Using machine learning for NEETs and sustainability studies: Determining best machine learning algorithms
In this study, we apply and compare different algorithms from machine learning to describe and predict NEET rates in 31 European countries in the period from 2005 to 2020. With this aim, we considered eleven indicators describing the socio-economic national context and the level of innovation of the...
Uložené v:
| Vydané v: | Socio-economic planning sciences Ročník 94; s. 101921 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.08.2024
|
| Predmet: | |
| ISSN: | 0038-0121, 1873-6041 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this study, we apply and compare different algorithms from machine learning to describe and predict NEET rates in 31 European countries in the period from 2005 to 2020. With this aim, we considered eleven indicators describing the socio-economic national context and the level of innovation of the economies. Besides improving knowledge about the use of machine learning algorithms for the description of the NEET phenomenon, we discuss the connections between NEETs and other indicators that connect with other relevant sustainable development goals (SDGs), such as education, the reduction of inequalities, and decent work for everyone. The reduction of NEET rates is the only goal directly addressed to young people, The article underscores the need for evidence-based approaches to measure SDG achievement, especially concerning the heterogeneous NEET population. It emphasizes the importance of machine learning algorithms as a modern methodology for understanding and addressing the NEET phenomenon within the framework of SDGs, considering the complex interrelationships of socio-economic factors contributing to social and economic sustainability.
•We identify the Best Machine Learning Algorithms for NEET and SDG studies.•We connect NEET paths in 2005–2020 with other relevant SDG goals.•We propose a complex approach, combining 31 countries and various indicators. |
|---|---|
| AbstractList | In this study, we apply and compare different algorithms from machine learning to describe and predict NEET rates in 31 European countries in the period from 2005 to 2020. With this aim, we considered eleven indicators describing the socio-economic national context and the level of innovation of the economies. Besides improving knowledge about the use of machine learning algorithms for the description of the NEET phenomenon, we discuss the connections between NEETs and other indicators that connect with other relevant sustainable development goals (SDGs), such as education, the reduction of inequalities, and decent work for everyone. The reduction of NEET rates is the only goal directly addressed to young people, The article underscores the need for evidence-based approaches to measure SDG achievement, especially concerning the heterogeneous NEET population. It emphasizes the importance of machine learning algorithms as a modern methodology for understanding and addressing the NEET phenomenon within the framework of SDGs, considering the complex interrelationships of socio-economic factors contributing to social and economic sustainability.
•We identify the Best Machine Learning Algorithms for NEET and SDG studies.•We connect NEET paths in 2005–2020 with other relevant SDG goals.•We propose a complex approach, combining 31 countries and various indicators. |
| ArticleNumber | 101921 |
| Author | Neagu, Gabriela Berigel, Muhammet Boztaş, Gizem Dilan Rocca, Antonella |
| Author_xml | – sequence: 1 givenname: Muhammet orcidid: 0000-0001-5682-8956 surname: Berigel fullname: Berigel, Muhammet email: berigel@ktu.edu.tr organization: Karadeniz Technical University, Ortahisar, Trabzon, 61080, Turkiye – sequence: 2 givenname: Gizem Dilan surname: Boztaş fullname: Boztaş, Gizem Dilan email: gizemdilanboztas@ktu.edu.tr organization: Karadeniz Technical University, Ortahisar, Trabzon, 61080, Turkiye – sequence: 3 givenname: Antonella orcidid: 0000-0001-8171-3149 surname: Rocca fullname: Rocca, Antonella email: antonella.rocca@uniparthenope.it organization: University of Naples Parthenope, Naples, 80142, Italy – sequence: 4 givenname: Gabriela orcidid: 0000-0001-6655-7256 surname: Neagu fullname: Neagu, Gabriela email: gabi.neagu@iccv.ro organization: Research Institute for Quality of Life, Bucharest, 050711, Romania |
| BookMark | eNp9kM1Kw0AUhQepYFt9AVd5gdT5SdJU3EitP1B0066HycxNe0s6KXNHoW9vYl0pdHXhcL4D9xuxgW89MHYr-ERwUdztJgQHmkgusz6YSXHBhqKcqrTgmRiwIeeqTLmQ4oqNiHacd02ZDxmuCf0m2Ru7RQ9JAyb4PqjbkLwvFitKjHcJfVI06E2FDcZjQvHTIdB98gQRwh5_iAoo_t8xzaYNGLd7umaXtWkIbn7vmK2fF6v5a7r8eHmbPy5Tq_IyphVALaxwyqpSCe7K3HHglleiqEBJDrJW0lVVF2dFJnJZdNWsmior7Sw3uRqz8rRrQ0sUoNYWo4nY-hgMNlpw3SvTO90r070yfVLWofIPegi4N-F4Hno4QdA99YUQNFkEb8FhABu1a_Ec_g2NW4mF |
| CitedBy_id | crossref_primary_10_1007_s40435_025_01820_5 crossref_primary_10_1080_09654313_2025_2542416 crossref_primary_10_1002_jid_70006 crossref_primary_10_1007_s11483_025_09995_2 crossref_primary_10_1007_s43621_025_01720_w crossref_primary_10_1016_j_jhazmat_2025_138202 crossref_primary_10_1177_01672533251362026 crossref_primary_10_1016_j_ces_2024_121147 crossref_primary_10_1016_j_seps_2025_102175 crossref_primary_10_11611_yead_1675761 |
| Cites_doi | 10.1016/j.seps.2023.101605 10.1007/s43151-021-00040-w 10.1007/s00521-022-07856-4 10.1002/jae.2910 10.1177/0044118X211056360 10.1007/s11205-020-02370-3 10.3390/su10124708 10.1007/s11205-021-02813-5 10.1177/13505084231177199 10.1016/j.ecolind.2015.08.003 10.1007/s42979-021-00592-x 10.1186/s41118-018-0031-0 10.1007/s11227-020-03481-x 10.1023/A:1010933404324 10.1186/s40537-020-00327-4 10.1109/ACCESS.2020.2969468 10.1080/00167223.2022.2068636 10.1007/s42979-020-00365-y 10.1080/13676261.2022.2080538 10.1016/j.techfore.2021.120658 10.1016/j.gsf.2021.101249 10.3389/fnagi.2017.00329 10.1002/for.2824 10.1109/TPDS.2016.2603511 10.1080/07038992.2020.1833186 10.1080/13662716.2023.2230222 10.1007/s11205-020-02270-6 10.1080/13676261.2021.1939287 10.1016/j.jjimei.2021.100029 10.1038/s41467-019-14108-y 10.1016/j.ijer.2023.102198 10.1109/72.788640 10.1080/01431161.2018.1433343 10.1016/j.cmpb.2018.12.032 10.1080/07421222.2018.1550557 10.2478/jaiscr-2022-0006 10.3390/math8101640 10.1155/2021/6647829 10.1093/cesifo/ifz004 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.seps.2024.101921 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Government Sociology & Social History |
| EISSN | 1873-6041 |
| ExternalDocumentID | 10_1016_j_seps_2024_101921 S0038012124001204 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 123 13V 1B1 1OL 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JO 9M8 AAAKF AAAKG AACTN AAEDT AAEDW AAFFL AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAPFB AAQFI AAQXK AARIN AAXUO ABFRF ABJNI ABKBG ABMAC ABMVD ABPPZ ABUCO ABXDB ACDAQ ACGFO ACGFS ACHRH ACNCT ACNTT ACRLP ACROA ADBBV ADEZE ADFHU ADMUD AEBSH AEFWE AEKER AETEA AEYQN AFFNX AFKWA AFODL AFTJW AGHFR AGTHC AGUBO AGUMN AGYEJ AHHHB AIEXJ AIIAU AIKHN AITUG AJOXV AJWLA AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AXLSJ AZFZN BEHZQ BEZPJ BGSCR BKOJK BLXMC BNSAS BNTGB BPUDD BULVW BZJEE CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMB HVGLF HZ~ IHE J1W KOM LPU LY1 LY5 M41 MO0 MS~ MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SDF SDG SDS SEE SES SEW SPCBC SSB SSD SSF SSL SSZ T5K TAE TN5 UHS UNMZH WUQ YK3 YNT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c358t-beef1c1d3c38310d85d0e0c0b16be320e2f32dbb5d04641526d3c4b73c2c95a53 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001245898000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0038-0121 |
| IngestDate | Sat Nov 29 06:59:09 EST 2025 Tue Nov 18 22:03:06 EST 2025 Sat Jul 06 15:30:44 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sustainability NEET Machine learning algorithms SDG |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c358t-beef1c1d3c38310d85d0e0c0b16be320e2f32dbb5d04641526d3c4b73c2c95a53 |
| ORCID | 0000-0001-5682-8956 0000-0001-8171-3149 0000-0001-6655-7256 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_seps_2024_101921 crossref_primary_10_1016_j_seps_2024_101921 elsevier_sciencedirect_doi_10_1016_j_seps_2024_101921 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Socio-economic planning sciences |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Pennoni, Bal-Domańska (bib13) 2022; 162 Demir, Sahin (bib45) 2023; 35 Sen, Basu, Chatterjee, Banerjee, Pal, Mukhopadhyay, Dutta, Tarafdar (bib24) 2022 Sarker (bib20) 2021; 2 Gogas, Papadimitriou, Sofianos (bib22) 2022; 41 Klier, Klier, Thiel, Agarwal (bib27) 2019; 36 Lee (bib26) 2019; 8 Consoli, Castellacci, Santoalha (bib39) 2023; 30 Berigel, Boztaş, Rocca, Neagu (bib10) 2023; 87 Caroleo, Rocca, Mazzocchi, Quintano (bib18) 2020; 149 Mosavi, Faghan, Ghamisi, Duan, Ardabili, Salwana, Band (bib28) 2020; 8 Cieslik, Barford, Vira (bib32) 2022; 25 Pérez-Pons, Parra-Dominguez, Omatu, Herrera-Viedma, Corchado (bib64) 2022; 12 Guo, Shi, Huang, Fan, Huang (bib48) 2021; 12 Vapnik (bib55) 1999; 10 De Luca, Mazzocchi, Quintano, Rocca (bib17) 2020; 151 (bib31) 2023 Quintano, Mazzocchi, Rocca (bib12) 2018; 74 Maxwell, Warner, Fang (bib43) 2018; 39 (bib2) 2015 Caroleo, Rocca, Neagu, Keranova (bib6) 2021; 54 Chamasemani, Singh (bib58) 2011 Mussida, Sciulli (bib11) 2023 Hák, Janoušková, Moldan (bib30) 2016; 60 Avagianou, Kizos, Gialis (bib37) 2022; 122 Ruesga-Benito, González-Laxe, Picatoste (bib5) 2018; 10 Odoardi, Muratore (bib16) 2018; 48 Jabeur, Gharib, Mefteh-Wali, Arfi (bib61) 2021; 166 Jackins, Vimal, Kaliappan, Lee (bib49) 2021; 77 Shah, Patel, Bharti (bib50) 2020; 1 Nhat-Duc, Quoc-Lam, Dieu (bib59) 2018; 32 Wu, Yeh, Hsu, Islam, Nguyen, Alex, Poly, Wang, Yang, Jack, Li (bib44) 2019; 170 De Luca, Mazzocchi, Quintano, Rocca (bib15) 2019; 65 Tripathi, Goswami, Trivedi, Sharma (bib47) 2021; 1 Cinquegrana, De Luca, Mazzocchi, Quintano, Rocca (bib19) 2021; 61 Sieng, Cloutier, Irimata (bib3) 2018; 10 Szpakowicz (bib42) 2022; 26 Dang, Liu, Yue, Qian, Zhu (bib54) 2021; 47 Sharma, Lilhore (bib25) 2023 Sarica, Cerasa, Quattrone (bib52) 2017; 9 Dinh, Nguyen, Tran, Hoang (bib57) 2021 Bujlow, Riaz, Pedersen (bib46) 2012 Imperatives (bib1) 1987; vol. 10 Picatoste, Rodriguez-Crespo (bib36) 2020 Boland, Griffin (bib7) 2023; 30 Montañez, Hurst (bib29) 2020; 8 Chen, Li, Tang, Bilal, Yu, Weng, Li (bib53) 2016; 28 Chen, Dewi, Huang, Caraka (bib62) 2020; 7 Rahmani, Groot (bib9) 2023; 120 Chen, Guestrin (bib60) 2016 (bib35) 2012 Hindin-Miller (bib38) 2012 Coulombe, Leroux, Stevanovic, Surprenant (bib8) 2022; 37 Bonanomi, Luppi, Rosina (bib4) 2020 Shuai, Zhao, Chen, Liu, Zheng, Qu, Zou, Xu (bib34) 2022 (bib33) 2022 Kütük, Güloğlu (bib21) 2019; 3 Sharma, Anand, Kapoor (bib23) 2022 Breiman (bib51) 2001; 45 van Vugt, van der Velden, Levels, Brzinsky-Fay (bib41) 2022 Assmann, Broschinski (bib14) 2021; 4 Bishop (bib56) 2011 Vinuesa, Azizpour, Leite, Balaam, Dignum, Domisch, Felländer, Langhans, Tegmark, Fuso Nerini (bib63) 2020; 11 Sparreboom, Staneva (bib40) 2014 van Vugt (10.1016/j.seps.2024.101921_bib41) 2022 Bujlow (10.1016/j.seps.2024.101921_bib46) 2012 Caroleo (10.1016/j.seps.2024.101921_bib6) 2021; 54 Nhat-Duc (10.1016/j.seps.2024.101921_bib59) 2018; 32 Jackins (10.1016/j.seps.2024.101921_bib49) 2021; 77 Dang (10.1016/j.seps.2024.101921_bib54) 2021; 47 Consoli (10.1016/j.seps.2024.101921_bib39) 2023; 30 Vinuesa (10.1016/j.seps.2024.101921_bib63) 2020; 11 Cieslik (10.1016/j.seps.2024.101921_bib32) 2022; 25 Boland (10.1016/j.seps.2024.101921_bib7) 2023; 30 Lee (10.1016/j.seps.2024.101921_bib26) 2019; 8 Demir (10.1016/j.seps.2024.101921_bib45) 2023; 35 Rahmani (10.1016/j.seps.2024.101921_bib9) 2023; 120 Imperatives (10.1016/j.seps.2024.101921_bib1) 1987; vol. 10 (10.1016/j.seps.2024.101921_bib35) 2012 Quintano (10.1016/j.seps.2024.101921_bib12) 2018; 74 Mussida (10.1016/j.seps.2024.101921_bib11) 2023 Shuai (10.1016/j.seps.2024.101921_bib34) 2022 Sharma (10.1016/j.seps.2024.101921_bib23) 2022 Picatoste (10.1016/j.seps.2024.101921_bib36) 2020 (10.1016/j.seps.2024.101921_bib2) 2015 Chen (10.1016/j.seps.2024.101921_bib60) 2016 Assmann (10.1016/j.seps.2024.101921_bib14) 2021; 4 Berigel (10.1016/j.seps.2024.101921_bib10) 2023; 87 Pennoni (10.1016/j.seps.2024.101921_bib13) 2022; 162 Montañez (10.1016/j.seps.2024.101921_bib29) 2020; 8 Wu (10.1016/j.seps.2024.101921_bib44) 2019; 170 Chen (10.1016/j.seps.2024.101921_bib53) 2016; 28 Odoardi (10.1016/j.seps.2024.101921_bib16) 2018; 48 (10.1016/j.seps.2024.101921_bib33) 2022 De Luca (10.1016/j.seps.2024.101921_bib15) 2019; 65 Dinh (10.1016/j.seps.2024.101921_bib57) 2021 Breiman (10.1016/j.seps.2024.101921_bib51) 2001; 45 Tripathi (10.1016/j.seps.2024.101921_bib47) 2021; 1 Sieng (10.1016/j.seps.2024.101921_bib3) 2018; 10 Mosavi (10.1016/j.seps.2024.101921_bib28) 2020; 8 Hindin-Miller (10.1016/j.seps.2024.101921_bib38) 2012 Sen (10.1016/j.seps.2024.101921_bib24) 2022 Sharma (10.1016/j.seps.2024.101921_bib25) 2023 Avagianou (10.1016/j.seps.2024.101921_bib37) 2022; 122 Szpakowicz (10.1016/j.seps.2024.101921_bib42) 2022; 26 Sparreboom (10.1016/j.seps.2024.101921_bib40) Guo (10.1016/j.seps.2024.101921_bib48) 2021; 12 De Luca (10.1016/j.seps.2024.101921_bib17) 2020; 151 Caroleo (10.1016/j.seps.2024.101921_bib18) 2020; 149 Jabeur (10.1016/j.seps.2024.101921_bib61) 2021; 166 Ruesga-Benito (10.1016/j.seps.2024.101921_bib5) 2018; 10 Hák (10.1016/j.seps.2024.101921_bib30) 2016; 60 Kütük (10.1016/j.seps.2024.101921_bib21) 2019; 3 Vapnik (10.1016/j.seps.2024.101921_bib55) 1999; 10 Chamasemani (10.1016/j.seps.2024.101921_bib58) 2011 Bonanomi (10.1016/j.seps.2024.101921_bib4) Bishop (10.1016/j.seps.2024.101921_bib56) 2011 Coulombe (10.1016/j.seps.2024.101921_bib8) 2022; 37 Sarica (10.1016/j.seps.2024.101921_bib52) 2017; 9 Gogas (10.1016/j.seps.2024.101921_bib22) 2022; 41 Chen (10.1016/j.seps.2024.101921_bib62) 2020; 7 Cinquegrana (10.1016/j.seps.2024.101921_bib19) 2021; 61 Pérez-Pons (10.1016/j.seps.2024.101921_bib64) 2022; 12 Sarker (10.1016/j.seps.2024.101921_bib20) 2021; 2 Klier (10.1016/j.seps.2024.101921_bib27) 2019; 36 Shah (10.1016/j.seps.2024.101921_bib50) 2020; 1 Maxwell (10.1016/j.seps.2024.101921_bib43) 2018; 39 |
| References_xml | – volume: 48 start-page: 323 year: 2018 end-page: 346 ident: bib16 article-title: The Italian regional dualism: a MARS and panel data analysis publication-title: Rev Reg Stud – volume: 65 start-page: 154 year: 2019 end-page: 176 ident: bib15 article-title: Italian NEETs in 2005–2016: have the recent Labour market reforms produced any effect? publication-title: CESifo Econ Stud – volume: 32 year: 2018 ident: bib59 article-title: Image processing–based classification of asphalt pavement cracks using support vector machine optimized by artificial bee Colony publication-title: J Comput Civ Eng – volume: 25 start-page: 1126 year: 2022 end-page: 1147 ident: bib32 article-title: Young people not in employment, education or training (NEET) in sub-saharan africa: sustainable development target 8.6 missed and reset publication-title: J Youth Stud – start-page: 351 year: 2011 end-page: 356 ident: bib58 article-title: Multi-class support vector machine (SVM) classifiers -- an application in hypothyroid detection and classification publication-title: 2011 sixth international conference on bio-inspired computing: theories and applications – volume: 87 year: 2023 ident: bib10 article-title: A model for predicting determinants factors for NEET rates: support for the decision-makers publication-title: Soc Econ Plann Sci – start-page: 785 year: 2016 end-page: 794 ident: bib60 article-title: Xgboost: a scalable tree boosting system publication-title: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining – year: 2014 ident: bib40 article-title: Is education the solution to decent work for youth in developing economies? Identifying qualifications mismatch from 28 school-to-work transition surveys – volume: 39 start-page: 2784 year: 2018 end-page: 2817 ident: bib43 article-title: Implementation of machine-learning classification in remote sensing: an applied review publication-title: Int J Rem Sens – volume: 10 start-page: 988 year: 1999 end-page: 999 ident: bib55 article-title: An overview of statistical learning theory publication-title: IEEE Trans Neural Network – volume: 8 start-page: 183 year: 2019 end-page: 190 ident: bib26 article-title: A study on research trend analysis and topic class prediction of digital transformation using text mining publication-title: International Journal of Advanced Smart Convergence – year: 2023 ident: bib31 article-title: Database – volume: 9 year: 2017 ident: bib52 article-title: Random forest algorithm for the classification of neuroimaging data in alzheimer's disease: a systematic review publication-title: Front Aging Neurosci – start-page: 1 year: 2021 end-page: 20 ident: bib57 article-title: Predicting rainfall-induced soil erosion based on a hybridization of adaptive differential evolution and support vector machine classification publication-title: Math Probl Eng – volume: 120 year: 2023 ident: bib9 article-title: Risk factors of being a youth not in education, employment or training (NEET): a scoping review publication-title: Int J Educ Res – volume: 47 start-page: 162 year: 2021 end-page: 181 ident: bib54 article-title: Autumn crop yield prediction using data-driven approaches:- support vector machines, random forest, and deep neural Network methods publication-title: Can J Rem Sens – volume: 61 start-page: 115 year: 2021 end-page: 132 ident: bib19 article-title: Italian NEETs an analysis of determinants based on the territorial districts publication-title: Scienze Reg – volume: 60 start-page: 565 year: 2016 end-page: 573 ident: bib30 article-title: Sustainable Development Goals: a need for relevant indicators publication-title: Ecol Indicat – volume: 1 start-page: 345 year: 2020 ident: bib50 article-title: Heart disease prediction using machine learning techniques publication-title: SN Computer Science – volume: 7 start-page: 52 year: 2020 ident: bib62 article-title: Selecting critical features for data classification based on machine learning methods publication-title: Journal of Big Data – volume: 8 start-page: 22525 year: 2020 end-page: 22536 ident: bib29 article-title: A machine learning approach for detecting unemployment using the smart metering infrastructure publication-title: IEEE Access – volume: 166 year: 2021 ident: bib61 article-title: CatBoost model and artificial intelligence techniques for corporate failure prediction publication-title: Technol Forecast Soc Change – year: 2011 ident: bib56 article-title: Pattern recognition and machine learning (information science and statistics) – volume: 74 start-page: 5 year: 2018 ident: bib12 article-title: The determinants of Italian NEETs and the effects of the economic crisis publication-title: Genus – volume: 151 start-page: 345 year: 2020 end-page: 363 ident: bib17 article-title: Going behind the high rates of NEETs in Italy and Spain: the role of early school leavers publication-title: Soc Indicat Res – volume: 28 start-page: 919 year: 2016 end-page: 933 ident: bib53 article-title: A parallel random forest algorithm for big data in a spark cloud computing environment publication-title: IEEE Trans Parallel Distr Syst – year: 2022 ident: bib33 article-title: Employment and social developments in Europe 2022 – year: 2012 ident: bib35 article-title: NEETs – young people not in employment, education or training: characteristics, costs and policy responses in Europe – volume: 149 start-page: 991 year: 2020 end-page: 1024 ident: bib18 article-title: Being NEET in Europe before and after the economic crisis: an analysis of the micro and macro determinants publication-title: Soc Indicat Res – volume: 10 start-page: 7 year: 2018 ident: bib3 article-title: Positive youth development sustainability scale (pydss): the development of an assessment tool publication-title: Journal of Sustainable Social Change – start-page: 237 year: 2012 end-page: 241 ident: bib46 article-title: A method for classification of network traffic based on C5.0 Machine Learning Algorithm – volume: 1 year: 2021 ident: bib47 article-title: A multi class random forest (MCRF) model for classification of small plant peptides publication-title: International Journal of Information Management Data Insights – volume: 37 start-page: 920 year: 2022 end-page: 964 ident: bib8 article-title: How is machine learning useful for macroeconomic forecasting? publication-title: J Appl Econom – volume: 12 start-page: 79 year: 2022 end-page: 100 ident: bib64 article-title: Machine Learning and Traditional Econometric Models: A Systematic Mapping Study publication-title: J Artificial Intelligence Soft Comput Res – volume: 4 start-page: 95 year: 2021 end-page: 117 ident: bib14 article-title: Mapping young NEETs across europe: exploring the institutional configurations promoting youth disengagement from education and employment publication-title: Journal of Applied Youth Studies – year: 2020 ident: bib4 article-title: . European Association for Population Studies – volume: 35 start-page: 3173 year: 2023 end-page: 3190 ident: bib45 article-title: An investigation of feature selection methods for soil liquefaction prediction based on tree-based ensemble algorithms using AdaBoost, gradient boosting, and XGBoost publication-title: Neural Comput Appl – volume: 3 start-page: 58 year: 2019 end-page: 75 ident: bib21 article-title: Prediction of transition probabilities from unemployment to employment for Turkey via machine learning and econometrics: a comparative study publication-title: Journal of Research in Economics – start-page: 205 year: 2022 end-page: 218 ident: bib41 article-title: The role of education systems in preventing NEETs publication-title: The dynamics of marginalized youth – volume: vol. 10 start-page: 1 year: 1987 end-page: 300 ident: bib1 publication-title: Report of the world commission on environment and development: our common future – start-page: 242 year: 2022 end-page: 249 ident: bib23 article-title: Student's employability indexing using machine learning approach publication-title: 2022 fifth international conference on computational intelligence and communication technologies (CCICT) – start-page: 795 year: 2023 end-page: 799 ident: bib25 article-title: A better approach for students employability indexing using machine learning publication-title: 2023 10th international conference on signal processing and integrated networks (SPIN) – volume: 12 year: 2021 ident: bib48 article-title: Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management publication-title: Geosci Front – volume: 77 start-page: 5198 year: 2021 end-page: 5219 ident: bib49 article-title: AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes publication-title: J Supercomput – volume: 162 start-page: 739 year: 2022 end-page: 761 ident: bib13 article-title: NEETs and youth unemployment: a longitudinal comparison across European countries publication-title: Soc Indicat Res – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib51 article-title: Random forests publication-title: Mach Learn – start-page: 244 year: 2020 end-page: 253 ident: bib36 article-title: Decreasing youth unemployment as a way to achieve sustainable development – volume: 8 year: 2020 ident: bib28 article-title: Comprehensive review of deep reinforcement learning methods and applications in economics publication-title: Mathematics – volume: 36 start-page: 158 year: 2019 end-page: 193 ident: bib27 article-title: Power of mobile peer groups: a design-oriented approach to address youth unemployment publication-title: J Manag Inf Syst – volume: 30 start-page: 873 year: 2023 end-page: 891 ident: bib7 article-title: The future of work guaranteed: assembling NEETs in the apparatus of the welfare state publication-title: Organization – volume: 54 start-page: 109S year: 2021 end-page: 129S ident: bib6 article-title: NEETs and the process of transition from school to the labor market: a comparative analysis of Italy, Romania, and Bulgaria publication-title: Youth Soc – volume: 30 start-page: 919 year: 2023 end-page: 946 ident: bib39 article-title: E-skills and income inequality within European regions publication-title: Ind Innovat – volume: 2 start-page: 160 year: 2021 ident: bib20 article-title: Machine learning: algorithms, real-world applications and research directions publication-title: SN computer science. – volume: 26 start-page: 1200 year: 2022 end-page: 1218 ident: bib42 article-title: Problematising engagement with technologies in transitions of young people identified as ‘Not in Education, Employment or Training’ (NEET) in Scotland publication-title: J Youth Stud – year: 2022 ident: bib34 article-title: Quantifying the impacts of COVID-19 on Sustainable Development Goals using machine learning models publication-title: Fundamental Research – start-page: 1 year: 2022 end-page: 5 ident: bib24 article-title: Prediction of unemployment using machine learning approach publication-title: 2022 OITS international conference on information technology (OCIT) – volume: 170 start-page: 23 year: 2019 end-page: 29 ident: bib44 article-title: Prediction of fatty liver disease using machine learning algorithms publication-title: Comput Methods Progr Biomed – volume: 10 start-page: 4708 year: 2018 ident: bib5 article-title: Sustainable development, poverty, and risk of exclusion for young people in the European union: the case of NEETs publication-title: Sustainability – year: 2012 ident: bib38 article-title: Re-storying identities: young women's narratives of teenage parenthood and educational support publication-title: Educational Studies and Human Development – volume: 122 start-page: 32 year: 2022 end-page: 45 ident: bib37 article-title: Young NEETs in the EU south: socio-spatial and gender divisions in between the great recession and the covid-19 pandemic publication-title: Geografisk Tidsskrift-Danish Journal of Geography – year: 2015 ident: bib2 article-title: Transforming our world: The 2030 Agenda for Sustainable Development – start-page: 1 year: 2023 end-page: 20 ident: bib11 article-title: Being poor and being NEET in Europe: are these two sides of the same coin? publication-title: J Econ Inequal – volume: 41 start-page: 551 year: 2022 end-page: 566 ident: bib22 article-title: Forecasting unemployment in the euro area with machine learning publication-title: J Forecast – volume: 11 start-page: 233 year: 2020 ident: bib63 article-title: The role of artificial intelligence in achieving the Sustainable Development Goals publication-title: Nat Commun – volume: 87 year: 2023 ident: 10.1016/j.seps.2024.101921_bib10 article-title: A model for predicting determinants factors for NEET rates: support for the decision-makers publication-title: Soc Econ Plann Sci doi: 10.1016/j.seps.2023.101605 – volume: 4 start-page: 95 issue: 2 year: 2021 ident: 10.1016/j.seps.2024.101921_bib14 article-title: Mapping young NEETs across europe: exploring the institutional configurations promoting youth disengagement from education and employment publication-title: Journal of Applied Youth Studies doi: 10.1007/s43151-021-00040-w – start-page: 242 year: 2022 ident: 10.1016/j.seps.2024.101921_bib23 article-title: Student's employability indexing using machine learning approach – volume: 35 start-page: 3173 issue: 4 year: 2023 ident: 10.1016/j.seps.2024.101921_bib45 article-title: An investigation of feature selection methods for soil liquefaction prediction based on tree-based ensemble algorithms using AdaBoost, gradient boosting, and XGBoost publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07856-4 – volume: 37 start-page: 920 issue: 5 year: 2022 ident: 10.1016/j.seps.2024.101921_bib8 article-title: How is machine learning useful for macroeconomic forecasting? publication-title: J Appl Econom doi: 10.1002/jae.2910 – year: 2011 ident: 10.1016/j.seps.2024.101921_bib56 – volume: 8 start-page: 183 issue: 2 year: 2019 ident: 10.1016/j.seps.2024.101921_bib26 article-title: A study on research trend analysis and topic class prediction of digital transformation using text mining publication-title: International Journal of Advanced Smart Convergence – volume: 54 start-page: 109S issue: 2_suppl year: 2021 ident: 10.1016/j.seps.2024.101921_bib6 article-title: NEETs and the process of transition from school to the labor market: a comparative analysis of Italy, Romania, and Bulgaria publication-title: Youth Soc doi: 10.1177/0044118X211056360 – volume: 151 start-page: 345 issue: 1 year: 2020 ident: 10.1016/j.seps.2024.101921_bib17 article-title: Going behind the high rates of NEETs in Italy and Spain: the role of early school leavers publication-title: Soc Indicat Res doi: 10.1007/s11205-020-02370-3 – volume: 10 start-page: 4708 issue: 12 year: 2018 ident: 10.1016/j.seps.2024.101921_bib5 article-title: Sustainable development, poverty, and risk of exclusion for young people in the European union: the case of NEETs publication-title: Sustainability doi: 10.3390/su10124708 – volume: 162 start-page: 739 year: 2022 ident: 10.1016/j.seps.2024.101921_bib13 article-title: NEETs and youth unemployment: a longitudinal comparison across European countries publication-title: Soc Indicat Res doi: 10.1007/s11205-021-02813-5 – volume: 30 start-page: 873 issue: 5 year: 2023 ident: 10.1016/j.seps.2024.101921_bib7 article-title: The future of work guaranteed: assembling NEETs in the apparatus of the welfare state publication-title: Organization doi: 10.1177/13505084231177199 – volume: 3 start-page: 58 issue: 1 year: 2019 ident: 10.1016/j.seps.2024.101921_bib21 article-title: Prediction of transition probabilities from unemployment to employment for Turkey via machine learning and econometrics: a comparative study publication-title: Journal of Research in Economics – volume: 60 start-page: 565 year: 2016 ident: 10.1016/j.seps.2024.101921_bib30 article-title: Sustainable Development Goals: a need for relevant indicators publication-title: Ecol Indicat doi: 10.1016/j.ecolind.2015.08.003 – volume: 2 start-page: 160 year: 2021 ident: 10.1016/j.seps.2024.101921_bib20 article-title: Machine learning: algorithms, real-world applications and research directions publication-title: SN computer science. doi: 10.1007/s42979-021-00592-x – volume: 74 start-page: 5 issue: 1 year: 2018 ident: 10.1016/j.seps.2024.101921_bib12 article-title: The determinants of Italian NEETs and the effects of the economic crisis publication-title: Genus doi: 10.1186/s41118-018-0031-0 – volume: 77 start-page: 5198 issue: 5 year: 2021 ident: 10.1016/j.seps.2024.101921_bib49 article-title: AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes publication-title: J Supercomput doi: 10.1007/s11227-020-03481-x – ident: 10.1016/j.seps.2024.101921_bib40 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.seps.2024.101921_bib51 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 7 start-page: 52 issue: 1 year: 2020 ident: 10.1016/j.seps.2024.101921_bib62 article-title: Selecting critical features for data classification based on machine learning methods publication-title: Journal of Big Data doi: 10.1186/s40537-020-00327-4 – volume: 8 start-page: 22525 year: 2020 ident: 10.1016/j.seps.2024.101921_bib29 article-title: A machine learning approach for detecting unemployment using the smart metering infrastructure publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2969468 – volume: 122 start-page: 32 issue: 1 year: 2022 ident: 10.1016/j.seps.2024.101921_bib37 article-title: Young NEETs in the EU south: socio-spatial and gender divisions in between the great recession and the covid-19 pandemic publication-title: Geografisk Tidsskrift-Danish Journal of Geography doi: 10.1080/00167223.2022.2068636 – volume: 1 start-page: 345 issue: 6 year: 2020 ident: 10.1016/j.seps.2024.101921_bib50 article-title: Heart disease prediction using machine learning techniques publication-title: SN Computer Science doi: 10.1007/s42979-020-00365-y – volume: 26 start-page: 1200 issue: 9 year: 2022 ident: 10.1016/j.seps.2024.101921_bib42 article-title: Problematising engagement with technologies in transitions of young people identified as ‘Not in Education, Employment or Training’ (NEET) in Scotland publication-title: J Youth Stud doi: 10.1080/13676261.2022.2080538 – volume: 166 year: 2021 ident: 10.1016/j.seps.2024.101921_bib61 article-title: CatBoost model and artificial intelligence techniques for corporate failure prediction publication-title: Technol Forecast Soc Change doi: 10.1016/j.techfore.2021.120658 – year: 2022 ident: 10.1016/j.seps.2024.101921_bib33 – volume: 12 issue: 6 year: 2021 ident: 10.1016/j.seps.2024.101921_bib48 article-title: Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management publication-title: Geosci Front doi: 10.1016/j.gsf.2021.101249 – year: 2012 ident: 10.1016/j.seps.2024.101921_bib38 article-title: Re-storying identities: young women's narratives of teenage parenthood and educational support publication-title: Educational Studies and Human Development – volume: 9 year: 2017 ident: 10.1016/j.seps.2024.101921_bib52 article-title: Random forest algorithm for the classification of neuroimaging data in alzheimer's disease: a systematic review publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2017.00329 – start-page: 351 year: 2011 ident: 10.1016/j.seps.2024.101921_bib58 article-title: Multi-class support vector machine (SVM) classifiers -- an application in hypothyroid detection and classification – volume: 41 start-page: 551 issue: 3 year: 2022 ident: 10.1016/j.seps.2024.101921_bib22 article-title: Forecasting unemployment in the euro area with machine learning publication-title: J Forecast doi: 10.1002/for.2824 – volume: 28 start-page: 919 issue: 4 year: 2016 ident: 10.1016/j.seps.2024.101921_bib53 article-title: A parallel random forest algorithm for big data in a spark cloud computing environment publication-title: IEEE Trans Parallel Distr Syst doi: 10.1109/TPDS.2016.2603511 – volume: 47 start-page: 162 issue: 2 year: 2021 ident: 10.1016/j.seps.2024.101921_bib54 article-title: Autumn crop yield prediction using data-driven approaches:- support vector machines, random forest, and deep neural Network methods publication-title: Can J Rem Sens doi: 10.1080/07038992.2020.1833186 – start-page: 785 year: 2016 ident: 10.1016/j.seps.2024.101921_bib60 article-title: Xgboost: a scalable tree boosting system publication-title: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining – volume: 30 start-page: 919 issue: 7 year: 2023 ident: 10.1016/j.seps.2024.101921_bib39 article-title: E-skills and income inequality within European regions publication-title: Ind Innovat doi: 10.1080/13662716.2023.2230222 – volume: 149 start-page: 991 issue: 3 year: 2020 ident: 10.1016/j.seps.2024.101921_bib18 article-title: Being NEET in Europe before and after the economic crisis: an analysis of the micro and macro determinants publication-title: Soc Indicat Res doi: 10.1007/s11205-020-02270-6 – volume: 61 start-page: 115 year: 2021 ident: 10.1016/j.seps.2024.101921_bib19 article-title: Italian NEETs an analysis of determinants based on the territorial districts publication-title: Scienze Reg – volume: 25 start-page: 1126 issue: 8 year: 2022 ident: 10.1016/j.seps.2024.101921_bib32 article-title: Young people not in employment, education or training (NEET) in sub-saharan africa: sustainable development target 8.6 missed and reset publication-title: J Youth Stud doi: 10.1080/13676261.2021.1939287 – year: 2015 ident: 10.1016/j.seps.2024.101921_bib2 – volume: 1 issue: 2 year: 2021 ident: 10.1016/j.seps.2024.101921_bib47 article-title: A multi class random forest (MCRF) model for classification of small plant peptides publication-title: International Journal of Information Management Data Insights doi: 10.1016/j.jjimei.2021.100029 – start-page: 795 year: 2023 ident: 10.1016/j.seps.2024.101921_bib25 article-title: A better approach for students employability indexing using machine learning – volume: 11 start-page: 233 issue: 1 year: 2020 ident: 10.1016/j.seps.2024.101921_bib63 article-title: The role of artificial intelligence in achieving the Sustainable Development Goals publication-title: Nat Commun doi: 10.1038/s41467-019-14108-y – volume: 10 start-page: 7 issue: 1 year: 2018 ident: 10.1016/j.seps.2024.101921_bib3 article-title: Positive youth development sustainability scale (pydss): the development of an assessment tool publication-title: Journal of Sustainable Social Change – volume: 120 year: 2023 ident: 10.1016/j.seps.2024.101921_bib9 article-title: Risk factors of being a youth not in education, employment or training (NEET): a scoping review publication-title: Int J Educ Res doi: 10.1016/j.ijer.2023.102198 – start-page: 1 year: 2023 ident: 10.1016/j.seps.2024.101921_bib11 article-title: Being poor and being NEET in Europe: are these two sides of the same coin? publication-title: J Econ Inequal – year: 2012 ident: 10.1016/j.seps.2024.101921_bib35 – volume: 10 start-page: 988 issue: 5 year: 1999 ident: 10.1016/j.seps.2024.101921_bib55 article-title: An overview of statistical learning theory publication-title: IEEE Trans Neural Network doi: 10.1109/72.788640 – start-page: 205 year: 2022 ident: 10.1016/j.seps.2024.101921_bib41 article-title: The role of education systems in preventing NEETs – year: 2022 ident: 10.1016/j.seps.2024.101921_bib34 article-title: Quantifying the impacts of COVID-19 on Sustainable Development Goals using machine learning models publication-title: Fundamental Research – volume: 39 start-page: 2784 issue: 9 year: 2018 ident: 10.1016/j.seps.2024.101921_bib43 article-title: Implementation of machine-learning classification in remote sensing: an applied review publication-title: Int J Rem Sens doi: 10.1080/01431161.2018.1433343 – start-page: 244 year: 2020 ident: 10.1016/j.seps.2024.101921_bib36 – volume: 170 start-page: 23 year: 2019 ident: 10.1016/j.seps.2024.101921_bib44 article-title: Prediction of fatty liver disease using machine learning algorithms publication-title: Comput Methods Progr Biomed doi: 10.1016/j.cmpb.2018.12.032 – volume: 36 start-page: 158 issue: 1 year: 2019 ident: 10.1016/j.seps.2024.101921_bib27 article-title: Power of mobile peer groups: a design-oriented approach to address youth unemployment publication-title: J Manag Inf Syst doi: 10.1080/07421222.2018.1550557 – start-page: 237 year: 2012 ident: 10.1016/j.seps.2024.101921_bib46 – volume: 32 issue: 5 year: 2018 ident: 10.1016/j.seps.2024.101921_bib59 article-title: Image processing–based classification of asphalt pavement cracks using support vector machine optimized by artificial bee Colony publication-title: J Comput Civ Eng – volume: 12 start-page: 79 issue: 2 year: 2022 ident: 10.1016/j.seps.2024.101921_bib64 article-title: Machine Learning and Traditional Econometric Models: A Systematic Mapping Study publication-title: J Artificial Intelligence Soft Comput Res doi: 10.2478/jaiscr-2022-0006 – volume: 48 start-page: 323 issue: 3 year: 2018 ident: 10.1016/j.seps.2024.101921_bib16 article-title: The Italian regional dualism: a MARS and panel data analysis publication-title: Rev Reg Stud – volume: 8 issue: 10 year: 2020 ident: 10.1016/j.seps.2024.101921_bib28 article-title: Comprehensive review of deep reinforcement learning methods and applications in economics publication-title: Mathematics doi: 10.3390/math8101640 – start-page: 1 year: 2022 ident: 10.1016/j.seps.2024.101921_bib24 article-title: Prediction of unemployment using machine learning approach – volume: vol. 10 start-page: 1 year: 1987 ident: 10.1016/j.seps.2024.101921_bib1 – ident: 10.1016/j.seps.2024.101921_bib4 – start-page: 1 year: 2021 ident: 10.1016/j.seps.2024.101921_bib57 article-title: Predicting rainfall-induced soil erosion based on a hybridization of adaptive differential evolution and support vector machine classification publication-title: Math Probl Eng doi: 10.1155/2021/6647829 – volume: 65 start-page: 154 issue: 2 year: 2019 ident: 10.1016/j.seps.2024.101921_bib15 article-title: Italian NEETs in 2005–2016: have the recent Labour market reforms produced any effect? publication-title: CESifo Econ Stud doi: 10.1093/cesifo/ifz004 |
| SSID | ssj0002425 |
| Score | 2.402937 |
| Snippet | In this study, we apply and compare different algorithms from machine learning to describe and predict NEET rates in 31 European countries in the period from... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101921 |
| SubjectTerms | Machine learning algorithms SDG Sustainability NEET |
| Title | Using machine learning for NEETs and sustainability studies: Determining best machine learning algorithms |
| URI | https://dx.doi.org/10.1016/j.seps.2024.101921 |
| Volume | 94 |
| WOSCitedRecordID | wos001245898000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6041 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002425 issn: 0038-0121 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKh8ReEBQQG2PyA_AyBSV20th7G6PTQFDxUKS-RXFid5m6turHNPbn7C_dOf5I98HEHniJKie-Rr5fzufT_e4Q-hCGSrI0lQEPuQrAA2eBYEwFZV4mRIVFKAxR-Efa77PhkP9qta4cF-Z8nE4m7OKCz_6rqmEMlK2ps49QtxcKA_AblA5XUDtc_0nxJgngrE6SlK4rhMmW7Pd6A1OTeeF4U1Xthi9MNqEOD3y1-TF6joAt466kfDyazqvlia1zftrwfKeBtDxn3Z26boa0Z7fYJhoPazAyqQE_Vyc6bu4Tb75ML8GXPUw-8qM6XF9dyjOwyeN8ja0GULA1D6Y6QcdvKn2Zj1b1rFzA6d_esOEMEvtkOm-iqR4wtGlnonm8ZmMj7ZVG95p_E4nQbP2ZLsVO4s_Nwzdrbd_aA31mokt6O820jEzLyIyMJ2iDpAlnbbRx8K03_O73e31oM8U_zYtbapbJIrz9Jve7P2suzeAFem7PIvjAYOglaslJBz1zVPVFB202nZg7aNtzm_AnbFjd2BSZ-fMKVTXqsMUKdljBgDpcow4D6vBN1GGLun28hjmsMXdXToO51-j3UW9weBzYLh5BQRO2DISUKiqikhZUN7UrWVKGUhuBqCskJaEkipJSCBiOu9qd7MKjsUhpQQqe5Al9g9oTgNRbhFMWg8VhnCk45MNtpmDN8y6NuRC5KskWitziZoUtca87rYyzv6t1C-35OTNT4OXBpxOns8x-P8b1zACCD8zbftS_vEObzaexg9rL-Uq-R0-L82W1mO9a_F0DPx619w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+machine+learning+for+NEETs+and+sustainability+studies%3A+Determining+best+machine+learning+algorithms&rft.jtitle=Socio-economic+planning+sciences&rft.au=Berigel%2C+Muhammet&rft.au=Bozta%C5%9F%2C+Gizem+Dilan&rft.au=Rocca%2C+Antonella&rft.au=Neagu%2C+Gabriela&rft.date=2024-08-01&rft.issn=0038-0121&rft.volume=94&rft.spage=101921&rft_id=info:doi/10.1016%2Fj.seps.2024.101921&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_seps_2024_101921 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0121&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0121&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0121&client=summon |