A comparative study of multi-objective optimization algorithms for sparse signal reconstruction
The development of the efficient sparse signal recovery algorithm is one of the important problems of the compressive sensing theory. There exist many types of sparse signal recovery methods in compressive sensing theory. These algorithms are classified into several categories like convex optimizati...
Uložené v:
| Vydané v: | The Artificial intelligence review Ročník 55; číslo 4; s. 3153 - 3181 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.04.2022
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0269-2821, 1573-7462 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The development of the efficient sparse signal recovery algorithm is one of the important problems of the compressive sensing theory. There exist many types of sparse signal recovery methods in compressive sensing theory. These algorithms are classified into several categories like convex optimization, non-convex optimization, and greedy methods. Lately, intelligent optimization techniques like multi-objective approaches have been used in compressed sensing. Firstly, in this paper, the basic principles of the compressive sensing theory are summarized. And then, brief information about multi-objective algorithms, local search methods, and knee point selection methods are given. Afterward, multi-objective sparse recovery methods in the literature are reviewed and investigated in accordance with their multi-objective optimization algorithm, the local search method, and the knee point selection method. Also in this study, examples of multi-objective sparse reconstruction methods are designed according to the existing studies. Finally, the designed algorithms are tested and compared by using various types of sparse reconstruction test problems. |
|---|---|
| AbstractList | The development of the efficient sparse signal recovery algorithm is one of the important problems of the compressive sensing theory. There exist many types of sparse signal recovery methods in compressive sensing theory. These algorithms are classified into several categories like convex optimization, non-convex optimization, and greedy methods. Lately, intelligent optimization techniques like multi-objective approaches have been used in compressed sensing. Firstly, in this paper, the basic principles of the compressive sensing theory are summarized. And then, brief information about multi-objective algorithms, local search methods, and knee point selection methods are given. Afterward, multi-objective sparse recovery methods in the literature are reviewed and investigated in accordance with their multi-objective optimization algorithm, the local search method, and the knee point selection method. Also in this study, examples of multi-objective sparse reconstruction methods are designed according to the existing studies. Finally, the designed algorithms are tested and compared by using various types of sparse reconstruction test problems. |
| Audience | Academic |
| Author | Erkoc, Murat Emre Karaboga, Nurhan |
| Author_xml | – sequence: 1 givenname: Murat Emre orcidid: 0000-0002-2388-5329 surname: Erkoc fullname: Erkoc, Murat Emre email: merkoc@erciyes.edu.tr organization: Electrical and Electronics Engineering, Erciyes University – sequence: 2 givenname: Nurhan surname: Karaboga fullname: Karaboga, Nurhan organization: Electrical and Electronics Engineering, Erciyes University |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKsB11NzaWY6yyLeQHCj65DLSU2ZmdQkI9SnN-0IgouSRXJO_u9c_hma9L4HhK4JXhCM69tI8LKiJaakPMSs5GdoSnh-1Dk_QVNMq6akK0ou0CzGLcaY0yWbIrEutO92MsjkvqCIaTD7wtuiG9rkSq-2oI8ffpdc576zyveFbDc-uPTRxcL6UMSMx8y6TS_bIoD2fUxh0AftJTq3so1w9XvP0fvD_dvdU_ny-vh8t34pNeOrVCpTV43hYJUiRukKJJa2wawxeQmtZK2opMbUljBlNLeVthKMZRgsKNoAm6Obse4u-M8BYhJbP4Q8TxS0Wi55UzHOs2oxqjayBeF661OQOh8Dnctjg3U5v65xxWq2qpsM0BHQwccYwIpdcJ0Me0GwODgtRudFdv4YM3HosvoHaZeOzuVurj2NshGNuU-_gfC3xgnqB9JZneI |
| CitedBy_id | crossref_primary_10_1080_10408398_2024_2376113 crossref_primary_10_1109_TEVC_2023_3264875 crossref_primary_10_1016_j_eswa_2024_125105 crossref_primary_10_1016_j_asoc_2024_112598 crossref_primary_10_1016_j_sciaf_2023_e01832 crossref_primary_10_1016_j_ejor_2024_07_019 crossref_primary_10_3390_electronics12214383 crossref_primary_10_1016_j_engappai_2024_108194 crossref_primary_10_1016_j_neunet_2022_07_018 crossref_primary_10_3390_jsan14020028 |
| Cites_doi | 10.1109/MSP.2007.914731 10.1109/ACCESS.2019.2898987 10.1016/j.acha.2009.04.002 10.1109/TIP.2003.819861 10.1109/Tit.2006.871582 10.1109/Tevc.2013.2287153 10.1109/Tevc.2013.2281535 10.1109/Access.2018.2886471 10.1016/j.asoc.2009.08.024 10.1016/j.acha.2008.07.002 10.1007/s11760-016-1049-4 10.1109/Tit.2005.862083 10.1016/j.asoc.2010.04.014 10.1002/mrm.25240 10.1016/j.sigpro.2021.108283 10.1109/Tit.2007.909108 10.1109/18.382009 10.1016/j.asoc.2007.05.005 10.1007/s11760-019-01473-w 10.1109/TNNLS.2017.2677973 10.1109/4235.797969 10.1109/Tip.2019.2928136 10.1109/TNNLS.2012.2197412 10.1016/j.ins.2018.06.019 10.1109/Jstsp.2009.2039181 10.1109/4235.996017 10.1109/Access.2018.2793851 10.1109/Tsp.2011.2170977 10.1109/Lsp.2013.2260822 10.1016/j.asoc.2009.10.015 10.1109/TEVC.2007.892759 10.1109/Comst.2016.2524443 10.1109/TCYB.2017.2679705 10.1162/evco.1994.2.3.221 10.1016/j.asoc.2007.05.003 10.1007/s00041-008-9035-z 10.1109/Tevc.2007.900837 10.1007/s00500-004-0434-z 10.1109/Tevc.2014.2378512 10.1016/j.neunet.2017.12.008 10.1109/MSP.2007.4286571 10.1016/j.swevo.2011.03.001 10.1109/TPDS.2014.2345257 10.1016/j.crma.2008.03.014 10.1109/ICIP.2009.5414631 10.1109/CEC.2010.5586431 10.1109/CCWC.2017.7868430 10.1145/1143997.1144248 10.1016/j.sigpro.2019.107292 10.1109/CEC.2018.8477915 10.1007/978-1-4615-5563-6 10.1109/ISCAS.2015.7169317 10.1109/CEC.2016.7743848 10.1109/CVPR.2009.5206657 10.1109/CEC.2018.8477789 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 COPYRIGHT 2022 Springer Copyright Springer Nature B.V. Apr 2022 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: COPYRIGHT 2022 Springer – notice: Copyright Springer Nature B.V. Apr 2022 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U |
| DOI | 10.1007/s10462-021-10073-5 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College Library & information science collection. ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Library Science Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China One Social Sciences ProQuest One Psychology ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7462 |
| EndPage | 3181 |
| ExternalDocumentID | A706373879 10_1007_s10462_021_10073_5 |
| GrantInformation_xml | – fundername: Erciyes Üniversitesi grantid: FDK-2021-10946; FDK-2021-10946 funderid: http://dx.doi.org/10.13039/501100003062 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 77K 7WY 8AO 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M1O M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX 77I AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFFHD AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB PRQQA 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c358t-bd769d5efbb1dbc6ea0af9039d157cba7b2a2dd7f13bdc5f6cfaedf30efeb29e3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000705737000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0269-2821 |
| IngestDate | Fri Nov 14 18:44:30 EST 2025 Sat Nov 29 10:23:17 EST 2025 Sat Nov 29 02:43:25 EST 2025 Tue Nov 18 22:07:49 EST 2025 Fri Feb 21 02:47:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Multi-objective optimization Knee region Sparse reconstruction Evolutionary algorithm Local search method Compressed sensing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-bd769d5efbb1dbc6ea0af9039d157cba7b2a2dd7f13bdc5f6cfaedf30efeb29e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2388-5329 |
| PQID | 2644596355 |
| PQPubID | 36790 |
| PageCount | 29 |
| ParticipantIDs | proquest_journals_2644596355 gale_infotracacademiconefile_A706373879 crossref_primary_10_1007_s10462_021_10073_5 crossref_citationtrail_10_1007_s10462_021_10073_5 springer_journals_10_1007_s10462_021_10073_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Science and Engineering Journal |
| PublicationTitle | The Artificial intelligence review |
| PublicationTitleAbbrev | Artif Intell Rev |
| PublicationYear | 2022 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | Donoho (CR16) 1995; 41 Donoho (CR17) 2006; 52 Branke, Deb, Dierolf, Osswald (CR7) 2004; 3242 Wozniak (CR54) 2011; 11 Zitzler, Thiele (CR65) 1999; 3 Baraniuk (CR4) 2007; 24 CR39 CR38 Panduro, Brizuela, Covarrubias, Lopez (CR43) 2006; 10 CR35 CR34 CR33 Yan, Zhao, Wang, Zhang (CR56) 2018; 462 Erkoc, Karaboga (CR20) 2019; 13 Li, Yao, Stolkin, Gong, He (CR31) 2014; 18 Marques, Maciel, Naviner, Cai, Yang (CR37) 2019; 7 Zhou, Qu, Li, Zhao, Suganthan, Zhang (CR63) 2011; 1 Qasem, Shamsuddin (CR45) 2011; 11 CR2 Liang, Gong, H. L, C.T. Yue, Qu BY (CR32) 2018 Zhang, Tian, Jin (CR61) 2015; 19 Candes, Wakin (CR10) 2008; 25 CR48 Yan, Zhao, Wang, Zhao (CR57) 2017; 11 Deb, Pratap, Agarwal, Meyarivan (CR13) 2002; 6 Li, Sun, Meng, Zhang (CR29) 2019; 7 CR40 Blumensath, Davies (CR6) 2009; 27 Sharma, Lagunas, Chatzinotas, Ottersten (CR49) 2016; 18 Ehrgott (CR19) 2005 Needell, Tropp (CR41) 2009; 26 Patel, Easley, Healy, Chellappa (CR44) 2010; 4 Deb, Jain (CR12) 2014; 18 Tropp, Gilbert (CR52) 2007; 53 Wang, Bovik, Sheikh, Simoncelli (CR53) 2004; 13 Janson, Merkle, Middendorf (CR24) 2008; 8 Candes (CR8) 2008; 346 Lazzerini, Marcelloni, Vecchio (CR26) 2010; 10 CR59 CR14 Bandyopadhyay, Saha, Maulik, Deb (CR3) 2008; 12 Do, Gan, Nguyen, Tran (CR15) 2012; 60 CR11 Zhou, Kwong, Guo, Zhang, Zhang (CR64) 2017; 47 Li, Zhang, Deng, Xu (CR30) 2018; 29 Xu, Chang, Xu, Zhang (CR55) 2012; 23 Liu, Zhu, Kong, Liu, Gu, Vasilakos, Wu (CR36) 2015; 26 Yin, Morgan, Yang, Zhang (CR58) 2010; 2010 Shi, Jiang, Liu, Zhao (CR50) 2020; 29 Du, Cheng, Liu (CR18) 2013; 20 Rani, Dhok, Deshmukh (CR46) 2018; 6 Otazo, Candes, Sodickson (CR42) 2015; 73 Zhang, Li (CR60) 2007; 11 CR27 CR25 Blumensath, Davies (CR5) 2008; 14 CR22 Siinivas, Deb (CR51) 1994; 2 Candes, Romberg, Tao (CR9) 2006; 52 Alatas, Akin, Karci (CR1) 2008; 8 Zhao, He, Huang, Huang (CR62) 2018; 99 Erkoc, Karaboga (CR21) 2021 Li, Su, Xu, Zhang (CR28) 2012 Greiner, Winter, Emperador, Galvan (CR23) 2005; 3410 XY Zhang (10073_CR61) 2015; 19 N Siinivas (10073_CR51) 1994; 2 Z Wang (10073_CR53) 2004; 13 K Deb (10073_CR12) 2014; 18 T Blumensath (10073_CR5) 2008; 14 E Branke (10073_CR7) 2004; 3242 10073_CR25 H Li (10073_CR28) 2012 E Zitzler (10073_CR65) 1999; 3 B Lazzerini (10073_CR26) 2010; 10 10073_CR27 M Ehrgott (10073_CR19) 2005 10073_CR22 XY Liu (10073_CR36) 2015; 26 K Sharma (10073_CR49) 2016; 18 Bilal Alatas (10073_CR1) 2008; 8 ZB Xu (10073_CR55) 2012; 23 10073_CR2 K Deb (10073_CR13) 2002; 6 DL Donoho (10073_CR17) 2006; 52 S Bandyopadhyay (10073_CR3) 2008; 12 EJ Candes (10073_CR9) 2006; 52 RG Baraniuk (10073_CR4) 2007; 24 10073_CR14 JA Tropp (10073_CR52) 2007; 53 10073_CR59 S Janson (10073_CR24) 2008; 8 10073_CR11 JJ Liang (10073_CR32) 2018 WT Yin (10073_CR58) 2010; 2010 Y Zhou (10073_CR64) 2017; 47 P Wozniak (10073_CR54) 2011; 11 MA Panduro (10073_CR43) 2006; 10 TT Do (10073_CR15) 2012; 60 WZ Shi (10073_CR50) 2020; 29 D Greiner (10073_CR23) 2005; 3410 10073_CR48 ME Erkoc (10073_CR21) 2021 B Yan (10073_CR57) 2017; 11 VM Patel (10073_CR44) 2010; 4 ME Erkoc (10073_CR20) 2019; 13 H Li (10073_CR29) 2019; 7 Y Zhao (10073_CR62) 2018; 99 EJ Candes (10073_CR10) 2008; 25 EC Marques (10073_CR37) 2019; 7 EJ Candes (10073_CR8) 2008; 346 R Otazo (10073_CR42) 2015; 73 DL Donoho (10073_CR16) 1995; 41 H Li (10073_CR30) 2018; 29 M Rani (10073_CR46) 2018; 6 L Li (10073_CR31) 2014; 18 10073_CR40 XP Du (10073_CR18) 2013; 20 AM Zhou (10073_CR63) 2011; 1 10073_CR38 10073_CR39 QF Zhang (10073_CR60) 2007; 11 10073_CR33 10073_CR34 B Yan (10073_CR56) 2018; 462 10073_CR35 T Blumensath (10073_CR6) 2009; 27 D Needell (10073_CR41) 2009; 26 SN Qasem (10073_CR45) 2011; 11 |
| References_xml | – volume: 25 start-page: 21 year: 2008 end-page: 30 ident: CR10 article-title: An introduction to compressive sampling publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2007.914731 – ident: CR22 – volume: 7 start-page: 22684 year: 2019 end-page: 22697 ident: CR29 article-title: A multiobjective approach based on Gaussian mixture clustering for sparse reconstruction publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2898987 – volume: 27 start-page: 265 year: 2009 end-page: 274 ident: CR6 article-title: Iterative hard thresholding for compressed sensing publication-title: Appl Comput Harmon Anal doi: 10.1016/j.acha.2009.04.002 – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: CR53 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – ident: CR39 – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: CR17 article-title: Compressed sensing publication-title: IEEE Trans Inform Theory doi: 10.1109/Tit.2006.871582 – volume: 18 start-page: 827 year: 2014 end-page: 845 ident: CR31 article-title: An evolutionary multiobjective approach to sparse reconstruction publication-title: IEEE Trans Evolut Comput doi: 10.1109/Tevc.2013.2287153 – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: CR12 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints publication-title: IEEE Trans Evolut Comput doi: 10.1109/Tevc.2013.2281535 – volume: 7 start-page: 1300 year: 2019 end-page: 1322 ident: CR37 article-title: A review of sparse recovery algorithms publication-title: IEEE Access doi: 10.1109/Access.2018.2886471 – volume: 10 start-page: 548 year: 2010 end-page: 561 ident: CR26 article-title: A multi-objective evolutionary approach to image quality/compression trade-off in JPEG baseline algorithm publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.08.024 – volume: 26 start-page: 301 year: 2009 end-page: 321 ident: CR41 article-title: CoSaMP: iterative signal recovery from incomplete and inaccurate samples publication-title: Appl Comput Harmon Anal doi: 10.1016/j.acha.2008.07.002 – volume: 11 start-page: 993 year: 2017 end-page: 1000 ident: CR57 article-title: A hybrid evolutionary algorithm for multiobjective sparse reconstruction publication-title: Signal Image Video P doi: 10.1007/s11760-016-1049-4 – volume: 52 start-page: 489 year: 2006 end-page: 509 ident: CR9 article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans Inf Theory doi: 10.1109/Tit.2005.862083 – volume: 11 start-page: 1427 year: 2011 end-page: 1438 ident: CR45 article-title: Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.04.014 – ident: CR35 – volume: 73 start-page: 1125 year: 2015 end-page: 1136 ident: CR42 article-title: Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components publication-title: Magn Reson Med doi: 10.1002/mrm.25240 – year: 2021 ident: CR21 article-title: A novel sparse reconstruction method based on multi-objective Artificial Bee Colony algorithm publication-title: Signal Process doi: 10.1016/j.sigpro.2021.108283 – volume: 53 start-page: 4655 year: 2007 end-page: 4666 ident: CR52 article-title: Signal recovery from random measurements via orthogonal matching pursuit publication-title: IEEE Trans Inf Theory doi: 10.1109/Tit.2007.909108 – volume: 3242 start-page: 722 year: 2004 end-page: 731 ident: CR7 article-title: Finding knees in multi-objective optimization publication-title: Parallel Prob Solv Nat – ident: CR25 – volume: 41 start-page: 613 year: 1995 end-page: 627 ident: CR16 article-title: De-noising by soft-thresholding publication-title: IEEE Trans Inf Theory doi: 10.1109/18.382009 – volume: 8 start-page: 666 year: 2008 end-page: 675 ident: CR24 article-title: Molecular docking with multi-objective particle swarm optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.05.005 – volume: 13 start-page: 1293 year: 2019 end-page: 1301 ident: CR20 article-title: Evolutionary algorithms for sparse signal reconstruction publication-title: Signal Image Video Process doi: 10.1007/s11760-019-01473-w – volume: 29 start-page: 1716 year: 2018 end-page: 1731 ident: CR30 article-title: A preference-based multiobjective evolutionary approach for sparse optimization publication-title: Ieee T Neur Net Lear doi: 10.1109/TNNLS.2017.2677973 – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: CR65 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach publication-title: IEEE T Evolut Comput doi: 10.1109/4235.797969 – volume: 29 start-page: 375 year: 2020 end-page: 388 ident: CR50 article-title: Image compressed sensing using convolutional neural network publication-title: IEEE Trans Image Process doi: 10.1109/Tip.2019.2928136 – ident: CR11 – volume: 23 start-page: 1013 year: 2012 end-page: 1027 ident: CR55 article-title: L-1/2 Regularization: a thresholding representation theory and a fast solver publication-title: Ieee T Neur Net Lear doi: 10.1109/TNNLS.2012.2197412 – volume: 462 start-page: 141 year: 2018 end-page: 159 ident: CR56 article-title: Adaptive decomposition-based evolutionary approach for multiobjective sparse reconstruction publication-title: Inf Sci doi: 10.1016/j.ins.2018.06.019 – volume: 4 start-page: 244 year: 2010 end-page: 254 ident: CR44 article-title: Compressed synthetic aperture radar publication-title: IEEE J Select Top Signal Process doi: 10.1109/Jstsp.2009.2039181 – start-page: 93 year: 2012 end-page: 101 ident: CR28 article-title: MOEA/D with Iterative Thresholding Algorithm for Sparse Optimization Problems publication-title: Berlin, Heidelberg – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: CR13 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 6 start-page: 4875 year: 2018 end-page: 4894 ident: CR46 article-title: A Systematic review of compressive sensing: concepts publication-title: Implement Appl IEEE Access doi: 10.1109/Access.2018.2793851 – ident: CR14 – ident: CR2 – volume: 60 start-page: 139 year: 2012 end-page: 154 ident: CR15 article-title: Fast and efficient compressive sensing using structurally random matrices publication-title: IEEE Trans Signal Process doi: 10.1109/Tsp.2011.2170977 – volume: 20 start-page: 611 year: 2013 end-page: 614 ident: CR18 article-title: A swarm intelligence algorithm for joint sparse recovery publication-title: IEEE Signal Process Lett doi: 10.1109/Lsp.2013.2260822 – volume: 11 start-page: 49 year: 2011 end-page: 55 ident: CR54 article-title: Preferences in multi-objective evolutionary optimisation of electric motor speed control with hardware in the loop publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.10.015 – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: CR60 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2007.892759 – ident: CR33 – volume: 3410 start-page: 576 year: 2005 end-page: 591 ident: CR23 article-title: Gray coding in evolutionary multicriteria optimization: application in frame structural optimum design evolutionary multi-criterion publication-title: Optimization – ident: CR40 – ident: CR27 – volume: 18 start-page: 1838 year: 2016 end-page: 1860 ident: CR49 article-title: Application of compressive sensing in cognitive radio communications: a survey publication-title: IEEE Commun Surv Tutor doi: 10.1109/Comst.2016.2524443 – volume: 47 start-page: 2651 year: 2017 end-page: 2663 ident: CR64 article-title: A two-phase evolutionary approach for compressive sensing reconstruction publication-title: IEEE T Cybern doi: 10.1109/TCYB.2017.2679705 – volume: 2 start-page: 221 year: 1994 end-page: 248 ident: CR51 article-title: Multiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evol Comput doi: 10.1162/evco.1994.2.3.221 – ident: CR48 – volume: 8 start-page: 646 year: 2008 end-page: 656 ident: CR1 article-title: Modenar: multi-objective differential evolution algorithm for mining numeric association rules publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.05.003 – ident: CR38 – volume: 14 start-page: 629 year: 2008 end-page: 654 ident: CR5 article-title: Iterative thresholding for sparse approximations publication-title: J Fourier Anal Appl doi: 10.1007/s00041-008-9035-z – volume: 12 start-page: 269 year: 2008 end-page: 283 ident: CR3 article-title: A simulated annealing-based multiobjective optimization algorithm: AMOSA publication-title: IEEE Trans Evol Comput doi: 10.1109/Tevc.2007.900837 – volume: 2010 start-page: 7744 year: 2010 ident: CR58 article-title: Practical Compressive sensing with Toeplitz and circulant matrices publication-title: Vis Commun Image Process – year: 2018 ident: CR32 publication-title: Problem definitions and evaluation criteria for the cec special session on evolutionary algorithms for sparse optimization – ident: CR34 – volume: 10 start-page: 125 year: 2006 end-page: 131 ident: CR43 article-title: A trade-off curve computation for linear antenna arrays using an evolutionary multi-objective approach publication-title: Soft Comput doi: 10.1007/s00500-004-0434-z – year: 2005 ident: CR19 publication-title: Multicriteria optimization – ident: CR59 – volume: 19 start-page: 761 year: 2015 end-page: 776 ident: CR61 article-title: A knee point-driven evolutionary algorithm for many-objective optimization publication-title: IEEE Trans Evolut Comput doi: 10.1109/Tevc.2014.2378512 – volume: 99 start-page: 31 year: 2018 end-page: 41 ident: CR62 article-title: Smoothing inertial projection neural network for minimization Lp-q in sparse signal reconstruction publication-title: Neural Netw doi: 10.1016/j.neunet.2017.12.008 – volume: 24 start-page: 118 year: 2007 ident: CR4 article-title: Compressive sensing publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2007.4286571 – volume: 1 start-page: 32 year: 2011 end-page: 49 ident: CR63 article-title: Multiobjective evolutionary algorithms: a survey of the state of the art Swarm publication-title: Evol Comput doi: 10.1016/j.swevo.2011.03.001 – volume: 26 start-page: 2188 year: 2015 end-page: 2197 ident: CR36 article-title: CDC: compressive data collection for wireless sensor networks publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2014.2345257 – volume: 346 start-page: 589 year: 2008 end-page: 592 ident: CR8 article-title: The restricted isometry property and its implications for compressed sensing publication-title: CR Math doi: 10.1016/j.crma.2008.03.014 – volume: 24 start-page: 118 year: 2007 ident: 10073_CR4 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2007.4286571 – volume: 52 start-page: 1289 year: 2006 ident: 10073_CR17 publication-title: IEEE Trans Inform Theory doi: 10.1109/Tit.2006.871582 – volume: 3242 start-page: 722 year: 2004 ident: 10073_CR7 publication-title: Parallel Prob Solv Nat – volume: 3 start-page: 257 year: 1999 ident: 10073_CR65 publication-title: IEEE T Evolut Comput doi: 10.1109/4235.797969 – volume: 29 start-page: 375 year: 2020 ident: 10073_CR50 publication-title: IEEE Trans Image Process doi: 10.1109/Tip.2019.2928136 – volume: 2 start-page: 221 year: 1994 ident: 10073_CR51 publication-title: Evol Comput doi: 10.1162/evco.1994.2.3.221 – ident: 10073_CR14 doi: 10.1109/ICIP.2009.5414631 – volume: 6 start-page: 4875 year: 2018 ident: 10073_CR46 publication-title: Implement Appl IEEE Access doi: 10.1109/Access.2018.2793851 – volume: 1 start-page: 32 year: 2011 ident: 10073_CR63 publication-title: Evol Comput doi: 10.1016/j.swevo.2011.03.001 – volume: 41 start-page: 613 year: 1995 ident: 10073_CR16 publication-title: IEEE Trans Inf Theory doi: 10.1109/18.382009 – ident: 10073_CR25 doi: 10.1109/CEC.2010.5586431 – volume: 27 start-page: 265 year: 2009 ident: 10073_CR6 publication-title: Appl Comput Harmon Anal doi: 10.1016/j.acha.2009.04.002 – volume: 19 start-page: 761 year: 2015 ident: 10073_CR61 publication-title: IEEE Trans Evolut Comput doi: 10.1109/Tevc.2014.2378512 – volume: 60 start-page: 139 year: 2012 ident: 10073_CR15 publication-title: IEEE Trans Signal Process doi: 10.1109/Tsp.2011.2170977 – volume: 25 start-page: 21 year: 2008 ident: 10073_CR10 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2007.914731 – volume: 346 start-page: 589 year: 2008 ident: 10073_CR8 publication-title: CR Math doi: 10.1016/j.crma.2008.03.014 – year: 2021 ident: 10073_CR21 publication-title: Signal Process doi: 10.1016/j.sigpro.2021.108283 – volume: 7 start-page: 1300 year: 2019 ident: 10073_CR37 publication-title: IEEE Access doi: 10.1109/Access.2018.2886471 – ident: 10073_CR11 – volume: 4 start-page: 244 year: 2010 ident: 10073_CR44 publication-title: IEEE J Select Top Signal Process doi: 10.1109/Jstsp.2009.2039181 – ident: 10073_CR2 doi: 10.1109/CCWC.2017.7868430 – ident: 10073_CR38 doi: 10.1145/1143997.1144248 – volume: 8 start-page: 646 year: 2008 ident: 10073_CR1 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.05.003 – volume: 73 start-page: 1125 year: 2015 ident: 10073_CR42 publication-title: Magn Reson Med doi: 10.1002/mrm.25240 – volume: 12 start-page: 269 year: 2008 ident: 10073_CR3 publication-title: IEEE Trans Evol Comput doi: 10.1109/Tevc.2007.900837 – ident: 10073_CR59 doi: 10.1016/j.sigpro.2019.107292 – ident: 10073_CR34 doi: 10.1109/CEC.2018.8477915 – volume: 23 start-page: 1013 year: 2012 ident: 10073_CR55 publication-title: Ieee T Neur Net Lear doi: 10.1109/TNNLS.2012.2197412 – ident: 10073_CR39 doi: 10.1007/978-1-4615-5563-6 – volume: 29 start-page: 1716 year: 2018 ident: 10073_CR30 publication-title: Ieee T Neur Net Lear doi: 10.1109/TNNLS.2017.2677973 – volume: 26 start-page: 2188 year: 2015 ident: 10073_CR36 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2014.2345257 – volume: 6 start-page: 182 year: 2002 ident: 10073_CR13 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume-title: Problem definitions and evaluation criteria for the cec special session on evolutionary algorithms for sparse optimization year: 2018 ident: 10073_CR32 – ident: 10073_CR35 doi: 10.1109/ISCAS.2015.7169317 – volume: 11 start-page: 993 year: 2017 ident: 10073_CR57 publication-title: Signal Image Video P doi: 10.1007/s11760-016-1049-4 – volume: 10 start-page: 548 year: 2010 ident: 10073_CR26 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.08.024 – volume: 3410 start-page: 576 year: 2005 ident: 10073_CR23 publication-title: Optimization – volume: 13 start-page: 600 year: 2004 ident: 10073_CR53 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – volume: 11 start-page: 712 year: 2007 ident: 10073_CR60 publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2007.892759 – ident: 10073_CR27 doi: 10.1109/CEC.2016.7743848 – volume: 99 start-page: 31 year: 2018 ident: 10073_CR62 publication-title: Neural Netw doi: 10.1016/j.neunet.2017.12.008 – volume: 52 start-page: 489 year: 2006 ident: 10073_CR9 publication-title: IEEE Trans Inf Theory doi: 10.1109/Tit.2005.862083 – ident: 10073_CR40 doi: 10.1109/CVPR.2009.5206657 – volume: 14 start-page: 629 year: 2008 ident: 10073_CR5 publication-title: J Fourier Anal Appl doi: 10.1007/s00041-008-9035-z – ident: 10073_CR22 – volume: 10 start-page: 125 year: 2006 ident: 10073_CR43 publication-title: Soft Comput doi: 10.1007/s00500-004-0434-z – volume: 13 start-page: 1293 year: 2019 ident: 10073_CR20 publication-title: Signal Image Video Process doi: 10.1007/s11760-019-01473-w – start-page: 93 volume-title: Berlin, Heidelberg year: 2012 ident: 10073_CR28 – ident: 10073_CR33 doi: 10.1109/CEC.2018.8477789 – volume: 7 start-page: 22684 year: 2019 ident: 10073_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2898987 – volume: 18 start-page: 827 year: 2014 ident: 10073_CR31 publication-title: IEEE Trans Evolut Comput doi: 10.1109/Tevc.2013.2287153 – volume-title: Multicriteria optimization year: 2005 ident: 10073_CR19 – volume: 18 start-page: 577 year: 2014 ident: 10073_CR12 publication-title: IEEE Trans Evolut Comput doi: 10.1109/Tevc.2013.2281535 – volume: 47 start-page: 2651 year: 2017 ident: 10073_CR64 publication-title: IEEE T Cybern doi: 10.1109/TCYB.2017.2679705 – volume: 11 start-page: 49 year: 2011 ident: 10073_CR54 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.10.015 – volume: 18 start-page: 1838 year: 2016 ident: 10073_CR49 publication-title: IEEE Commun Surv Tutor doi: 10.1109/Comst.2016.2524443 – ident: 10073_CR48 – volume: 8 start-page: 666 year: 2008 ident: 10073_CR24 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.05.005 – volume: 2010 start-page: 7744 year: 2010 ident: 10073_CR58 publication-title: Vis Commun Image Process – volume: 26 start-page: 301 year: 2009 ident: 10073_CR41 publication-title: Appl Comput Harmon Anal doi: 10.1016/j.acha.2008.07.002 – volume: 20 start-page: 611 year: 2013 ident: 10073_CR18 publication-title: IEEE Signal Process Lett doi: 10.1109/Lsp.2013.2260822 – volume: 53 start-page: 4655 year: 2007 ident: 10073_CR52 publication-title: IEEE Trans Inf Theory doi: 10.1109/Tit.2007.909108 – volume: 462 start-page: 141 year: 2018 ident: 10073_CR56 publication-title: Inf Sci doi: 10.1016/j.ins.2018.06.019 – volume: 11 start-page: 1427 year: 2011 ident: 10073_CR45 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.04.014 |
| SSID | ssj0005243 |
| Score | 2.3717322 |
| Snippet | The development of the efficient sparse signal recovery algorithm is one of the important problems of the compressive sensing theory. There exist many types of... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3153 |
| SubjectTerms | Algorithms Artificial Intelligence Comparative analysis Comparative studies Computational geometry Computer Science Convex analysis Convexity Intelligence Knee Mathematical optimization Multiple objective analysis Objectives Optimization Optimization algorithms Optimization techniques Recovery Search methods Signal reconstruction Theory |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTxsxFH5iO3AhZalISysfkDiApZlxZjw-RhWohwohNnGzvNKgkEGZqL-_z44noUCR2qM140V-9lvk730P4NArtLmo9CgaExcClIrWJsvooLYa44mBYhEge_uDn5_Xd3fiIiWFtR3avXuSjJr6WbLboCpogBSENqPlKqyjueMByHd5dfsM2DHHyhWVoBhQ5ClV5u0x_jBHL5Xyq9fRaHTOev-33A-wlZxMMpyfim1YcZMd6HUFHEi6z7sgh8Qs2b9JpJoljScRZUgb_TDXhqRBvfKYEjaJGt8309Hs52NL0OElqJGmLfYd3YcpY3y94KTdg5uz0-tv32mquEANK-sZ1ZZXwpbOa51bbSqnMuVFxoTNS2604rpQhbXc50xbU_rKeOWsZ5nzGKELxz7C2qSZuH0gkcrPCJ7pUGlcW8F8OTAOvU2j0WUyfci7jZcm0ZGHqhhjuSRSDjsocQdjm8myD8eLPk9zMo53_z4K8pThpuLIRqWEA1xf4LySQ47uGWc1F3046EQu0xVuZfAUSxH8sT6cdCJefv77vJ_-7ffPsFmElIqIBjqANRSR-wIb5tds1E6_xqP9G9GB88A priority: 102 providerName: Springer Nature |
| Title | A comparative study of multi-objective optimization algorithms for sparse signal reconstruction |
| URI | https://link.springer.com/article/10.1007/s10462-021-10073-5 https://www.proquest.com/docview/2644596355 |
| Volume | 55 |
| WOSCitedRecordID | wos000705737000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMXWl7qlnblAxIHsEjiTRyf0FK1QiosqwKlcIn8LK3aTWlW_H5mvE4XqOiFi6VR4oc09jzsmW8AngWNOheFHkdl4slBqXhts4yPamfQnxhpEQNkj97JyaQ-PlbTdOHWpbDKXiZGQe1aS3fkr0hxl4rU4-vLH5yqRtHraiqhsQJrhJJApRum5bffQjwWUXNFpTi6FnlKmkmpc6Oq4BSgQLTg5R-K6W_xfOOdNKqf_fX_XfgG3E-GJxsvdsoDuONnD2G9L-rA0hl_BM2Y2SUiOIvws6wNLEYe8tacLSQka1HWXKQkTqbPT3DK-feLjqERzFBKXXXY9_SEpow-9zVO7WP4vL_3afctT1UYuBVlPefGyUq50gdjcmds5XWmg8qEcnkprdHSFLpwToZcGGfLUNmgvQsi8wG9duXFE1idtTO_CSzC-1klM0PVx41TIpQj69ECtQbNKDuAvGdBYxNEOVXKOG-W4MrEtgbZFmnRlAN4cd3ncgHQcevfz4mzDZ1eHNnqlISA6yMcrGYs0WSTopZqANs9O5t0rLtmycsBvOw3xPLzv-fdun20p3CvoLSKGBG0DavIEr8Dd-3P-Wl3NYQV-eXrENbe7E2mh0gdSI7t-2yX2vzDMG56bA8_Hv0C5PYEeg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMstOADiANYJHESx4eqWgFVq11WHArqzfhZitpNaVYg_hS_sWPH6fIQvfXAMUrsxPF4vhl75huAp14h5qLSowgmLjgoNW1MltGysRr9iVKxGCD7ccpns2Z_X7xfgZ9DLkwIqxx0YlTUtjVhj_xVAO5KBHjcOvlKQ9WocLo6lNDoxWLifnxHl63b3H2D8_usKLbf7r3eoamqADWsahZUW14LWzmvdW61qZ3KlBcZEzavuNGK60IV1nKfM21N5WvjlbOeZc6jFyocw36vwNWSNXUIIZtw-ktISR-lV9SCoiuTpySdlKpX1gUNARHhmtHqNyD8Ew7-OpeNcLe99r_9qFtwMxnWZNyvhNuw4uZ3YG0oWkGSDrsLckzMkvGcRHpd0noSIytpq7_0CEBa1KXHKUmVqKMDHOLi83FH0MgnqIVPO2x7eBBeGfcUznl478GHSxnmfVidt3P3AEikLzSCZzpUV9dWMF-VxqGFbTSaiWYE-TDl0iQK9lAJ5EguyaODmEgUk3jNZDWCF-dtTnoCkguffh4kSQbthD0blZIs8PsCz5ccczRJOWu4GMH6ID4yqa1OLmVnBC8HAVze_vd7H17c2xO4vrP3biqnu7PJI7hRhBSSGP20Dqs4PW4Drplvi8Pu9HFcUAQ-XbZgngEB12I7 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglAvlFfFQgs-gDiA1SRex_GhqlaUFVWr1R4AVVxM_Cqt2k1pViD-Gr-uY8fp8hC99cDRSmwn8ed5xDPfADz3NepcFHoUlYkLDkpJK5NldFhZjf7EsGYxQPbjvphMqoMDOV2Cn30uTAir7GViFNS2MeEf-WZQ3FwG9bjpU1jEdGe8ffaVhgpS4aS1L6fRQWTP_fiO7lu7tbuDa_2iKMZv3795R1OFAWoYr-ZUW1FKy53XOrfalK7Oai8zJm3OhdG10EVdWCt8zrQ13JfG1856ljmPHql0DMe9ATdF8DFxL035p1_CS7qIvaKUFN2aPCXspLS9YVnQEBwR2ozy35Tin6rhrzPaqPrGq__zR7sLd5LBTUbdDrkHS252H1b7YhYkybYHoEbELJjQSaTdJY0nMeKSNvq40wykQRl7mpJXSX1yiK84_3LaEjT-CUrn8xb7Hh2GKeO_hkt-3ofw4Vpecw2WZ83MPQISaQ2NFJkOVde1lczzoXFoeRuN5qMZQN4vvzKJmj1UCDlRC1LpABmFkIltpvgAXl32OeuISa68-2VAlQpSC0c2dUq-wOcL_F9qJNBUFawScgDrPZRUEmetWuBoAK97MC4u_3vex1eP9gxuIx7V_u5k7wmsFCGzJAZFrcMyro7bgFvm2_yoPX8a9xaBz9eNywuxp2tW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+multi-objective+optimization+algorithms+for+sparse+signal+reconstruction&rft.jtitle=The+Artificial+intelligence+review&rft.au=Erkoc%2C+Murat+Emre&rft.au=Karaboga%2C+Nurhan&rft.date=2022-04-01&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=55&rft.issue=4&rft.spage=3153&rft.epage=3181&rft_id=info:doi/10.1007%2Fs10462-021-10073-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10462_021_10073_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon |