Grammar-based automatic programming for medical data classification: an experimental study

In a computational medical model, diagnosis is the classification of disease status in the terms of abnormal or positive , normal or negative or intermediate stages . Different Machine learning techniques such as artificial neural networks (ANNs) are extensively and successfully used in disease diag...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Artificial intelligence review Ročník 54; číslo 6; s. 4097 - 4135
Hlavní autori: Si, Tapas, Miranda, Péricles, Galdino, João Victor, Nascimento, André
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.08.2021
Springer
Springer Nature B.V
Predmet:
ISSN:0269-2821, 1573-7462
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In a computational medical model, diagnosis is the classification of disease status in the terms of abnormal or positive , normal or negative or intermediate stages . Different Machine learning techniques such as artificial neural networks (ANNs) are extensively and successfully used in disease diagnosis. However, there is no single classifier that can solve all classification problems. Selecting an optimal classifier for a problem is difficult, and it has become a relevant subject in the area. This paper focuses on grammar-based automatic programming (GAP) to build optimized discriminant functions for medical data classification in any arbitrary language. These techniques have an implicit power of automatic feature selection and feature extraction. This work carries out an in-depth investigation of the use of different GAP algorithms in the medical data classification problem. The objective is to identify the benefits and limitations of algorithms of this nature in the current problem. Classical classifiers were also considered for comparison purposes. Fourteen medical data sets were used in the experiments, and seven performance measures such as accuracy, sensitivity, specificity, precision, geometric-mean, F-measure, and false-positive rate are used to evaluate the performance of the produced classifier. The multiple criteria decision analysis (MCDA) demonstrates that GAP approaches are able to produce suitable classifiers for a given problem, and the GS performs better than other classical classifiers in medical data classification.
AbstractList In a computational medical model, diagnosis is the classification of disease status in the terms of abnormal or positive, normal or negative or intermediate stages. Different Machine learning techniques such as artificial neural networks (ANNs) are extensively and successfully used in disease diagnosis. However, there is no single classifier that can solve all classification problems. Selecting an optimal classifier for a problem is difficult, and it has become a relevant subject in the area. This paper focuses on grammar-based automatic programming (GAP) to build optimized discriminant functions for medical data classification in any arbitrary language. These techniques have an implicit power of automatic feature selection and feature extraction. This work carries out an in-depth investigation of the use of different GAP algorithms in the medical data classification problem. The objective is to identify the benefits and limitations of algorithms of this nature in the current problem. Classical classifiers were also considered for comparison purposes. Fourteen medical data sets were used in the experiments, and seven performance measures such as accuracy, sensitivity, specificity, precision, geometric-mean, F-measure, and false-positive rate are used to evaluate the performance of the produced classifier. The multiple criteria decision analysis (MCDA) demonstrates that GAP approaches are able to produce suitable classifiers for a given problem, and the GS performs better than other classical classifiers in medical data classification.
In a computational medical model, diagnosis is the classification of disease status in the terms of abnormal or positive , normal or negative or intermediate stages . Different Machine learning techniques such as artificial neural networks (ANNs) are extensively and successfully used in disease diagnosis. However, there is no single classifier that can solve all classification problems. Selecting an optimal classifier for a problem is difficult, and it has become a relevant subject in the area. This paper focuses on grammar-based automatic programming (GAP) to build optimized discriminant functions for medical data classification in any arbitrary language. These techniques have an implicit power of automatic feature selection and feature extraction. This work carries out an in-depth investigation of the use of different GAP algorithms in the medical data classification problem. The objective is to identify the benefits and limitations of algorithms of this nature in the current problem. Classical classifiers were also considered for comparison purposes. Fourteen medical data sets were used in the experiments, and seven performance measures such as accuracy, sensitivity, specificity, precision, geometric-mean, F-measure, and false-positive rate are used to evaluate the performance of the produced classifier. The multiple criteria decision analysis (MCDA) demonstrates that GAP approaches are able to produce suitable classifiers for a given problem, and the GS performs better than other classical classifiers in medical data classification.
Audience Academic
Author Galdino, João Victor
Miranda, Péricles
Si, Tapas
Nascimento, André
Author_xml – sequence: 1
  givenname: Tapas
  orcidid: 0000-0001-8267-0304
  surname: Si
  fullname: Si, Tapas
  email: c2.tapas@gmail.com
  organization: Department of Computer Science and Engineering, Bankura Unnayani Institute of Engineering
– sequence: 2
  givenname: Péricles
  surname: Miranda
  fullname: Miranda, Péricles
  organization: Departamento de Computação (DC), Universidade Federal Rural de Pernambuco (UFRPE)
– sequence: 3
  givenname: João Victor
  surname: Galdino
  fullname: Galdino, João Victor
  organization: Departamento de Computação (DC), Universidade Federal Rural de Pernambuco (UFRPE)
– sequence: 4
  givenname: André
  surname: Nascimento
  fullname: Nascimento, André
  organization: Departamento de Computação (DC), Universidade Federal Rural de Pernambuco (UFRPE)
BookMark eNp9kE1r3DAQhkVJoJuPP5CToWelI9myrN5CaD4gkEtyyUWM5fGiYMtbSQvNv482LhRyCDoIRu-jmXlO2FFYAjF2IeBSAOifSUDTSg4SOBjTGG6-sY1Quua61I_YBmRruOyk-M5OUnoFACWbesNebiPOM0beY6Khwn1eZszeVbu4bA9PPmyrcYnVTIN3OFUDZqzchCn5sRSyX8KvCkNFf3cU_Uwhl1DK--HtjB2POCU6_3efsueb30_Xd_zh8fb--uqBu1p1mfe9JgftCKLvSWrUNYFxqpMKOyIURrfDaFrpGq07o0BKEtSSgk73AypXn7If679l5D97Stm-LvsYSksrlWpUWVWZkrpcU1ucyPowLjmiK2eg2btic_SlfqVFcSR12xagWwEXl5Qijdb5_LFvAf1kBdiDeruqt0W9_VBvD73kJ3RX1GB8-xqqVyiVcNhS_L_GF9Q7yvSZIA
CitedBy_id crossref_primary_10_1038_s41598_025_86527_5
crossref_primary_10_1007_s11036_023_02237_0
crossref_primary_10_1016_j_eswa_2021_116423
crossref_primary_10_1007_s10044_022_01099_8
crossref_primary_10_1007_s11042_023_14329_w
crossref_primary_10_1038_s41598_023_36300_3
crossref_primary_10_1002_cbdv_202201123
crossref_primary_10_1016_j_eswa_2022_117481
crossref_primary_10_1007_s11042_023_15144_z
crossref_primary_10_1093_bfgp_elac025
crossref_primary_10_1038_s41598_023_48553_z
Cites_doi 10.1142/S0219622012500095
10.1109/ROPEC.2014.7036349
10.1142/S0219622019500329
10.1007/s10852-007-9065-6
10.1007/978-1-4757-3157-6
10.1007/s10710-010-9109-y
10.1109/CIBCB.2006.330951
10.1016/j.neucom.2010.05.010
10.1016/j.cmpb.2015.12.008
10.1109/CEC.2013.6557604
10.1155/S1110865704309108
10.1155/2019/4182639
10.1109/4235.942529
10.1016/j.aci.2018.08.003
10.1109/CIISP.2007.369178
10.1109/CEC.2017.7969488
10.1016/j.dss.2006.12.011
10.1007/s10710-008-9059-9
10.1016/S0031-3203(02)00257-1
10.1186/1756-0381-3-8
10.1109/TSMCC.2009.2033566
10.1016/j.jss.2012.01.025
10.1016/j.measurement.2009.01.004
10.1007/978-1-4615-0447-4_4
10.1007/978-3-319-03753-0_39
10.1109/4235.910462
10.1109/RoboMech.2016.7813165
10.1109/TCYB.2015.2404806
10.1007/978-981-10-0448-3_4
10.1142/S0218126618501086
10.1109/ICMLC.2018.8526925
10.1016/j.eswa.2007.01.006
10.1007/s11047-006-9007-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021
COPYRIGHT 2021 Springer
Copyright Springer Nature B.V. Aug 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: Copyright Springer Nature B.V. Aug 2021
DBID AAYXX
CITATION
3V.
7SC
7T9
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-020-09949-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
ABI商业信息数据库
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Social Sciences
One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
Linguistics and Language Behavior Abstracts (LLBA)
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 4135
ExternalDocumentID A718212766
10_1007_s10462_020_09949_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PRQQA
7SC
7T9
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-bb7ec06f01bbe27a73e09c5825a8eea1976df962c477895022e1e6e5087bda5c3
IEDL.DBID M0C
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618923000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-2821
IngestDate Sat Nov 15 10:11:40 EST 2025
Sat Nov 29 09:49:08 EST 2025
Sat Nov 29 02:43:25 EST 2025
Tue Nov 18 22:27:37 EST 2025
Fri Feb 21 02:48:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Grammatical swarm
Automatic programming
Medical data classification
Swarm programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-bb7ec06f01bbe27a73e09c5825a8eea1976df962c477895022e1e6e5087bda5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8267-0304
PQID 2554500559
PQPubID 36790
PageCount 39
ParticipantIDs proquest_journals_2554500559
gale_infotracacademiconefile_A718212766
crossref_citationtrail_10_1007_s10462_020_09949_9
crossref_primary_10_1007_s10462_020_09949_9
springer_journals_10_1007_s10462_020_09949_9
PublicationCentury 2000
PublicationDate 20210800
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 8
  year: 2021
  text: 20210800
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2021
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References DehuriSRoyRChoSBGhoshAAn improved swarm optimized functional link artificial neural network (iso-flann) for classificationJ Syst Softw20128561333134510.1016/j.jss.2012.01.025
WinklerSAffenzellerMWagnerSAdvanced genetic programming based machine learningJ Math Model Algor200763455480232898310.1007/s10852-007-9065-6
YehYCWangWJChiouCWCardiac arrhythmia diagnosis method using linear discriminant analysis on ecg signalsMeasurement200942577878910.1016/j.measurement.2009.01.004
ZhangMWongPGenetic programming for medical classification: a program simplification approachGenet Progr Evolvable Mach20089322925510.1007/s10710-008-9059-9
BrameierMBanzhafWA comparison of linear genetic programming and neural networks in medical data miningIEEE Trans Evolut Comput200151172610.1109/4235.910462
McKayRIHoaiNXWhighamPAShanYO’NeillMGrammar-based genetic programming: a surveyGenet Progr Evolvable Mach20101136539610.1007/s10710-010-9109-y
NagKPalNRA multiobjective genetic programming-based ensemble for simultaneous feature selection and classificationIEEE Trans Cybern201546249951010.1109/TCYB.2015.2404806
Paul TK, Iba H (2006) Classification of scleroderma and normal biopsy data and identification of possible biomarkers of the disease. In: 2006 IEEE symposium on computational intelligence and bioinformatics and computational biology. IEEE, pp 1–6
SiTDuttaRPartial opposition-based particle swarm optimizer in artiżcial neural network training for medical data classiżcationInt J Inf Technol Decis Mak20191851717175010.1142/S0219622019500329
Si T, De A, Bhattacharjee AK (2013) Grammatical bee colony. In: Panigrahi BK, Suganthan PN, Das S, Dash SS (eds) Swarm, evolutionary, and memetic computing. SEMCCO, Lecture Notes in computer science, vol 8297. Springer, New York, pp 436–445
Valencia-Ramírez JM, Raya JA, Cedeno JR, Suárez RR, Escalante HJ, Graff M (2014) Comparison between genetic programming and full model selection on classification problems. In: 2014 IEEE international autumn meeting on power, electronics and computing (ROPEC). IEEE, pp 1–6
Assunçao F, Lourenço N, Machado P, Ribeiro B (2017) Automatic generation of neural networks with structured grammatical evolution. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, pp 1557–1564
Asuncion A, Newman D (2007) Uci machine learning repository. University of California, School of Information and Computer Science, Irvine, CA. http://archive.ics.uci.edu/ml/datasets.php
Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. In: Technical Report-TR06, Erciyes University. Engineering Faculty, Computer Engineering Department, Kayseri/Türkiye
Yasodha P, Ananthanarayanan N (2018) Detecting the ovarian cancer using big data analysis with effective model
Elleuch S, Jarboui B (2018) Variable neighborhood programming for evolving discriminent functions with dynamic thresholds. In: 2018 international conference on machine learning and cybernetics (ICMLC), vol 1. IEEE, pp 263–268
Kou G, LU Y, Peng Y, Shi Y (2012) Evaluation of classification algorithms using mcdm and rank correlation. Int J Inf Technol Decis Mak 11:197–225. https://doi.org/10.1142/S0219622012500095
BarandelaRSánchezJSGarcaVRangelEStrategies for learning in class imbalance problemsPattern Recogn200336384985110.1016/S0031-3203(02)00257-1
Contreras, I., Bertachi, A., Biagi, L., Vehí, J., Oviedo, S.: Using grammatical evolution to generate short-term blood glucose prediction models. In: KHD@ IJCAI, pp 91–96
López-Vázquez G, Ornelas-Rodriguez M, Espinal A, Soria-Alcaraz JA, Rojas-Domínguez A, Puga-Soberanes H, Carpio JM (2019) Rostro-Gonzalez H (2019) Evolutionary spiking neural networks for solving supervised classification problems. Comput Intell Neurosci 2019:4182639. https://doi.org/10.1155/2019/4182639
Motsinger-ReifAADeodharSWinhamSJHardisonNEGrammatical evolution decision trees for detecting gene-gene interactionsBioData Min201031810.1186/1756-0381-3-8
O’NeillMBrabazonAGrammatical swarm: the generation of programs by social programmingNat Comput200654443462228905310.1007/s11047-006-9007-7
LuzEJSSchwartzWRCámara-ChávezGMenottiDEcg-based heartbeat classification for arrhythmia detection: a surveyComput Methods Progr Biomed201612714416410.1016/j.cmpb.2015.12.008
Si T (2016) Grammatical evolution using fireworks algorithm. In: Pant M, Deep K, Bansal J, Nagar A, Das K (eds) Proceedings of 5th international conference on soft computing for problem solving. Advances in intelligent systems and computing, vol 436, pp. 43–55. Springer, New York
SiTSkSA comparison of grammatical bee colony and neural networks in medical data miningInt J Comput Appl2016134614
Gray H, Maxwell R, Martinez-Perez I, Arus C, Cerdan S (1996) Genetic programming for classification of brain tumours from nuclear magnetic resonance biopsy spectra. Genet Progr 424:1–6
SiTDeABhattacharjeeAKSegmentation of brain mri using wavelet transform and grammatical bee colonyJ Circuits, Syst Comput20182707185010810.1142/S0218126618501086
Chareka T, Pillay N (2016) A study of fitness functions for data classification using grammatical evolution. In: 2016 Pattern recognition association of South Africa and robotics and mechatronics international conference (PRASA-RobMech). IEEE, pp. 1–4
HanJPeiJKamberMData mining: concepts and techniques2011AmsterdamElsevier1445.68004
Hope D, Munday E, Smith S (2007) Evolutionary algorithms in the classification of mammograms. In: 2007 IEEE symposium on computational intelligence in image and signal processing. IEEE, pp 258–265
ZhaoHA multi-objective genetic programming approach to developing pareto optimal decision treesDecis Support Syst200743380982610.1016/j.dss.2006.12.011
LinJYKeHRChienBCYangWPClassifier design with feature selection and feature extraction using layered genetic programmingExpert Syst Appl20083421384139310.1016/j.eswa.2007.01.006
RiveroDDoradoJRabuñalJPazosAGeneration and simplification of artificial neural networks by means of genetic programmingNeurocomputing20107316–183200322310.1016/j.neucom.2010.05.010
Mckay RI, Hoai NX, Whigham PA, Shan Y, O’neill M (2010a) Grammar-based genetic programming: a survey. Genet Progr Evolvable Mach 11(3–4):365–396
Cerri R, Barros RC, de Carvalho AC, Freitas AA (2013) A grammatical evolution algorithm for generation of hierarchical multi-label classification rules. In: 2013 IEEE congress on evolutionary computation. IEEE, pp 454–461
LennartssonDNordinPA genetic programming method for the identification of signal peptides and prediction of their cleavage sitesEURASIP J Adv Signal Process2004115369710.1155/S1110865704309108
EspejoPGVenturaSHerreraFA survey on the application of genetic programming to classificationIEEE Trans Syst, Man, Cybern, Part C (Appl Rev)200940212114410.1109/TSMCC.2009.2033566
Triantaphyllou E (2000) Multi-criteria decision making methods: a comparative study 44. https://doi.org/10.1007/978-1-4757-3157-6
O’Neill M, Ryan C (2003) Grammatical evolution. In: Grammatical evolution. Springer, US, pp 33–47
NeillMBrabazonAGrammatical swarmGenet Evolut Comput Conf20041163174
Tharwat A (2018) Classification assessment methods. Appl Comput Inf. https://doi.org/10.1016/j.aci.2018.08.003
O’NeillMRyanCGrammatical evolutionIEEE Trans Evolut Comput20015434935810.1109/4235.942529
TanYZhuYFireworks algorithm for optimizationInternational conference in swarm intelligence2010New YorkSpringer355364
S Dehuri (9949_CR8) 2012; 85
J Han (9949_CR12) 2011
9949_CR20
D Rivero (9949_CR29) 2010; 73
9949_CR40
9949_CR27
9949_CR28
H Zhao (9949_CR43) 2007; 43
M Neill (9949_CR24) 2004; 1
RI McKay (9949_CR21) 2010; 11
S Winkler (9949_CR39) 2007; 6
M Brameier (9949_CR4) 2001; 5
D Lennartsson (9949_CR16) 2004; 1
K Nag (9949_CR23) 2015; 46
Y Tan (9949_CR35) 2010
9949_CR9
M O’Neill (9949_CR26) 2001; 5
M O’Neill (9949_CR25) 2006; 5
9949_CR30
9949_CR31
T Si (9949_CR32) 2018; 27
9949_CR13
EJS Luz (9949_CR19) 2016; 127
9949_CR11
9949_CR38
9949_CR14
9949_CR36
M Zhang (9949_CR42) 2008; 9
9949_CR15
9949_CR37
PG Espejo (9949_CR10) 2009; 40
9949_CR18
R Barandela (9949_CR3) 2003; 36
JY Lin (9949_CR17) 2008; 34
T Si (9949_CR33) 2019; 18
9949_CR2
9949_CR1
AA Motsinger-Reif (9949_CR22) 2010; 3
YC Yeh (9949_CR41) 2009; 42
9949_CR6
T Si (9949_CR34) 2016; 134
9949_CR5
9949_CR7
References_xml – reference: Gray H, Maxwell R, Martinez-Perez I, Arus C, Cerdan S (1996) Genetic programming for classification of brain tumours from nuclear magnetic resonance biopsy spectra. Genet Progr 424:1–6
– reference: HanJPeiJKamberMData mining: concepts and techniques2011AmsterdamElsevier1445.68004
– reference: Paul TK, Iba H (2006) Classification of scleroderma and normal biopsy data and identification of possible biomarkers of the disease. In: 2006 IEEE symposium on computational intelligence and bioinformatics and computational biology. IEEE, pp 1–6
– reference: O’NeillMRyanCGrammatical evolutionIEEE Trans Evolut Comput20015434935810.1109/4235.942529
– reference: Si T (2016) Grammatical evolution using fireworks algorithm. In: Pant M, Deep K, Bansal J, Nagar A, Das K (eds) Proceedings of 5th international conference on soft computing for problem solving. Advances in intelligent systems and computing, vol 436, pp. 43–55. Springer, New York
– reference: RiveroDDoradoJRabuñalJPazosAGeneration and simplification of artificial neural networks by means of genetic programmingNeurocomputing20107316–183200322310.1016/j.neucom.2010.05.010
– reference: TanYZhuYFireworks algorithm for optimizationInternational conference in swarm intelligence2010New YorkSpringer355364
– reference: LuzEJSSchwartzWRCámara-ChávezGMenottiDEcg-based heartbeat classification for arrhythmia detection: a surveyComput Methods Progr Biomed201612714416410.1016/j.cmpb.2015.12.008
– reference: Hope D, Munday E, Smith S (2007) Evolutionary algorithms in the classification of mammograms. In: 2007 IEEE symposium on computational intelligence in image and signal processing. IEEE, pp 258–265
– reference: López-Vázquez G, Ornelas-Rodriguez M, Espinal A, Soria-Alcaraz JA, Rojas-Domínguez A, Puga-Soberanes H, Carpio JM (2019) Rostro-Gonzalez H (2019) Evolutionary spiking neural networks for solving supervised classification problems. Comput Intell Neurosci 2019:4182639. https://doi.org/10.1155/2019/4182639
– reference: Chareka T, Pillay N (2016) A study of fitness functions for data classification using grammatical evolution. In: 2016 Pattern recognition association of South Africa and robotics and mechatronics international conference (PRASA-RobMech). IEEE, pp. 1–4
– reference: EspejoPGVenturaSHerreraFA survey on the application of genetic programming to classificationIEEE Trans Syst, Man, Cybern, Part C (Appl Rev)200940212114410.1109/TSMCC.2009.2033566
– reference: NagKPalNRA multiobjective genetic programming-based ensemble for simultaneous feature selection and classificationIEEE Trans Cybern201546249951010.1109/TCYB.2015.2404806
– reference: Valencia-Ramírez JM, Raya JA, Cedeno JR, Suárez RR, Escalante HJ, Graff M (2014) Comparison between genetic programming and full model selection on classification problems. In: 2014 IEEE international autumn meeting on power, electronics and computing (ROPEC). IEEE, pp 1–6
– reference: O’NeillMBrabazonAGrammatical swarm: the generation of programs by social programmingNat Comput200654443462228905310.1007/s11047-006-9007-7
– reference: Yasodha P, Ananthanarayanan N (2018) Detecting the ovarian cancer using big data analysis with effective model
– reference: Asuncion A, Newman D (2007) Uci machine learning repository. University of California, School of Information and Computer Science, Irvine, CA. http://archive.ics.uci.edu/ml/datasets.php
– reference: Motsinger-ReifAADeodharSWinhamSJHardisonNEGrammatical evolution decision trees for detecting gene-gene interactionsBioData Min201031810.1186/1756-0381-3-8
– reference: Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. In: Technical Report-TR06, Erciyes University. Engineering Faculty, Computer Engineering Department, Kayseri/Türkiye
– reference: SiTDeABhattacharjeeAKSegmentation of brain mri using wavelet transform and grammatical bee colonyJ Circuits, Syst Comput20182707185010810.1142/S0218126618501086
– reference: ZhangMWongPGenetic programming for medical classification: a program simplification approachGenet Progr Evolvable Mach20089322925510.1007/s10710-008-9059-9
– reference: LennartssonDNordinPA genetic programming method for the identification of signal peptides and prediction of their cleavage sitesEURASIP J Adv Signal Process2004115369710.1155/S1110865704309108
– reference: BarandelaRSánchezJSGarcaVRangelEStrategies for learning in class imbalance problemsPattern Recogn200336384985110.1016/S0031-3203(02)00257-1
– reference: SiTDuttaRPartial opposition-based particle swarm optimizer in artiżcial neural network training for medical data classiżcationInt J Inf Technol Decis Mak20191851717175010.1142/S0219622019500329
– reference: YehYCWangWJChiouCWCardiac arrhythmia diagnosis method using linear discriminant analysis on ecg signalsMeasurement200942577878910.1016/j.measurement.2009.01.004
– reference: LinJYKeHRChienBCYangWPClassifier design with feature selection and feature extraction using layered genetic programmingExpert Syst Appl20083421384139310.1016/j.eswa.2007.01.006
– reference: BrameierMBanzhafWA comparison of linear genetic programming and neural networks in medical data miningIEEE Trans Evolut Comput200151172610.1109/4235.910462
– reference: WinklerSAffenzellerMWagnerSAdvanced genetic programming based machine learningJ Math Model Algor200763455480232898310.1007/s10852-007-9065-6
– reference: Assunçao F, Lourenço N, Machado P, Ribeiro B (2017) Automatic generation of neural networks with structured grammatical evolution. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, pp 1557–1564
– reference: DehuriSRoyRChoSBGhoshAAn improved swarm optimized functional link artificial neural network (iso-flann) for classificationJ Syst Softw20128561333134510.1016/j.jss.2012.01.025
– reference: Cerri R, Barros RC, de Carvalho AC, Freitas AA (2013) A grammatical evolution algorithm for generation of hierarchical multi-label classification rules. In: 2013 IEEE congress on evolutionary computation. IEEE, pp 454–461
– reference: McKayRIHoaiNXWhighamPAShanYO’NeillMGrammar-based genetic programming: a surveyGenet Progr Evolvable Mach20101136539610.1007/s10710-010-9109-y
– reference: NeillMBrabazonAGrammatical swarmGenet Evolut Comput Conf20041163174
– reference: ZhaoHA multi-objective genetic programming approach to developing pareto optimal decision treesDecis Support Syst200743380982610.1016/j.dss.2006.12.011
– reference: Si T, De A, Bhattacharjee AK (2013) Grammatical bee colony. In: Panigrahi BK, Suganthan PN, Das S, Dash SS (eds) Swarm, evolutionary, and memetic computing. SEMCCO, Lecture Notes in computer science, vol 8297. Springer, New York, pp 436–445
– reference: Triantaphyllou E (2000) Multi-criteria decision making methods: a comparative study 44. https://doi.org/10.1007/978-1-4757-3157-6
– reference: SiTSkSA comparison of grammatical bee colony and neural networks in medical data miningInt J Comput Appl2016134614
– reference: Elleuch S, Jarboui B (2018) Variable neighborhood programming for evolving discriminent functions with dynamic thresholds. In: 2018 international conference on machine learning and cybernetics (ICMLC), vol 1. IEEE, pp 263–268
– reference: Mckay RI, Hoai NX, Whigham PA, Shan Y, O’neill M (2010a) Grammar-based genetic programming: a survey. Genet Progr Evolvable Mach 11(3–4):365–396
– reference: Contreras, I., Bertachi, A., Biagi, L., Vehí, J., Oviedo, S.: Using grammatical evolution to generate short-term blood glucose prediction models. In: KHD@ IJCAI, pp 91–96
– reference: Kou G, LU Y, Peng Y, Shi Y (2012) Evaluation of classification algorithms using mcdm and rank correlation. Int J Inf Technol Decis Mak 11:197–225. https://doi.org/10.1142/S0219622012500095
– reference: O’Neill M, Ryan C (2003) Grammatical evolution. In: Grammatical evolution. Springer, US, pp 33–47
– reference: Tharwat A (2018) Classification assessment methods. Appl Comput Inf. https://doi.org/10.1016/j.aci.2018.08.003
– ident: 9949_CR11
– ident: 9949_CR15
  doi: 10.1142/S0219622012500095
– ident: 9949_CR38
  doi: 10.1109/ROPEC.2014.7036349
– volume: 18
  start-page: 1717
  issue: 5
  year: 2019
  ident: 9949_CR33
  publication-title: Int J Inf Technol Decis Mak
  doi: 10.1142/S0219622019500329
– volume: 6
  start-page: 455
  issue: 3
  year: 2007
  ident: 9949_CR39
  publication-title: J Math Model Algor
  doi: 10.1007/s10852-007-9065-6
– ident: 9949_CR40
– ident: 9949_CR37
  doi: 10.1007/978-1-4757-3157-6
– ident: 9949_CR20
  doi: 10.1007/s10710-010-9109-y
– ident: 9949_CR28
  doi: 10.1109/CIBCB.2006.330951
– volume: 73
  start-page: 3200
  issue: 16–18
  year: 2010
  ident: 9949_CR29
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.05.010
– start-page: 355
  volume-title: International conference in swarm intelligence
  year: 2010
  ident: 9949_CR35
– volume: 127
  start-page: 144
  year: 2016
  ident: 9949_CR19
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2015.12.008
– ident: 9949_CR5
  doi: 10.1109/CEC.2013.6557604
– volume: 1
  start-page: 153697
  year: 2004
  ident: 9949_CR16
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1155/S1110865704309108
– ident: 9949_CR18
  doi: 10.1155/2019/4182639
– volume: 5
  start-page: 349
  issue: 4
  year: 2001
  ident: 9949_CR26
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/4235.942529
– ident: 9949_CR36
  doi: 10.1016/j.aci.2018.08.003
– volume: 134
  start-page: 1
  issue: 6
  year: 2016
  ident: 9949_CR34
  publication-title: Int J Comput Appl
– ident: 9949_CR13
  doi: 10.1109/CIISP.2007.369178
– ident: 9949_CR1
  doi: 10.1109/CEC.2017.7969488
– volume: 43
  start-page: 809
  issue: 3
  year: 2007
  ident: 9949_CR43
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2006.12.011
– volume: 9
  start-page: 229
  issue: 3
  year: 2008
  ident: 9949_CR42
  publication-title: Genet Progr Evolvable Mach
  doi: 10.1007/s10710-008-9059-9
– volume: 36
  start-page: 849
  issue: 3
  year: 2003
  ident: 9949_CR3
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(02)00257-1
– volume: 3
  start-page: 8
  issue: 1
  year: 2010
  ident: 9949_CR22
  publication-title: BioData Min
  doi: 10.1186/1756-0381-3-8
– ident: 9949_CR7
– volume: 40
  start-page: 121
  issue: 2
  year: 2009
  ident: 9949_CR10
  publication-title: IEEE Trans Syst, Man, Cybern, Part C (Appl Rev)
  doi: 10.1109/TSMCC.2009.2033566
– ident: 9949_CR14
– volume: 85
  start-page: 1333
  issue: 6
  year: 2012
  ident: 9949_CR8
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2012.01.025
– volume: 1
  start-page: 163
  year: 2004
  ident: 9949_CR24
  publication-title: Genet Evolut Comput Conf
– volume: 42
  start-page: 778
  issue: 5
  year: 2009
  ident: 9949_CR41
  publication-title: Measurement
  doi: 10.1016/j.measurement.2009.01.004
– ident: 9949_CR27
  doi: 10.1007/978-1-4615-0447-4_4
– ident: 9949_CR31
  doi: 10.1007/978-3-319-03753-0_39
– volume: 11
  start-page: 365
  year: 2010
  ident: 9949_CR21
  publication-title: Genet Progr Evolvable Mach
  doi: 10.1007/s10710-010-9109-y
– volume: 5
  start-page: 17
  issue: 1
  year: 2001
  ident: 9949_CR4
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/4235.910462
– ident: 9949_CR6
  doi: 10.1109/RoboMech.2016.7813165
– volume: 46
  start-page: 499
  issue: 2
  year: 2015
  ident: 9949_CR23
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2404806
– ident: 9949_CR30
  doi: 10.1007/978-981-10-0448-3_4
– volume: 27
  start-page: 1850108
  issue: 07
  year: 2018
  ident: 9949_CR32
  publication-title: J Circuits, Syst Comput
  doi: 10.1142/S0218126618501086
– ident: 9949_CR9
  doi: 10.1109/ICMLC.2018.8526925
– volume: 34
  start-page: 1384
  issue: 2
  year: 2008
  ident: 9949_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.01.006
– ident: 9949_CR2
– volume-title: Data mining: concepts and techniques
  year: 2011
  ident: 9949_CR12
– volume: 5
  start-page: 443
  issue: 4
  year: 2006
  ident: 9949_CR25
  publication-title: Nat Comput
  doi: 10.1007/s11047-006-9007-7
SSID ssj0005243
Score 2.344758
Snippet In a computational medical model, diagnosis is the classification of disease status in the terms of abnormal or positive , normal or negative or intermediate...
In a computational medical model, diagnosis is the classification of disease status in the terms of abnormal or positive, normal or negative or intermediate...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4097
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Automatic
Classification
Classifiers
Computer Science
Data
Decision analysis
Decision-making
Diagnosis
Discriminant analysis
Disease
Experiments
Extraction
False positive results
Feature extraction
Geometric accuracy
Grammar
Grammar, Comparative and general
Machine learning
Medical advice systems
Medical diagnosis
Medical model
Multiple criterion
Neural networks
Performance evaluation
SummonAdditionalLinks – databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPXixPrFaJQfBgwa6u0l2462I1YMU8UXxEpJsFgTbSrv19ztJs7Y-Qc95MpNkZsg33yB0KBTPde6gUjqlhOYmIgocYWJpVBie5NRYX7XkKu12s15PXIeksHGFdq--JP1LPZfsRnlMXLgDXg0VRCyiJTB3mSvYcHP7MAfsmGLlYi4IBBRRSJX5fo4P5ujzo_zld9QbnU79f9tdQ6vBycTt6alYRwt2sIHqVQEHHO7zJnq8GCmXu0acLcuxmpRDz-CKA2qrDwti8Gpxf_qdgx2eFBvncDuEkVfqKVYDPF8nAHvG2i103zm_O7skodgCMQnLSqJ1ak2LF61IaxunKk1sSxgGAaTKrFURuC15IXhsaJpmgoHpt5HlFvy7VOeKmWQb1QbDgd1B2BRJZjRvGRZpqhNop4VljCUQ7hTGZg0UVTKXJjCRu4IYz3LGoeyEJ0F40gtPigY6fh_zMuXh-LX3kVOldJcUZjYq5BrA_hzdlWyDRXbU9pw3ULPStgy3dywhzKLMsZPBRCeVdmfNP6-7-7fue2gldhAZjydsolo5mth9tGxey6fx6MCf6jdMW_Ex
  priority: 102
  providerName: Springer Nature
Title Grammar-based automatic programming for medical data classification: an experimental study
URI https://link.springer.com/article/10.1007/s10462-020-09949-9
https://www.proquest.com/docview/2554500559
Volume 54
WOSCitedRecordID wos000618923000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMXWl7qQln5gMQBLOLEj5gLKlULErCsyqv0EtmOIyHR3bK75fcz43W6bRG9cLEUJXGsjB_f2N98A_DEOt36lqhS3kgu2yC4QyDMoxRd0FUrQ0xZS96b0ag-OrLjvOE2z7TKfk5ME3U7DbRH_gKhr1SkGGVfnf7ilDWKTldzCo012CBkQ5S-D8XeBYrHkjVXasvRtRA5aCaHzkldcnKeECNJy-2lhenq9PzXOWlafg42_7fhW3A7A0-2u-wpd-BGnNyFzT6pA8tj_B4cv5k5imfjtL61zJ0tpknVlWUm1wk2jyHSZSfLIx5GHFMWCIQT6ygZ-iVzE3YxdwBLKrb34cvB_ue9tzwnYOChUvWCe29iKHRXCO9jaZypYmGDQqfS1TE6gVCm7awugzSmtgrhQBRRR8R8xrdOheoBrE-mk7gNLHRVHbwughJe-grvyy4qpSp0gboQ6wGI_u83IauTU5KMn81KV5ks1qDFmmSxxg7g2fk7p0ttjmuffkpGbWjgYs3B5fgDbB9JYDW7uEqT3L3WA9jpLdnkET1vVmYcwPO-L6xu__u7D6-v7RHcKokmkziFO7C-mJ3Fx3Az_F78mM-GsGa-fR_Cxuv90fgQr94ZPkx9nErxEcuxOsby8NPXP_3eAXM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMsFPABxAEsNokfMRJCFVBa7bLiUKSKi7EdR0Jqd9vdLYg_xW9kxnHYAqK3HjgncRLn8zzib74BeGScanxDVCmvBRdNKLjDQJhHUbRBVY0IMXUtGevJpN7fNx_W4EdfC0O0yt4mJkPdzAL9I3-Ooa-QpBhlXh0dc-oaRburfQuNDhaj-P0bpmyLl7tv8Ps-Lsvtt3uvd3juKsBDJesl917HMFTtsPA-ltrpKg5NkJgpuTpGV6B_blqjyiC0ro1EHxeLqCIGMto3ToYKx70AF0VVa1pXI81PUUo6ll6pDMdUpshFOrlUT6iSU7KGMZkw3PzmCP90B3_tyyZ3t73xv03UNbiaA2u21a2E67AWpzdgo29awbINuwmf3s0d1etx8t8NcyfLWVKtZZmpdojTwTCSZ4fdFhYjDi0LlGQQqyoB-QVzU3a6NwJLKr234OO5vOFtWJ_OpvEOsNBWdfBqGGThha_wuGijlLLCFK8NsR5A0X9tG7L6OjUBObAr3WhCiEWE2IQQawbw9Nc1R532yJlnPyEQWTJMOHJwub4Cn48kvuwWRiEk56_UADZ75NhssRZ2BZsBPOuxtzr87_vePXu0h3B5Z-_92I53J6N7cKUkSlDiT27C-nJ-Eu_DpfB1-WUxf5DWEoPP543Jn5DQWDg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXyqtioYAPIA5gdZP4ESMhVFEWqlarPYBU9WJsx5GQ6G7Z3YL4a_w6ZhyHLSB664GzE-f1eR7xN98APDZONb4hqpTXgosmFNxhIMyjKNqgqkaEmLqWHOjxuD48NJM1-NHXwhCtsreJyVA3s0D_yLcx9BWSFKPMdptpEZPd0auTL5w6SNFOa99Oo4PIfvz-DdO3xcu9XfzWT8py9Ob963c8dxjgoZL1knuvYxiqdlh4H0vtdBWHJkjMmlwdoyvQVzetUWUQWtdGor-LRVQRgxrtGydDhfNegssac0yiE07k0Rl6ScfYK5XhmNYUuWAnl-0JVXJK3DA-E4ab35zin67hrz3a5PpGG__zS7sB13PAzXa6FXIT1uL0Fmz0zSxYtm234ejt3FEdHye_3jB3upwlNVuWGWzH-GoYRvjsuNvaYsStZYGSD2JbJYC_YG7KzvZMYEm99w58uJAn3IT16Wwa7wILbVUHr4ZBFl74CsdFG6WUFaZ-bYj1AIr-y9uQVdmpOchnu9KTJrRYRItNaLFmAM9-nXPSaZKce_RTApQlg4UzB5frLvD-SPrL7mB0QjL_Sg1gq0eRzZZsYVcQGsDzHoer4X9f9975sz2CqwhFe7A33r8P10piCiVa5RasL-en8QFcCV-Xnxbzh2lZMfh40ZD8CT0OYVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grammar-based+automatic+programming+for+medical+data+classification%3A+an+experimental+study&rft.jtitle=The+Artificial+intelligence+review&rft.au=Si%2C+Tapas&rft.au=Miranda%2C+P%C3%A9ricles&rft.au=Galdino%2C+Jo%C3%A3o+Victor&rft.au=Nascimento%2C+Andr%C3%A9&rft.date=2021-08-01&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=54&rft.issue=6&rft.spage=4097&rft.epage=4135&rft_id=info:doi/10.1007%2Fs10462-020-09949-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10462_020_09949_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon