volume: 122
  start-page: 32
  issue: 1
  year: 2022
  ident: 10.1016/j.seps.2024.101921_bib37
  article-title: Young NEETs in the EU south: socio-spatial and gender divisions in between the great recession and the covid-19 pandemic
  publication-title: Geografisk Tidsskrift-Danish Journal of Geography
  doi: 10.1080/00167223.2022.2068636
– volume: 1
  start-page: 345
  issue: 6
  year: 2020
  ident: 10.1016/j.seps.2024.101921_bib50
  article-title: Heart disease prediction using machine learning techniques
  publication-title: SN Computer Science
  doi: 10.1007/s42979-020-00365-y
– volume: 26
  start-page: 1200
  issue: 9
  year: 2022
  ident: 10.1016/j.seps.2024.101921_bib42
  article-title: Problematising engagement with technologies in transitions of young people identified as ‘Not in Education, Employment or Training’ (NEET) in Scotland
  publication-title: J Youth Stud
  doi: 10.1080/13676261.2022.2080538
– volume: 166
  year: 2021
  ident: 10.1016/j.seps.2024.101921_bib61
  article-title: CatBoost model and artificial intelligence techniques for corporate failure prediction
  publication-title: Technol Forecast Soc Change
  doi: 10.1016/j.techfore.2021.120658
– year: 2022
  ident: 10.1016/j.seps.2024.101921_bib33
– volume: 12
  issue: 6
  year: 2021
  ident: 10.1016/j.seps.2024.101921_bib48
  article-title: Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2021.101249
– year: 2012
  ident: 10.1016/j.seps.2024.101921_bib38
  article-title: Re-storying identities: young women's narratives of teenage parenthood and educational support
  publication-title: Educational Studies and Human Development
– volume: 9
  year: 2017
  ident: 10.1016/j.seps.2024.101921_bib52
  article-title: Random forest algorithm for the classification of neuroimaging data in alzheimer's disease: a systematic review
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2017.00329
– start-page: 351
  year: 2011
  ident: 10.1016/j.seps.2024.101921_bib58
  article-title: Multi-class support vector machine (SVM) classifiers -- an application in hypothyroid detection and classification
– volume: 41
  start-page: 551
  issue: 3
  year: 2022
  ident: 10.1016/j.seps.2024.101921_bib22
  article-title: Forecasting unemployment in the euro area with machine learning
  publication-title: J Forecast
  doi: 10.1002/for.2824
– volume: 28
  start-page: 919
  issue: 4
  year: 2016
  ident: 10.1016/j.seps.2024.101921_bib53
  article-title: A parallel random forest algorithm for big data in a spark cloud computing environment
  publication-title: IEEE Trans Parallel Distr Syst
  doi: 10.1109/TPDS.2016.2603511
– volume: 47
  start-page: 162
  issue: 2
  year: 2021
  ident: 10.1016/j.seps.2024.101921_bib54
  article-title: Autumn crop yield prediction using data-driven approaches:- support vector machines, random forest, and deep neural Network methods
  publication-title: Can J Rem Sens
  doi: 10.1080/07038992.2020.1833186
– start-page: 785
  year: 2016
  ident: 10.1016/j.seps.2024.101921_bib60
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining
– volume: 30
  start-page: 919
  issue: 7
  year: 2023
  ident: 10.1016/j.seps.2024.101921_bib39
  article-title: E-skills and income inequality within European regions
  publication-title: Ind Innovat
  doi: 10.1080/13662716.2023.2230222
– volume: 149
  start-page: 991
  issue: 3
  year: 2020
  ident: 10.1016/j.seps.2024.101921_bib18
  article-title: Being NEET in Europe before and after the economic crisis: an analysis of the micro and macro determinants
  publication-title: Soc Indicat Res
  doi: 10.1007/s11205-020-02270-6
– volume: 61
  start-page: 115
  year: 2021
  ident: 10.1016/j.seps.2024.101921_bib19
  article-title: Italian NEETs an analysis of determinants based on the territorial districts
  publication-title: Scienze Reg
– volume: 25
  start-page: 1126
  issue: 8
  year: 2022
  ident: 10.1016/j.seps.2024.101921_bib32
  article-title: Young people not in employment, education or training (NEET) in sub-saharan africa: sustainable development target 8.6 missed and reset
  publication-title: J Youth Stud
  doi: 10.1080/13676261.2021.1939287
– year: 2015
  ident: 10.1016/j.seps.2024.101921_bib2
– volume: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.seps.2024.101921_bib47
  article-title: A multi class random forest (MCRF) model for classification of small plant peptides
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2021.100029
– start-page: 795
  year: 2023
  ident: 10.1016/j.seps.2024.101921_bib25
  article-title: A better approach for students employability indexing using machine learning
– volume: 11
  start-page: 233
  issue: 1
  year: 2020
  ident: 10.1016/j.seps.2024.101921_bib63
  article-title: The role of artificial intelligence in achieving the Sustainable Development Goals
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-14108-y
– volume: 10
  start-page: 7
  issue: 1
  year: 2018
  ident: 10.1016/j.seps.2024.101921_bib3
  article-title: Positive youth development sustainability scale (pydss): the development of an assessment tool
  publication-title: Journal of Sustainable Social Change
– volume: 120
  year: 2023
  ident: 10.1016/j.seps.2024.101921_bib9
  article-title: Risk factors of being a youth not in education, employment or training (NEET): a scoping review
  publication-title: Int J Educ Res
  doi: 10.1016/j.ijer.2023.102198
– start-page: 1
  year: 2023
  ident: 10.1016/j.seps.2024.101921_bib11
  article-title: Being poor and being NEET in Europe: are these two sides of the same coin?
  publication-title: J Econ Inequal
– year: 2012
  ident: 10.1016/j.seps.2024.101921_bib35
– volume: 10
  start-page: 988
  issue: 5
  year: 1999
  ident: 10.1016/j.seps.2024.101921_bib55
  article-title: An overview of statistical learning theory
  publication-title: IEEE Trans Neural Network
  doi: 10.1109/72.788640
– start-page: 205
  year: 2022
  ident: 10.1016/j.seps.2024.101921_bib41
  article-title: The role of education systems in preventing NEETs
– year: 2022
  ident: 10.1016/j.seps.2024.101921_bib34
  article-title: Quantifying the impacts of COVID-19 on Sustainable Development Goals using machine learning models
  publication-title: Fundamental Research
– volume: 39
  start-page: 2784
  issue: 9
  year: 2018
  ident: 10.1016/j.seps.2024.101921_bib43
  article-title: Implementation of machine-learning classification in remote sensing: an applied review
  publication-title: Int J Rem Sens
  doi: 10.1080/01431161.2018.1433343
– start-page: 244
  year: 2020
  ident: 10.1016/j.seps.2024.101921_bib36
– volume: 170
  start-page: 23
  year: 2019
  ident: 10.1016/j.seps.2024.101921_bib44
  article-title: Prediction of fatty liver disease using machine learning algorithms
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2018.12.032
– volume: 36
  start-page: 158
  issue: 1
  year: 2019
  ident: 10.1016/j.seps.2024.101921_bib27
  article-title: Power of mobile peer groups: a design-oriented approach to address youth unemployment
  publication-title: J Manag Inf Syst
  doi: 10.1080/07421222.2018.1550557
– start-page: 237
  year: 2012
  ident: 10.1016/j.seps.2024.101921_bib46
– volume: 32
  issue: 5
  year: 2018
  ident: 10.1016/j.seps.2024.101921_bib59
  article-title: Image processing–based classification of asphalt pavement cracks using support vector machine optimized by artificial bee Colony
  publication-title: J Comput Civ Eng
– volume: 12
  start-page: 79
  issue: 2
  year: 2022
  ident: 10.1016/j.seps.2024.101921_bib64
  article-title: Machine Learning and Traditional Econometric Models: A Systematic Mapping Study
  publication-title: J Artificial Intelligence Soft Comput Res
  doi: 10.2478/jaiscr-2022-0006
– volume: 48
  start-page: 323
  issue: 3
  year: 2018
  ident: 10.1016/j.seps.2024.101921_bib16
  article-title: The Italian regional dualism: a MARS and panel data analysis
  publication-title: Rev Reg Stud
– volume: 8
  issue: 10
  year: 2020
  ident: 10.1016/j.seps.2024.101921_bib28
  article-title: Comprehensive review of deep reinforcement learning methods and applications in economics
  publication-title: Mathematics
  doi: 10.3390/math8101640
– start-page: 1
  year: 2022
  ident: 10.1016/j.seps.2024.101921_bib24
  article-title: Prediction of unemployment using machine learning approach
– volume: vol. 10
  start-page: 1
  year: 1987
  ident: 10.1016/j.seps.2024.101921_bib1
– ident: 10.1016/j.seps.2024.101921_bib4
– start-page: 1
  year: 2021
  ident: 10.1016/j.seps.2024.101921_bib57
  article-title: Predicting rainfall-induced soil erosion based on a hybridization of adaptive differential evolution and support vector machine classification
  publication-title: Math Probl Eng
  doi: 10.1155/2021/6647829
– volume: 65
  start-page: 154
  issue: 2
  year: 2019
  ident: 10.1016/j.seps.2024.101921_bib15
  article-title: Italian NEETs in 2005–2016: have the recent Labour market reforms produced any effect?
  publication-title: CESifo Econ Stud
  doi: 10.1093/cesifo/ifz004
SSID ssj0002425
Score 2.402937
Snippet In this study, we apply and compare different algorithms from machine learning to describe and predict NEET rates in 31 European countries in the period from...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101921
SubjectTerms Machine learning algorithms
SDG
Sustainability NEET
Title Using machine learning for NEETs and sustainability studies: Determining best machine learning algorithms
URI https://dx.doi.org/10.1016/j.seps.2024.101921
Volume 94
WOSCitedRecordID wos001245898000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6041
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002425
  issn: 0038-0121
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKh8ReEBQQG2PyA_AyBSV20th7G6PTQFDxUKS-RXFid5m6turHNPbn7C_dOf5I98HEHniJKie-Rr5fzufT_e4Q-hCGSrI0lQEPuQrAA2eBYEwFZV4mRIVFKAxR-Efa77PhkP9qta4cF-Z8nE4m7OKCz_6rqmEMlK2ps49QtxcKA_AblA5XUDtc_0nxJgngrE6SlK4rhMmW7Pd6A1OTeeF4U1Xthi9MNqEOD3y1-TF6joAt466kfDyazqvlia1zftrwfKeBtDxn3Z26boa0Z7fYJhoPazAyqQE_Vyc6bu4Tb75ML8GXPUw-8qM6XF9dyjOwyeN8ja0GULA1D6Y6QcdvKn2Zj1b1rFzA6d_esOEMEvtkOm-iqR4wtGlnonm8ZmMj7ZVG95p_E4nQbP2ZLsVO4s_Nwzdrbd_aA31mokt6O820jEzLyIyMJ2iDpAlnbbRx8K03_O73e31oM8U_zYtbapbJIrz9Jve7P2suzeAFem7PIvjAYOglaslJBz1zVPVFB202nZg7aNtzm_AnbFjd2BSZ-fMKVTXqsMUKdljBgDpcow4D6vBN1GGLun28hjmsMXdXToO51-j3UW9weBzYLh5BQRO2DISUKiqikhZUN7UrWVKGUhuBqCskJaEkipJSCBiOu9qd7MKjsUhpQQqe5Al9g9oTgNRbhFMWg8VhnCk45MNtpmDN8y6NuRC5KskWitziZoUtca87rYyzv6t1C-35OTNT4OXBpxOns8x-P8b1zACCD8zbftS_vEObzaexg9rL-Uq-R0-L82W1mO9a_F0DPx619w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+machine+learning+for+NEETs+and+sustainability+studies%3A+Determining+best+machine+learning+algorithms&rft.jtitle=Socio-economic+planning+sciences&rft.au=Berigel%2C+Muhammet&rft.au=Bozta%C5%9F%2C+Gizem+Dilan&rft.au=Rocca%2C+Antonella&rft.au=Neagu%2C+Gabriela&rft.date=2024-08-01&rft.issn=0038-0121&rft.volume=94&rft.spage=101921&rft_id=info:doi/10.1016%2Fj.seps.2024.101921&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_seps_2024_101921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0121&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0121&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0121&client=summon