A comparative study of multi-objective optimization algorithms for sparse signal reconstruction

The development of the efficient sparse signal recovery algorithm is one of the important problems of the compressive sensing theory. There exist many types of sparse signal recovery methods in compressive sensing theory. These algorithms are classified into several categories like convex optimizati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Artificial intelligence review Ročník 55; číslo 4; s. 3153 - 3181
Hlavní autori: Erkoc, Murat Emre, Karaboga, Nurhan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.04.2022
Springer
Springer Nature B.V
Predmet:
ISSN:0269-2821, 1573-7462
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The development of the efficient sparse signal recovery algorithm is one of the important problems of the compressive sensing theory. There exist many types of sparse signal recovery methods in compressive sensing theory. These algorithms are classified into several categories like convex optimization, non-convex optimization, and greedy methods. Lately, intelligent optimization techniques like multi-objective approaches have been used in compressed sensing. Firstly, in this paper, the basic principles of the compressive sensing theory are summarized. And then, brief information about multi-objective algorithms, local search methods, and knee point selection methods are given. Afterward, multi-objective sparse recovery methods in the literature are reviewed and investigated in accordance with their multi-objective optimization algorithm, the local search method, and the knee point selection method. Also in this study, examples of multi-objective sparse reconstruction methods are designed according to the existing studies. Finally, the designed algorithms are tested and compared by using various types of sparse reconstruction test problems.
AbstractList The development of the efficient sparse signal recovery algorithm is one of the important problems of the compressive sensing theory. There exist many types of sparse signal recovery methods in compressive sensing theory. These algorithms are classified into several categories like convex optimization, non-convex optimization, and greedy methods. Lately, intelligent optimization techniques like multi-objective approaches have been used in compressed sensing. Firstly, in this paper, the basic principles of the compressive sensing theory are summarized. And then, brief information about multi-objective algorithms, local search methods, and knee point selection methods are given. Afterward, multi-objective sparse recovery methods in the literature are reviewed and investigated in accordance with their multi-objective optimization algorithm, the local search method, and the knee point selection method. Also in this study, examples of multi-objective sparse reconstruction methods are designed according to the existing studies. Finally, the designed algorithms are tested and compared by using various types of sparse reconstruction test problems.
Audience Academic
Author Erkoc, Murat Emre
Karaboga, Nurhan
Author_xml – sequence: 1
  givenname: Murat Emre
  orcidid: 0000-0002-2388-5329
  surname: Erkoc
  fullname: Erkoc, Murat Emre
  email: merkoc@erciyes.edu.tr
  organization: Electrical and Electronics Engineering, Erciyes University
– sequence: 2
  givenname: Nurhan
  surname: Karaboga
  fullname: Karaboga, Nurhan
  organization: Electrical and Electronics Engineering, Erciyes University
BookMark eNp9kMtKAzEUhoNUsK2-gKsB11NzaWY6yyLeQHCj65DLSU2ZmdQkI9SnN-0IgouSRXJO_u9c_hma9L4HhK4JXhCM69tI8LKiJaakPMSs5GdoSnh-1Dk_QVNMq6akK0ou0CzGLcaY0yWbIrEutO92MsjkvqCIaTD7wtuiG9rkSq-2oI8ffpdc576zyveFbDc-uPTRxcL6UMSMx8y6TS_bIoD2fUxh0AftJTq3so1w9XvP0fvD_dvdU_ny-vh8t34pNeOrVCpTV43hYJUiRukKJJa2wawxeQmtZK2opMbUljBlNLeVthKMZRgsKNoAm6Obse4u-M8BYhJbP4Q8TxS0Wi55UzHOs2oxqjayBeF661OQOh8Dnctjg3U5v65xxWq2qpsM0BHQwccYwIpdcJ0Me0GwODgtRudFdv4YM3HosvoHaZeOzuVurj2NshGNuU-_gfC3xgnqB9JZneI
CitedBy_id crossref_primary_10_1080_10408398_2024_2376113
crossref_primary_10_1109_TEVC_2023_3264875
crossref_primary_10_1016_j_eswa_2024_125105
crossref_primary_10_1016_j_asoc_2024_112598
crossref_primary_10_1016_j_sciaf_2023_e01832
crossref_primary_10_1016_j_ejor_2024_07_019
crossref_primary_10_3390_electronics12214383
crossref_primary_10_1016_j_engappai_2024_108194
crossref_primary_10_1016_j_neunet_2022_07_018
crossref_primary_10_3390_jsan14020028
Cites_doi 10.1109/MSP.2007.914731
10.1109/ACCESS.2019.2898987
10.1016/j.acha.2009.04.002
10.1109/TIP.2003.819861
10.1109/Tit.2006.871582
10.1109/Tevc.2013.2287153
10.1109/Tevc.2013.2281535
10.1109/Access.2018.2886471
10.1016/j.asoc.2009.08.024
10.1016/j.acha.2008.07.002
10.1007/s11760-016-1049-4
10.1109/Tit.2005.862083
10.1016/j.asoc.2010.04.014
10.1002/mrm.25240
10.1016/j.sigpro.2021.108283
10.1109/Tit.2007.909108
10.1109/18.382009
10.1016/j.asoc.2007.05.005
10.1007/s11760-019-01473-w
10.1109/TNNLS.2017.2677973
10.1109/4235.797969
10.1109/Tip.2019.2928136
10.1109/TNNLS.2012.2197412
10.1016/j.ins.2018.06.019
10.1109/Jstsp.2009.2039181
10.1109/4235.996017
10.1109/Access.2018.2793851
10.1109/Tsp.2011.2170977
10.1109/Lsp.2013.2260822
10.1016/j.asoc.2009.10.015
10.1109/TEVC.2007.892759
10.1109/Comst.2016.2524443
10.1109/TCYB.2017.2679705
10.1162/evco.1994.2.3.221
10.1016/j.asoc.2007.05.003
10.1007/s00041-008-9035-z
10.1109/Tevc.2007.900837
10.1007/s00500-004-0434-z
10.1109/Tevc.2014.2378512
10.1016/j.neunet.2017.12.008
10.1109/MSP.2007.4286571
10.1016/j.swevo.2011.03.001
10.1109/TPDS.2014.2345257
10.1016/j.crma.2008.03.014
10.1109/ICIP.2009.5414631
10.1109/CEC.2010.5586431
10.1109/CCWC.2017.7868430
10.1145/1143997.1144248
10.1016/j.sigpro.2019.107292
10.1109/CEC.2018.8477915
10.1007/978-1-4615-5563-6
10.1109/ISCAS.2015.7169317
10.1109/CEC.2016.7743848
10.1109/CVPR.2009.5206657
10.1109/CEC.2018.8477789
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
COPYRIGHT 2022 Springer
Copyright Springer Nature B.V. Apr 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: COPYRIGHT 2022 Springer
– notice: Copyright Springer Nature B.V. Apr 2022
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-021-10073-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
Library & information science collection.
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Library Science
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 3181
ExternalDocumentID A706373879
10_1007_s10462_021_10073_5
GrantInformation_xml – fundername: Erciyes Üniversitesi
  grantid: FDK-2021-10946; FDK-2021-10946
  funderid: http://dx.doi.org/10.13039/501100003062
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PRQQA
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-bd769d5efbb1dbc6ea0af9039d157cba7b2a2dd7f13bdc5f6cfaedf30efeb29e3
IEDL.DBID P5Z
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000705737000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-2821
IngestDate Fri Nov 14 18:44:30 EST 2025
Sat Nov 29 10:23:17 EST 2025
Sat Nov 29 02:43:25 EST 2025
Tue Nov 18 22:07:49 EST 2025
Fri Feb 21 02:47:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Multi-objective optimization
Knee region
Sparse reconstruction
Evolutionary algorithm
Local search method
Compressed sensing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-bd769d5efbb1dbc6ea0af9039d157cba7b2a2dd7f13bdc5f6cfaedf30efeb29e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2388-5329
PQID 2644596355
PQPubID 36790
PageCount 29
ParticipantIDs proquest_journals_2644596355
gale_infotracacademiconefile_A706373879
crossref_primary_10_1007_s10462_021_10073_5
crossref_citationtrail_10_1007_s10462_021_10073_5
springer_journals_10_1007_s10462_021_10073_5
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2022
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Donoho (CR16) 1995; 41
Donoho (CR17) 2006; 52
Branke, Deb, Dierolf, Osswald (CR7) 2004; 3242
Wozniak (CR54) 2011; 11
Zitzler, Thiele (CR65) 1999; 3
Baraniuk (CR4) 2007; 24
CR39
CR38
Panduro, Brizuela, Covarrubias, Lopez (CR43) 2006; 10
CR35
CR34
CR33
Yan, Zhao, Wang, Zhang (CR56) 2018; 462
Erkoc, Karaboga (CR20) 2019; 13
Li, Yao, Stolkin, Gong, He (CR31) 2014; 18
Marques, Maciel, Naviner, Cai, Yang (CR37) 2019; 7
Zhou, Qu, Li, Zhao, Suganthan, Zhang (CR63) 2011; 1
Qasem, Shamsuddin (CR45) 2011; 11
CR2
Liang, Gong, H. L, C.T. Yue, Qu BY (CR32) 2018
Zhang, Tian, Jin (CR61) 2015; 19
Candes, Wakin (CR10) 2008; 25
CR48
Yan, Zhao, Wang, Zhao (CR57) 2017; 11
Deb, Pratap, Agarwal, Meyarivan (CR13) 2002; 6
Li, Sun, Meng, Zhang (CR29) 2019; 7
CR40
Blumensath, Davies (CR6) 2009; 27
Sharma, Lagunas, Chatzinotas, Ottersten (CR49) 2016; 18
Ehrgott (CR19) 2005
Needell, Tropp (CR41) 2009; 26
Patel, Easley, Healy, Chellappa (CR44) 2010; 4
Deb, Jain (CR12) 2014; 18
Tropp, Gilbert (CR52) 2007; 53
Wang, Bovik, Sheikh, Simoncelli (CR53) 2004; 13
Janson, Merkle, Middendorf (CR24) 2008; 8
Candes (CR8) 2008; 346
Lazzerini, Marcelloni, Vecchio (CR26) 2010; 10
CR59
CR14
Bandyopadhyay, Saha, Maulik, Deb (CR3) 2008; 12
Do, Gan, Nguyen, Tran (CR15) 2012; 60
CR11
Zhou, Kwong, Guo, Zhang, Zhang (CR64) 2017; 47
Li, Zhang, Deng, Xu (CR30) 2018; 29
Xu, Chang, Xu, Zhang (CR55) 2012; 23
Liu, Zhu, Kong, Liu, Gu, Vasilakos, Wu (CR36) 2015; 26
Yin, Morgan, Yang, Zhang (CR58) 2010; 2010
Shi, Jiang, Liu, Zhao (CR50) 2020; 29
Du, Cheng, Liu (CR18) 2013; 20
Rani, Dhok, Deshmukh (CR46) 2018; 6
Otazo, Candes, Sodickson (CR42) 2015; 73
Zhang, Li (CR60) 2007; 11
CR27
CR25
Blumensath, Davies (CR5) 2008; 14
CR22
Siinivas, Deb (CR51) 1994; 2
Candes, Romberg, Tao (CR9) 2006; 52
Alatas, Akin, Karci (CR1) 2008; 8
Zhao, He, Huang, Huang (CR62) 2018; 99
Erkoc, Karaboga (CR21) 2021
Li, Su, Xu, Zhang (CR28) 2012
Greiner, Winter, Emperador, Galvan (CR23) 2005; 3410
XY Zhang (10073_CR61) 2015; 19
N Siinivas (10073_CR51) 1994; 2
Z Wang (10073_CR53) 2004; 13
K Deb (10073_CR12) 2014; 18
T Blumensath (10073_CR5) 2008; 14
E Branke (10073_CR7) 2004; 3242
10073_CR25
H Li (10073_CR28) 2012
E Zitzler (10073_CR65) 1999; 3
B Lazzerini (10073_CR26) 2010; 10
10073_CR27
M Ehrgott (10073_CR19) 2005
10073_CR22
XY Liu (10073_CR36) 2015; 26
K Sharma (10073_CR49) 2016; 18
Bilal Alatas (10073_CR1) 2008; 8
ZB Xu (10073_CR55) 2012; 23
10073_CR2
K Deb (10073_CR13) 2002; 6
DL Donoho (10073_CR17) 2006; 52
S Bandyopadhyay (10073_CR3) 2008; 12
EJ Candes (10073_CR9) 2006; 52
RG Baraniuk (10073_CR4) 2007; 24
10073_CR14
JA Tropp (10073_CR52) 2007; 53
10073_CR59
S Janson (10073_CR24) 2008; 8
10073_CR11
JJ Liang (10073_CR32) 2018
WT Yin (10073_CR58) 2010; 2010
Y Zhou (10073_CR64) 2017; 47
P Wozniak (10073_CR54) 2011; 11
MA Panduro (10073_CR43) 2006; 10
TT Do (10073_CR15) 2012; 60
WZ Shi (10073_CR50) 2020; 29
D Greiner (10073_CR23) 2005; 3410
10073_CR48
ME Erkoc (10073_CR21) 2021
B Yan (10073_CR57) 2017; 11
VM Patel (10073_CR44) 2010; 4
ME Erkoc (10073_CR20) 2019; 13
H Li (10073_CR29) 2019; 7
Y Zhao (10073_CR62) 2018; 99
EJ Candes (10073_CR10) 2008; 25
EC Marques (10073_CR37) 2019; 7
EJ Candes (10073_CR8) 2008; 346
R Otazo (10073_CR42) 2015; 73
DL Donoho (10073_CR16) 1995; 41
H Li (10073_CR30) 2018; 29
M Rani (10073_CR46) 2018; 6
L Li (10073_CR31) 2014; 18
10073_CR40
XP Du (10073_CR18) 2013; 20
AM Zhou (10073_CR63) 2011; 1
10073_CR38
10073_CR39
QF Zhang (10073_CR60) 2007; 11
10073_CR33
10073_CR34
B Yan (10073_CR56) 2018; 462
10073_CR35
T Blumensath (10073_CR6) 2009; 27
D Needell (10073_CR41) 2009; 26
SN Qasem (10073_CR45) 2011; 11
References_xml – volume: 25
  start-page: 21
  year: 2008
  end-page: 30
  ident: CR10
  article-title: An introduction to compressive sampling
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2007.914731
– ident: CR22
– volume: 7
  start-page: 22684
  year: 2019
  end-page: 22697
  ident: CR29
  article-title: A multiobjective approach based on Gaussian mixture clustering for sparse reconstruction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2898987
– volume: 27
  start-page: 265
  year: 2009
  end-page: 274
  ident: CR6
  article-title: Iterative hard thresholding for compressed sensing
  publication-title: Appl Comput Harmon Anal
  doi: 10.1016/j.acha.2009.04.002
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: CR53
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– ident: CR39
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: CR17
  article-title: Compressed sensing
  publication-title: IEEE Trans Inform Theory
  doi: 10.1109/Tit.2006.871582
– volume: 18
  start-page: 827
  year: 2014
  end-page: 845
  ident: CR31
  article-title: An evolutionary multiobjective approach to sparse reconstruction
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/Tevc.2013.2287153
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: CR12
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/Tevc.2013.2281535
– volume: 7
  start-page: 1300
  year: 2019
  end-page: 1322
  ident: CR37
  article-title: A review of sparse recovery algorithms
  publication-title: IEEE Access
  doi: 10.1109/Access.2018.2886471
– volume: 10
  start-page: 548
  year: 2010
  end-page: 561
  ident: CR26
  article-title: A multi-objective evolutionary approach to image quality/compression trade-off in JPEG baseline algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.08.024
– volume: 26
  start-page: 301
  year: 2009
  end-page: 321
  ident: CR41
  article-title: CoSaMP: iterative signal recovery from incomplete and inaccurate samples
  publication-title: Appl Comput Harmon Anal
  doi: 10.1016/j.acha.2008.07.002
– volume: 11
  start-page: 993
  year: 2017
  end-page: 1000
  ident: CR57
  article-title: A hybrid evolutionary algorithm for multiobjective sparse reconstruction
  publication-title: Signal Image Video P
  doi: 10.1007/s11760-016-1049-4
– volume: 52
  start-page: 489
  year: 2006
  end-page: 509
  ident: CR9
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/Tit.2005.862083
– volume: 11
  start-page: 1427
  year: 2011
  end-page: 1438
  ident: CR45
  article-title: Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.04.014
– ident: CR35
– volume: 73
  start-page: 1125
  year: 2015
  end-page: 1136
  ident: CR42
  article-title: Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25240
– year: 2021
  ident: CR21
  article-title: A novel sparse reconstruction method based on multi-objective Artificial Bee Colony algorithm
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2021.108283
– volume: 53
  start-page: 4655
  year: 2007
  end-page: 4666
  ident: CR52
  article-title: Signal recovery from random measurements via orthogonal matching pursuit
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/Tit.2007.909108
– volume: 3242
  start-page: 722
  year: 2004
  end-page: 731
  ident: CR7
  article-title: Finding knees in multi-objective optimization
  publication-title: Parallel Prob Solv Nat
– ident: CR25
– volume: 41
  start-page: 613
  year: 1995
  end-page: 627
  ident: CR16
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.382009
– volume: 8
  start-page: 666
  year: 2008
  end-page: 675
  ident: CR24
  article-title: Molecular docking with multi-objective particle swarm optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.05.005
– volume: 13
  start-page: 1293
  year: 2019
  end-page: 1301
  ident: CR20
  article-title: Evolutionary algorithms for sparse signal reconstruction
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-019-01473-w
– volume: 29
  start-page: 1716
  year: 2018
  end-page: 1731
  ident: CR30
  article-title: A preference-based multiobjective evolutionary approach for sparse optimization
  publication-title: Ieee T Neur Net Lear
  doi: 10.1109/TNNLS.2017.2677973
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: CR65
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE T Evolut Comput
  doi: 10.1109/4235.797969
– volume: 29
  start-page: 375
  year: 2020
  end-page: 388
  ident: CR50
  article-title: Image compressed sensing using convolutional neural network
  publication-title: IEEE Trans Image Process
  doi: 10.1109/Tip.2019.2928136
– ident: CR11
– volume: 23
  start-page: 1013
  year: 2012
  end-page: 1027
  ident: CR55
  article-title: L-1/2 Regularization: a thresholding representation theory and a fast solver
  publication-title: Ieee T Neur Net Lear
  doi: 10.1109/TNNLS.2012.2197412
– volume: 462
  start-page: 141
  year: 2018
  end-page: 159
  ident: CR56
  article-title: Adaptive decomposition-based evolutionary approach for multiobjective sparse reconstruction
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.06.019
– volume: 4
  start-page: 244
  year: 2010
  end-page: 254
  ident: CR44
  article-title: Compressed synthetic aperture radar
  publication-title: IEEE J Select Top Signal Process
  doi: 10.1109/Jstsp.2009.2039181
– start-page: 93
  year: 2012
  end-page: 101
  ident: CR28
  article-title: MOEA/D with Iterative Thresholding Algorithm for Sparse Optimization Problems
  publication-title: Berlin, Heidelberg
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: CR13
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 6
  start-page: 4875
  year: 2018
  end-page: 4894
  ident: CR46
  article-title: A Systematic review of compressive sensing: concepts
  publication-title: Implement Appl IEEE Access
  doi: 10.1109/Access.2018.2793851
– ident: CR14
– ident: CR2
– volume: 60
  start-page: 139
  year: 2012
  end-page: 154
  ident: CR15
  article-title: Fast and efficient compressive sensing using structurally random matrices
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/Tsp.2011.2170977
– volume: 20
  start-page: 611
  year: 2013
  end-page: 614
  ident: CR18
  article-title: A swarm intelligence algorithm for joint sparse recovery
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/Lsp.2013.2260822
– volume: 11
  start-page: 49
  year: 2011
  end-page: 55
  ident: CR54
  article-title: Preferences in multi-objective evolutionary optimisation of electric motor speed control with hardware in the loop
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.10.015
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: CR60
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2007.892759
– ident: CR33
– volume: 3410
  start-page: 576
  year: 2005
  end-page: 591
  ident: CR23
  article-title: Gray coding in evolutionary multicriteria optimization: application in frame structural optimum design evolutionary multi-criterion
  publication-title: Optimization
– ident: CR40
– ident: CR27
– volume: 18
  start-page: 1838
  year: 2016
  end-page: 1860
  ident: CR49
  article-title: Application of compressive sensing in cognitive radio communications: a survey
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/Comst.2016.2524443
– volume: 47
  start-page: 2651
  year: 2017
  end-page: 2663
  ident: CR64
  article-title: A two-phase evolutionary approach for compressive sensing reconstruction
  publication-title: IEEE T Cybern
  doi: 10.1109/TCYB.2017.2679705
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: CR51
  article-title: Multiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evol Comput
  doi: 10.1162/evco.1994.2.3.221
– ident: CR48
– volume: 8
  start-page: 646
  year: 2008
  end-page: 656
  ident: CR1
  article-title: Modenar: multi-objective differential evolution algorithm for mining numeric association rules
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.05.003
– ident: CR38
– volume: 14
  start-page: 629
  year: 2008
  end-page: 654
  ident: CR5
  article-title: Iterative thresholding for sparse approximations
  publication-title: J Fourier Anal Appl
  doi: 10.1007/s00041-008-9035-z
– volume: 12
  start-page: 269
  year: 2008
  end-page: 283
  ident: CR3
  article-title: A simulated annealing-based multiobjective optimization algorithm: AMOSA
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/Tevc.2007.900837
– volume: 2010
  start-page: 7744
  year: 2010
  ident: CR58
  article-title: Practical Compressive sensing with Toeplitz and circulant matrices
  publication-title: Vis Commun Image Process
– year: 2018
  ident: CR32
  publication-title: Problem definitions and evaluation criteria for the cec special session on evolutionary algorithms for sparse optimization
– ident: CR34
– volume: 10
  start-page: 125
  year: 2006
  end-page: 131
  ident: CR43
  article-title: A trade-off curve computation for linear antenna arrays using an evolutionary multi-objective approach
  publication-title: Soft Comput
  doi: 10.1007/s00500-004-0434-z
– year: 2005
  ident: CR19
  publication-title: Multicriteria optimization
– ident: CR59
– volume: 19
  start-page: 761
  year: 2015
  end-page: 776
  ident: CR61
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/Tevc.2014.2378512
– volume: 99
  start-page: 31
  year: 2018
  end-page: 41
  ident: CR62
  article-title: Smoothing inertial projection neural network for minimization Lp-q in sparse signal reconstruction
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2017.12.008
– volume: 24
  start-page: 118
  year: 2007
  ident: CR4
  article-title: Compressive sensing
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2007.4286571
– volume: 1
  start-page: 32
  year: 2011
  end-page: 49
  ident: CR63
  article-title: Multiobjective evolutionary algorithms: a survey of the state of the art Swarm
  publication-title: Evol Comput
  doi: 10.1016/j.swevo.2011.03.001
– volume: 26
  start-page: 2188
  year: 2015
  end-page: 2197
  ident: CR36
  article-title: CDC: compressive data collection for wireless sensor networks
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2014.2345257
– volume: 346
  start-page: 589
  year: 2008
  end-page: 592
  ident: CR8
  article-title: The restricted isometry property and its implications for compressed sensing
  publication-title: CR Math
  doi: 10.1016/j.crma.2008.03.014
– volume: 24
  start-page: 118
  year: 2007
  ident: 10073_CR4
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2007.4286571
– volume: 52
  start-page: 1289
  year: 2006
  ident: 10073_CR17
  publication-title: IEEE Trans Inform Theory
  doi: 10.1109/Tit.2006.871582
– volume: 3242
  start-page: 722
  year: 2004
  ident: 10073_CR7
  publication-title: Parallel Prob Solv Nat
– volume: 3
  start-page: 257
  year: 1999
  ident: 10073_CR65
  publication-title: IEEE T Evolut Comput
  doi: 10.1109/4235.797969
– volume: 29
  start-page: 375
  year: 2020
  ident: 10073_CR50
  publication-title: IEEE Trans Image Process
  doi: 10.1109/Tip.2019.2928136
– volume: 2
  start-page: 221
  year: 1994
  ident: 10073_CR51
  publication-title: Evol Comput
  doi: 10.1162/evco.1994.2.3.221
– ident: 10073_CR14
  doi: 10.1109/ICIP.2009.5414631
– volume: 6
  start-page: 4875
  year: 2018
  ident: 10073_CR46
  publication-title: Implement Appl IEEE Access
  doi: 10.1109/Access.2018.2793851
– volume: 1
  start-page: 32
  year: 2011
  ident: 10073_CR63
  publication-title: Evol Comput
  doi: 10.1016/j.swevo.2011.03.001
– volume: 41
  start-page: 613
  year: 1995
  ident: 10073_CR16
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.382009
– ident: 10073_CR25
  doi: 10.1109/CEC.2010.5586431
– volume: 27
  start-page: 265
  year: 2009
  ident: 10073_CR6
  publication-title: Appl Comput Harmon Anal
  doi: 10.1016/j.acha.2009.04.002
– volume: 19
  start-page: 761
  year: 2015
  ident: 10073_CR61
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/Tevc.2014.2378512
– volume: 60
  start-page: 139
  year: 2012
  ident: 10073_CR15
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/Tsp.2011.2170977
– volume: 25
  start-page: 21
  year: 2008
  ident: 10073_CR10
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2007.914731
– volume: 346
  start-page: 589
  year: 2008
  ident: 10073_CR8
  publication-title: CR Math
  doi: 10.1016/j.crma.2008.03.014
– year: 2021
  ident: 10073_CR21
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2021.108283
– volume: 7
  start-page: 1300
  year: 2019
  ident: 10073_CR37
  publication-title: IEEE Access
  doi: 10.1109/Access.2018.2886471
– ident: 10073_CR11
– volume: 4
  start-page: 244
  year: 2010
  ident: 10073_CR44
  publication-title: IEEE J Select Top Signal Process
  doi: 10.1109/Jstsp.2009.2039181
– ident: 10073_CR2
  doi: 10.1109/CCWC.2017.7868430
– ident: 10073_CR38
  doi: 10.1145/1143997.1144248
– volume: 8
  start-page: 646
  year: 2008
  ident: 10073_CR1
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.05.003
– volume: 73
  start-page: 1125
  year: 2015
  ident: 10073_CR42
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25240
– volume: 12
  start-page: 269
  year: 2008
  ident: 10073_CR3
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/Tevc.2007.900837
– ident: 10073_CR59
  doi: 10.1016/j.sigpro.2019.107292
– ident: 10073_CR34
  doi: 10.1109/CEC.2018.8477915
– volume: 23
  start-page: 1013
  year: 2012
  ident: 10073_CR55
  publication-title: Ieee T Neur Net Lear
  doi: 10.1109/TNNLS.2012.2197412
– ident: 10073_CR39
  doi: 10.1007/978-1-4615-5563-6
– volume: 29
  start-page: 1716
  year: 2018
  ident: 10073_CR30
  publication-title: Ieee T Neur Net Lear
  doi: 10.1109/TNNLS.2017.2677973
– volume: 26
  start-page: 2188
  year: 2015
  ident: 10073_CR36
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2014.2345257
– volume: 6
  start-page: 182
  year: 2002
  ident: 10073_CR13
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume-title: Problem definitions and evaluation criteria for the cec special session on evolutionary algorithms for sparse optimization
  year: 2018
  ident: 10073_CR32
– ident: 10073_CR35
  doi: 10.1109/ISCAS.2015.7169317
– volume: 11
  start-page: 993
  year: 2017
  ident: 10073_CR57
  publication-title: Signal Image Video P
  doi: 10.1007/s11760-016-1049-4
– volume: 10
  start-page: 548
  year: 2010
  ident: 10073_CR26
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.08.024
– volume: 3410
  start-page: 576
  year: 2005
  ident: 10073_CR23
  publication-title: Optimization
– volume: 13
  start-page: 600
  year: 2004
  ident: 10073_CR53
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– volume: 11
  start-page: 712
  year: 2007
  ident: 10073_CR60
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2007.892759
– ident: 10073_CR27
  doi: 10.1109/CEC.2016.7743848
– volume: 99
  start-page: 31
  year: 2018
  ident: 10073_CR62
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2017.12.008
– volume: 52
  start-page: 489
  year: 2006
  ident: 10073_CR9
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/Tit.2005.862083
– ident: 10073_CR40
  doi: 10.1109/CVPR.2009.5206657
– volume: 14
  start-page: 629
  year: 2008
  ident: 10073_CR5
  publication-title: J Fourier Anal Appl
  doi: 10.1007/s00041-008-9035-z
– ident: 10073_CR22
– volume: 10
  start-page: 125
  year: 2006
  ident: 10073_CR43
  publication-title: Soft Comput
  doi: 10.1007/s00500-004-0434-z
– volume: 13
  start-page: 1293
  year: 2019
  ident: 10073_CR20
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-019-01473-w
– start-page: 93
  volume-title: Berlin, Heidelberg
  year: 2012
  ident: 10073_CR28
– ident: 10073_CR33
  doi: 10.1109/CEC.2018.8477789
– volume: 7
  start-page: 22684
  year: 2019
  ident: 10073_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2898987
– volume: 18
  start-page: 827
  year: 2014
  ident: 10073_CR31
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/Tevc.2013.2287153
– volume-title: Multicriteria optimization
  year: 2005
  ident: 10073_CR19
– volume: 18
  start-page: 577
  year: 2014
  ident: 10073_CR12
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/Tevc.2013.2281535
– volume: 47
  start-page: 2651
  year: 2017
  ident: 10073_CR64
  publication-title: IEEE T Cybern
  doi: 10.1109/TCYB.2017.2679705
– volume: 11
  start-page: 49
  year: 2011
  ident: 10073_CR54
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.10.015
– volume: 18
  start-page: 1838
  year: 2016
  ident: 10073_CR49
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/Comst.2016.2524443
– ident: 10073_CR48
– volume: 8
  start-page: 666
  year: 2008
  ident: 10073_CR24
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.05.005
– volume: 2010
  start-page: 7744
  year: 2010
  ident: 10073_CR58
  publication-title: Vis Commun Image Process
– volume: 26
  start-page: 301
  year: 2009
  ident: 10073_CR41
  publication-title: Appl Comput Harmon Anal
  doi: 10.1016/j.acha.2008.07.002
– volume: 20
  start-page: 611
  year: 2013
  ident: 10073_CR18
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/Lsp.2013.2260822
– volume: 53
  start-page: 4655
  year: 2007
  ident: 10073_CR52
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/Tit.2007.909108
– volume: 462
  start-page: 141
  year: 2018
  ident: 10073_CR56
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.06.019
– volume: 11
  start-page: 1427
  year: 2011
  ident: 10073_CR45
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.04.014
SSID ssj0005243
Score 2.3717322
Snippet The development of the efficient sparse signal recovery algorithm is one of the important problems of the compressive sensing theory. There exist many types of...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3153
SubjectTerms Algorithms
Artificial Intelligence
Comparative analysis
Comparative studies
Computational geometry
Computer Science
Convex analysis
Convexity
Intelligence
Knee
Mathematical optimization
Multiple objective analysis
Objectives
Optimization
Optimization algorithms
Optimization techniques
Recovery
Search methods
Signal reconstruction
Theory
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTxsxFH5iO3AhZalISysfkDiApZlxZjw-RhWohwohNnGzvNKgkEGZqL-_z44noUCR2qM140V-9lvk730P4NArtLmo9CgaExcClIrWJsvooLYa44mBYhEge_uDn5_Xd3fiIiWFtR3avXuSjJr6WbLboCpogBSENqPlKqyjueMByHd5dfsM2DHHyhWVoBhQ5ClV5u0x_jBHL5Xyq9fRaHTOev-33A-wlZxMMpyfim1YcZMd6HUFHEi6z7sgh8Qs2b9JpJoljScRZUgb_TDXhqRBvfKYEjaJGt8309Hs52NL0OElqJGmLfYd3YcpY3y94KTdg5uz0-tv32mquEANK-sZ1ZZXwpbOa51bbSqnMuVFxoTNS2604rpQhbXc50xbU_rKeOWsZ5nzGKELxz7C2qSZuH0gkcrPCJ7pUGlcW8F8OTAOvU2j0WUyfci7jZcm0ZGHqhhjuSRSDjsocQdjm8myD8eLPk9zMo53_z4K8pThpuLIRqWEA1xf4LySQ47uGWc1F3046EQu0xVuZfAUSxH8sT6cdCJefv77vJ_-7ffPsFmElIqIBjqANRSR-wIb5tds1E6_xqP9G9GB88A
  priority: 102
  providerName: Springer Nature
Title A comparative study of multi-objective optimization algorithms for sparse signal reconstruction
URI https://link.springer.com/article/10.1007/s10462-021-10073-5
https://www.proquest.com/docview/2644596355
Volume 55
WOSCitedRecordID wos000705737000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMXWl7qlnblAxIHsEjiTRyf0FK1QiosqwKlcIn8LK3aTWlW_H5mvE4XqOiFi6VR4oc09jzsmW8AngWNOheFHkdl4slBqXhts4yPamfQnxhpEQNkj97JyaQ-PlbTdOHWpbDKXiZGQe1aS3fkr0hxl4rU4-vLH5yqRtHraiqhsQJrhJJApRum5bffQjwWUXNFpTi6FnlKmkmpc6Oq4BSgQLTg5R-K6W_xfOOdNKqf_fX_XfgG3E-GJxsvdsoDuONnD2G9L-rA0hl_BM2Y2SUiOIvws6wNLEYe8tacLSQka1HWXKQkTqbPT3DK-feLjqERzFBKXXXY9_SEpow-9zVO7WP4vL_3afctT1UYuBVlPefGyUq50gdjcmds5XWmg8qEcnkprdHSFLpwToZcGGfLUNmgvQsi8wG9duXFE1idtTO_CSzC-1klM0PVx41TIpQj69ECtQbNKDuAvGdBYxNEOVXKOG-W4MrEtgbZFmnRlAN4cd3ncgHQcevfz4mzDZ1eHNnqlISA6yMcrGYs0WSTopZqANs9O5t0rLtmycsBvOw3xPLzv-fdun20p3CvoLSKGBG0DavIEr8Dd-3P-Wl3NYQV-eXrENbe7E2mh0gdSI7t-2yX2vzDMG56bA8_Hv0C5PYEeg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMstOADiANYJHESx4eqWgFVq11WHArqzfhZitpNaVYg_hS_sWPH6fIQvfXAMUrsxPF4vhl75huAp14h5qLSowgmLjgoNW1MltGysRr9iVKxGCD7ccpns2Z_X7xfgZ9DLkwIqxx0YlTUtjVhj_xVAO5KBHjcOvlKQ9WocLo6lNDoxWLifnxHl63b3H2D8_usKLbf7r3eoamqADWsahZUW14LWzmvdW61qZ3KlBcZEzavuNGK60IV1nKfM21N5WvjlbOeZc6jFyocw36vwNWSNXUIIZtw-ktISR-lV9SCoiuTpySdlKpX1gUNARHhmtHqNyD8Ew7-OpeNcLe99r_9qFtwMxnWZNyvhNuw4uZ3YG0oWkGSDrsLckzMkvGcRHpd0noSIytpq7_0CEBa1KXHKUmVqKMDHOLi83FH0MgnqIVPO2x7eBBeGfcUznl478GHSxnmfVidt3P3AEikLzSCZzpUV9dWMF-VxqGFbTSaiWYE-TDl0iQK9lAJ5EguyaODmEgUk3jNZDWCF-dtTnoCkguffh4kSQbthD0blZIs8PsCz5ccczRJOWu4GMH6ID4yqa1OLmVnBC8HAVze_vd7H17c2xO4vrP3biqnu7PJI7hRhBSSGP20Dqs4PW4Drplvi8Pu9HFcUAQ-XbZgngEB12I7
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglAvlFfFQgs-gDiA1SRex_GhqlaUFVWr1R4AVVxM_Cqt2k1pViD-Gr-uY8fp8hC99cDRSmwn8ed5xDPfADz3NepcFHoUlYkLDkpJK5NldFhZjf7EsGYxQPbjvphMqoMDOV2Cn30uTAir7GViFNS2MeEf-WZQ3FwG9bjpU1jEdGe8ffaVhgpS4aS1L6fRQWTP_fiO7lu7tbuDa_2iKMZv3795R1OFAWoYr-ZUW1FKy53XOrfalK7Oai8zJm3OhdG10EVdWCt8zrQ13JfG1856ljmPHql0DMe9ATdF8DFxL035p1_CS7qIvaKUFN2aPCXspLS9YVnQEBwR2ozy35Tin6rhrzPaqPrGq__zR7sLd5LBTUbdDrkHS252H1b7YhYkybYHoEbELJjQSaTdJY0nMeKSNvq40wykQRl7mpJXSX1yiK84_3LaEjT-CUrn8xb7Hh2GKeO_hkt-3ofw4Vpecw2WZ83MPQISaQ2NFJkOVde1lczzoXFoeRuN5qMZQN4vvzKJmj1UCDlRC1LpABmFkIltpvgAXl32OeuISa68-2VAlQpSC0c2dUq-wOcL_F9qJNBUFawScgDrPZRUEmetWuBoAK97MC4u_3vex1eP9gxuIx7V_u5k7wmsFCGzJAZFrcMyro7bgFvm2_yoPX8a9xaBz9eNywuxp2tW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+multi-objective+optimization+algorithms+for+sparse+signal+reconstruction&rft.jtitle=The+Artificial+intelligence+review&rft.au=Erkoc%2C+Murat+Emre&rft.au=Karaboga%2C+Nurhan&rft.date=2022-04-01&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=55&rft.issue=4&rft.spage=3153&rft.epage=3181&rft_id=info:doi/10.1007%2Fs10462-021-10073-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10462_021_10073_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon