Lane-based real-time queue length estimation using license plate recognition data

•Utilizing license plate recognition (LPR) data for arterial queue length estimation.•Hybrid framework combines both machine learning techniques and traffic flow theory.•Detailed lane level queue length estimation can be obtained efficiently in real time.•Real world LPR data from two field experimen...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Transportation research. Part C, Emerging technologies Ročník 57; s. 85 - 102
Hlavní autori: Zhan, Xianyuan, Li, Ruimin, Ukkusuri, Satish V.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier India Pvt Ltd 01.08.2015
Predmet:
ISSN:0968-090X, 1879-2359
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Utilizing license plate recognition (LPR) data for arterial queue length estimation.•Hybrid framework combines both machine learning techniques and traffic flow theory.•Detailed lane level queue length estimation can be obtained efficiently in real time.•Real world LPR data from two field experiments are used for testing and validation.•Reasonable estimation accuracy achieved even using LPR data without high precision. License plate recognition (LPR) data are emerging data sources that provide rich information in estimating the traffic conditions of urban arterials. While large-scale LPR system is not common in US, last few years have seen rapid developments and implementations in many other parts of world (e.g. China, Thailand and Middle East). Due to privacy issues, LPR data are seldom available to research communities. However, when available, this data source can be valuable in estimating real-time operational metrics in transportation systems. This paper proposes a lane-based real-time queue length estimation model using the license plate recognition (LPR) data. In the model, an interpolation method based on Gaussian process is developed to reconstruct the equivalent cumulative arrival–departure curve for each lane. The missing information for unrecognized or unmatched vehicles is obtained from the reconstructed arrival curve. With the complete arrival and departure information, a car-following based simulation scheme is applied to estimate the real-time queue length for each lane. The proposed model is validated using ground truth information of the maximum queue lengths from the city of Langfang in China. The results show that the model can capture the variations in queue lengths in the ground truth data, and the maximum queue length for each signal cycle can be estimated with a reasonable accuracy. The estimated queue length information using the proposed model can serve as a useful performance metric for various real-time traffic control applications.
AbstractList •Utilizing license plate recognition (LPR) data for arterial queue length estimation.•Hybrid framework combines both machine learning techniques and traffic flow theory.•Detailed lane level queue length estimation can be obtained efficiently in real time.•Real world LPR data from two field experiments are used for testing and validation.•Reasonable estimation accuracy achieved even using LPR data without high precision. License plate recognition (LPR) data are emerging data sources that provide rich information in estimating the traffic conditions of urban arterials. While large-scale LPR system is not common in US, last few years have seen rapid developments and implementations in many other parts of world (e.g. China, Thailand and Middle East). Due to privacy issues, LPR data are seldom available to research communities. However, when available, this data source can be valuable in estimating real-time operational metrics in transportation systems. This paper proposes a lane-based real-time queue length estimation model using the license plate recognition (LPR) data. In the model, an interpolation method based on Gaussian process is developed to reconstruct the equivalent cumulative arrival–departure curve for each lane. The missing information for unrecognized or unmatched vehicles is obtained from the reconstructed arrival curve. With the complete arrival and departure information, a car-following based simulation scheme is applied to estimate the real-time queue length for each lane. The proposed model is validated using ground truth information of the maximum queue lengths from the city of Langfang in China. The results show that the model can capture the variations in queue lengths in the ground truth data, and the maximum queue length for each signal cycle can be estimated with a reasonable accuracy. The estimated queue length information using the proposed model can serve as a useful performance metric for various real-time traffic control applications.
License plate recognition (LPR) data are emerging data sources that provide rich information in estimating the traffic conditions of urban arterials. While large-scale LPR system is not common in US, last few years have seen rapid developments and implementations in many other parts of world (e.g. China, Thailand and Middle East). Due to privacy issues, LPR data are seldom available to research communities. However, when available, this data source can be valuable in estimating real-time operational metrics in transportation systems. This paper proposes a lane-based real-time queue length estimation model using the license plate recognition (LPR) data. In the model, an interpolation method based on Gaussian process is developed to reconstruct the equivalent cumulative arrival-departure curve for each lane. The missing information for unrecognized or unmatched vehicles is obtained from the reconstructed arrival curve. With the complete arrival and departure information, a car-following based simulation scheme is applied to estimate the real-time queue length for each lane. The proposed model is validated using ground truth information of the maximum queue lengths from the city of Langfang in China. The results show that the model can capture the variations in queue lengths in the ground truth data, and the maximum queue length for each signal cycle can be estimated with a reasonable accuracy. The estimated queue length information using the proposed model can serve as a useful performance metric for various real-time traffic control applications.
Author Li, Ruimin
Zhan, Xianyuan
Ukkusuri, Satish V.
Author_xml – sequence: 1
  givenname: Xianyuan
  surname: Zhan
  fullname: Zhan, Xianyuan
  email: zhanxianyuan@purdue.edu
  organization: Lyles School of Civil Engineering, Purdue University, 550 Stadium Drive, West Lafayette, IN 47907, USA
– sequence: 2
  givenname: Ruimin
  surname: Li
  fullname: Li, Ruimin
  email: lrmin@tsinghua.edu.cn
  organization: Department of Civil Engineering, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Satish V.
  surname: Ukkusuri
  fullname: Ukkusuri, Satish V.
  email: sukkusur@purdue.edu
  organization: Lyles School of Civil Engineering, Purdue University, 550 Stadium Drive, West Lafayette, IN 47907, USA
BookMark eNp9kE9LwzAYh4MouE0_gLcevbS-aZs2wZMM_8FABAVvIU3fzowsnUkm-O3NNk8ednrhze9J8num5NSNDgm5olBQoM3NqoheFyVQVkBTANATMqG8FXlZMXFKJiAanoOAj3MyDWEFKSFYOyGvC-Uw71TAPvOobB7NGrOvLW4xs-iW8TPDkHYqmtFl22DcMrNGowuYbayKmCg9Lp3Zn_cqqgtyNigb8PJvzsj7w_3b_ClfvDw-z-8Wua4Yj3nXVRyqBhmKvht4TUGzlg206uq6grTEuuT1kAbVGnTPO2zKFjirGlGKVlQzcn24d-PH9N8Q5doEjdamQuM2SNq26QFe1jxF20NU-zEEj4PUJu4bRa-MlRTkTqJcySRR7iRKaGRSlEj6j9z4JMP_HGVuDwym9t8GvQzaoNPYm-Qqyn40R-hfcWGMtA
CitedBy_id crossref_primary_10_1186_s12544_020_00405_x
crossref_primary_10_1109_TKDE_2016_2621104
crossref_primary_10_1038_s41598_024_80563_3
crossref_primary_10_1109_TITS_2024_3491433
crossref_primary_10_1016_j_ins_2019_05_032
crossref_primary_10_1016_j_neucom_2020_05_038
crossref_primary_10_1007_s11067_021_09542_9
crossref_primary_10_1049_iet_its_2018_5073
crossref_primary_10_1016_j_inffus_2023_102030
crossref_primary_10_1109_MITS_2021_3051489
crossref_primary_10_1109_ACCESS_2019_2933663
crossref_primary_10_1049_iet_its_2017_0138
crossref_primary_10_1109_TITS_2024_3360090
crossref_primary_10_1080_21680566_2023_2165191
crossref_primary_10_1155_2022_9568723
crossref_primary_10_3390_electronics14173464
crossref_primary_10_1016_j_procs_2021_02_089
crossref_primary_10_1016_j_physa_2024_129790
crossref_primary_10_1016_j_trc_2019_09_006
crossref_primary_10_1016_j_eswa_2021_115618
crossref_primary_10_1080_23249935_2025_2525291
crossref_primary_10_1007_s12652_022_03892_z
crossref_primary_10_1109_MITS_2019_2919541
crossref_primary_10_1016_j_aap_2020_105703
crossref_primary_10_1016_j_physa_2023_128995
crossref_primary_10_1155_2023_5070504
crossref_primary_10_1016_j_trc_2020_102739
crossref_primary_10_1016_j_autcon_2015_12_007
crossref_primary_10_1016_j_trc_2025_105029
crossref_primary_10_1109_TITS_2017_2650947
crossref_primary_10_1109_TITS_2022_3191091
crossref_primary_10_3390_math13152536
crossref_primary_10_1007_s13177_020_00225_2
crossref_primary_10_1080_15472450_2024_2392720
crossref_primary_10_1016_j_trc_2018_11_004
crossref_primary_10_1088_1742_6596_1549_4_042077
crossref_primary_10_1016_j_physa_2022_128243
crossref_primary_10_3390_su12083074
crossref_primary_10_1016_j_physa_2022_127079
crossref_primary_10_1109_TITS_2024_3358625
crossref_primary_10_1007_s40030_022_00698_2
crossref_primary_10_3390_info11050267
crossref_primary_10_1038_s41597_022_01850_0
crossref_primary_10_3390_s21010195
crossref_primary_10_1016_j_trb_2020_08_009
crossref_primary_10_1145_3715902
crossref_primary_10_1109_TITS_2018_2866936
crossref_primary_10_1155_2022_2507033
crossref_primary_10_1016_j_trc_2019_10_003
crossref_primary_10_1016_j_trc_2019_10_002
crossref_primary_10_1016_j_trc_2020_102660
crossref_primary_10_1080_23249935_2021_2012299
crossref_primary_10_1080_21680566_2021_1991504
crossref_primary_10_1080_19439962_2019_1673859
crossref_primary_10_3390_su11216152
crossref_primary_10_3390_ijgi10030177
crossref_primary_10_1109_TBDATA_2019_2935057
crossref_primary_10_1109_TITS_2017_2780093
crossref_primary_10_1109_TITS_2022_3168865
crossref_primary_10_1080_23249935_2025_2517306
crossref_primary_10_1080_15472450_2020_1732217
crossref_primary_10_1109_TITS_2019_2919595
crossref_primary_10_1016_j_trc_2019_04_022
crossref_primary_10_1109_TITS_2019_2932785
crossref_primary_10_1016_j_trc_2019_06_009
crossref_primary_10_1016_j_physa_2019_01_139
crossref_primary_10_1080_21680566_2024_2363273
crossref_primary_10_1155_2022_7729068
crossref_primary_10_1016_j_jclepro_2021_129386
crossref_primary_10_1155_2022_5119209
crossref_primary_10_26599_JICV_2023_9210036
crossref_primary_10_1016_j_trc_2020_102870
crossref_primary_10_1016_j_trc_2021_103142
crossref_primary_10_1155_2017_1738085
crossref_primary_10_1155_2018_5020518
crossref_primary_10_1016_j_trc_2017_07_006
Cites_doi 10.1016/j.trc.2009.02.003
10.1109/TITS.2006.888619
10.1109/ITSC.2005.1520134
10.1016/j.trc.2007.03.001
10.1137/0717021
10.1016/j.trc.2009.04.003
10.1287/opre.4.1.42
10.1287/opre.9.2.209
10.1109/TITS.2010.2049105
10.3141/2035-10
10.1016/j.trc.2007.06.002
10.1016/j.trc.2011.01.002
10.1109/TITS.2007.899720
10.1080/15472450802023337
10.1137/1007038
10.1016/j.trb.2012.03.006
10.1016/S0191-2615(99)00034-X
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
8FD
F28
FR3
KR7
DOI 10.1016/j.trc.2015.06.001
DatabaseName CrossRef
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
EndPage 102
ExternalDocumentID 10_1016_j_trc_2015_06_001
S0968090X15002168
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
8FD
F28
FR3
KR7
ID FETCH-LOGICAL-c358t-bb38036e5e9dbf8410c575f13b4430e9de4284fde41cc0cd8be62708536929793
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359175900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0968-090X
IngestDate Sat Sep 27 16:23:00 EDT 2025
Sat Nov 29 03:00:57 EST 2025
Tue Nov 18 21:38:40 EST 2025
Fri Feb 23 02:16:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Real-time queue length estimation
Boundary constrained car-following model
Gaussian process
Cumulative arrival–departure curve
License plate recognition data
Lane-based estimation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-bb38036e5e9dbf8410c575f13b4430e9de4284fde41cc0cd8be62708536929793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1778038248
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_1778038248
crossref_citationtrail_10_1016_j_trc_2015_06_001
crossref_primary_10_1016_j_trc_2015_06_001
elsevier_sciencedirect_doi_10_1016_j_trc_2015_06_001
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2015
Publisher Elsevier India Pvt Ltd
Publisher_xml – name: Elsevier India Pvt Ltd
References Akcelik, R., 1999. A Queue Model for HCM 2000. ARRB Transportation Research Ltd., Vermont South, Australia.
Kwong, Kavaler, Rajagopal, Varaiya (b0085) 2009; 17
Carson, Maria (b0045) 1997
Berger (b0030) 1985
Oh, Ritchie, Jeng (b0120) 2007; 8
Beijing Municipal Committee, July 2012. The Twelfth Five-Year Plan for the Transportation Development of Beijing. Retrieved from
Newell (b0110) 1961; 9
Richards (b0125) 1956; 4
Sharma, Bullock, Bonneson (b0135) 2007; 2035
Ban, Hao, Sun (b0020) 2011; 19
Chang, Lin (b0050) 2000; 34
Mirchandani, Zou (b0105) 2007
Hofleitner, Herring, Bayen (b0070) 2012; 46
Coifman, Cassidy (b0055) 2002; 36
Newell (b0115) 1965; 7
Coifman, Krishnamurthy (b0060) 2007; 15
May, A.D., 1975. Traffic flow theory-the traffic engineers challenge. In: Proceedings of the Institute of Traffic Engineering, pp. 290–303.
Jeng, Tok, Ritchie (b0075) 2010; 11
Vigos, Papageorgiou, Wang (b0155) 2008; 16
Bertini, R.L., Lasky, M., Monsere, C.M., 2005. Validating predicted rural corridor travel times from an automated license plate recognition system: Oregon’s frontier project. In: Proceedings of 2005IEEE Intelligent Transportation Systems, pp. 296–301.
Bando, Hasebe, Nakanishi, Nakayama, Shibata, Sugiyama (b0015) 1995; 5
Webster, F.V., 1958. Traffic Signal Settings. Road Research Laboratory Technical Paper No. 39, HMSO, London.
.
Kahaner, Moler, Nash (b0080) 1988
Skabardonis, Geroliminis (b0140) 2008; 12
Roberts, Osborne, Ebden, Reece, Gibson, Aigrain (b0130) 2013; 371
Tordeux, Lassarre, Roussignol, Aguiléra (b0150) 2015
Lighthill, Whitham (b0090) 1955; A229
Bishop (b0040) 2006
Fritsch, Carlson (b0065) 1980; 17
Yasin, A.M., Karim, M.R., Abdullah, A.S., 2009. Travel time measurement in real-time using automatic number plate recognition for Malaysian environment. In: Proceedings of the Eastern Asia Society for Transportation Studies, vol. 2009(0), pp. 324–324.
Stephanopoulos, Michalopoulos (b0145) 1979; 13A
Liu, Wu, Ma, Hu (b0095) 2009; 17
Balke, K., Charara, H., Parker, R., 2005. Development of a Traffic Signal Performance Measurement System (TSPMS). Texas Transportation Institute, Report 0-4422-2.
10.1016/j.trc.2015.06.001_b0165
Richards (10.1016/j.trc.2015.06.001_b0125) 1956; 4
Roberts (10.1016/j.trc.2015.06.001_b0130) 2013; 371
10.1016/j.trc.2015.06.001_b0160
Newell (10.1016/j.trc.2015.06.001_b0115) 1965; 7
Skabardonis (10.1016/j.trc.2015.06.001_b0140) 2008; 12
Coifman (10.1016/j.trc.2015.06.001_b0060) 2007; 15
Bando (10.1016/j.trc.2015.06.001_b0015) 1995; 5
Oh (10.1016/j.trc.2015.06.001_b0120) 2007; 8
Ban (10.1016/j.trc.2015.06.001_b0020) 2011; 19
Sharma (10.1016/j.trc.2015.06.001_b0135) 2007; 2035
Hofleitner (10.1016/j.trc.2015.06.001_b0070) 2012; 46
10.1016/j.trc.2015.06.001_b0005
10.1016/j.trc.2015.06.001_b0025
Carson (10.1016/j.trc.2015.06.001_b0045) 1997
10.1016/j.trc.2015.06.001_b0100
Bishop (10.1016/j.trc.2015.06.001_b0040) 2006
10.1016/j.trc.2015.06.001_b0010
Mirchandani (10.1016/j.trc.2015.06.001_b0105) 2007
Newell (10.1016/j.trc.2015.06.001_b0110) 1961; 9
Kahaner (10.1016/j.trc.2015.06.001_b0080) 1988
Coifman (10.1016/j.trc.2015.06.001_b0055) 2002; 36
Jeng (10.1016/j.trc.2015.06.001_b0075) 2010; 11
Vigos (10.1016/j.trc.2015.06.001_b0155) 2008; 16
Stephanopoulos (10.1016/j.trc.2015.06.001_b0145) 1979; 13A
Kwong (10.1016/j.trc.2015.06.001_b0085) 2009; 17
Liu (10.1016/j.trc.2015.06.001_b0095) 2009; 17
Lighthill (10.1016/j.trc.2015.06.001_b0090) 1955; A229
Berger (10.1016/j.trc.2015.06.001_b0030) 1985
Chang (10.1016/j.trc.2015.06.001_b0050) 2000; 34
Fritsch (10.1016/j.trc.2015.06.001_b0065) 1980; 17
10.1016/j.trc.2015.06.001_b0035
Tordeux (10.1016/j.trc.2015.06.001_b0150) 2015
References_xml – volume: 4
  start-page: 42
  year: 1956
  end-page: 51
  ident: b0125
  article-title: Shock waves on the highway
  publication-title: Oper. Res.
– volume: 7
  start-page: 223
  year: 1965
  end-page: 240
  ident: b0115
  article-title: Approximation methods for queues with application to the fixed-cycle traffic light
  publication-title: SIAM Rev.
– volume: 9
  start-page: 209
  year: 1961
  end-page: 229
  ident: b0110
  article-title: Nonlinear effects in the dynamics of car following
  publication-title: Oper. Res.
– volume: 17
  start-page: 412
  year: 2009
  end-page: 427
  ident: b0095
  article-title: Real-time queue length estimation for congested signalized intersections
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 371
  year: 2013
  ident: b0130
  article-title: Gaussian processes for time-series modelling
  publication-title: Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci.
– year: 1985
  ident: b0030
  article-title: Statistical Decision Theory and Bayesian Analysis
– start-page: 118
  year: 1997
  end-page: 126
  ident: b0045
  article-title: Simulation optimization: methods and applications
  publication-title: Proceedings of the 29th Conference on Winter Simulation
– volume: 15
  start-page: 135
  year: 2007
  end-page: 153
  ident: b0060
  article-title: Vehicle reidentification and travel time measurement across freeway junctions using the existing detector infrastructure
  publication-title: Transport. Res. Part C: Emerg. Technol.
– reference: Balke, K., Charara, H., Parker, R., 2005. Development of a Traffic Signal Performance Measurement System (TSPMS). Texas Transportation Institute, Report 0-4422-2.
– volume: 16
  start-page: 18
  year: 2008
  end-page: 35
  ident: b0155
  article-title: Real-time estimation of vehicle-count within signalized links
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 36
  start-page: 899
  year: 2002
  end-page: 917
  ident: b0055
  article-title: Vehicle reidentification and travel time measurement on congested freeways
  publication-title: Transport. Res. Part A: Policy Pract.
– volume: 11
  start-page: 639
  year: 2010
  end-page: 646
  ident: b0075
  article-title: Freeway corridor performance measurement based on vehicle reidentification
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 19
  start-page: 1133
  year: 2011
  end-page: 1156
  ident: b0020
  article-title: Real time queue length estimation for signalized intersections using travel times from mobile sensors
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 8
  start-page: 460
  year: 2007
  end-page: 469
  ident: b0120
  article-title: Anonymous vehicle reidentification using heterogeneous detection systems
  publication-title: IEEE Trans. Intell. Transport. Syst.
– year: 1988
  ident: b0080
  article-title: Numerical Methods and Software
– volume: 17
  start-page: 238
  year: 1980
  end-page: 246
  ident: b0065
  article-title: Monotone piecewise cubic interpolation
  publication-title: SIAM J. Numer. Anal.
– reference: Akcelik, R., 1999. A Queue Model for HCM 2000. ARRB Transportation Research Ltd., Vermont South, Australia.
– reference: Bertini, R.L., Lasky, M., Monsere, C.M., 2005. Validating predicted rural corridor travel times from an automated license plate recognition system: Oregon’s frontier project. In: Proceedings of 2005IEEE Intelligent Transportation Systems, pp. 296–301.
– volume: 12
  start-page: 64
  year: 2008
  end-page: 74
  ident: b0140
  article-title: Real-time monitoring and control on signalized arterials
  publication-title: J. Intell. Transport. Syst.
– reference: Beijing Municipal Committee, July 2012. The Twelfth Five-Year Plan for the Transportation Development of Beijing. Retrieved from <
– year: 2007
  ident: b0105
  article-title: Queuing models for analysis of traffic adaptive signal control
  publication-title: IEEE Trans. Intell. Transport. Syst.
– reference: >.
– reference: May, A.D., 1975. Traffic flow theory-the traffic engineers challenge. In: Proceedings of the Institute of Traffic Engineering, pp. 290–303.
– volume: 46
  start-page: 1097
  year: 2012
  end-page: 1122
  ident: b0070
  article-title: Arterial travel time forecast with streaming data: a hybrid approach of flow modeling and machine learning
  publication-title: Transport. Res. Part B: Methodol.
– year: 2006
  ident: b0040
  article-title: Pattern Recognition and Machine Learning
– volume: 17
  start-page: 586
  year: 2009
  end-page: 606
  ident: b0085
  article-title: Arterial travel time estimation based on vehicle re-identification using wireless magnetic sensors
  publication-title: Transport. Res. Part C: Emerg. Technol.
– reference: Webster, F.V., 1958. Traffic Signal Settings. Road Research Laboratory Technical Paper No. 39, HMSO, London.
– volume: 5
  start-page: 1389
  year: 1995
  end-page: 1399
  ident: b0015
  article-title: Phenomenological study of dynamical model of traffic flow
  publication-title: J. Phys. I
– volume: 34
  start-page: 471
  year: 2000
  end-page: 491
  ident: b0050
  article-title: Optimal signal timing for an oversaturated intersection
  publication-title: Transport. Res. Part B: Methodol.
– volume: 2035
  start-page: 88
  year: 2007
  end-page: 96
  ident: b0135
  article-title: Input-output and hybrid techniques for real-time prediction of delay and maximum queue length at a signalized intersection
  publication-title: Transport. Res. Rec.
– start-page: 485
  year: 2015
  end-page: 493
  ident: b0150
  article-title: Generic first-order car-following models with stop-and-go waves and exclusion
  publication-title: Traffic and Granular Flow’13
– volume: A229
  start-page: 281
  year: 1955
  end-page: 345
  ident: b0090
  article-title: On kinematic waves. I: flood movement in long rivers. II: a theory of traffic flow on long crowded roads
  publication-title: Proc. Roy. Soc. (Lond.)
– reference: Yasin, A.M., Karim, M.R., Abdullah, A.S., 2009. Travel time measurement in real-time using automatic number plate recognition for Malaysian environment. In: Proceedings of the Eastern Asia Society for Transportation Studies, vol. 2009(0), pp. 324–324.
– volume: 13A
  year: 1979
  ident: b0145
  article-title: Modeling and analysis of traffic queue dynamics at signalized intersections
  publication-title: Transport. Res.
– volume: 17
  start-page: 412
  issue: 4
  year: 2009
  ident: 10.1016/j.trc.2015.06.001_b0095
  article-title: Real-time queue length estimation for congested signalized intersections
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2009.02.003
– ident: 10.1016/j.trc.2015.06.001_b0160
– ident: 10.1016/j.trc.2015.06.001_b0005
– volume: A229
  start-page: 281
  year: 1955
  ident: 10.1016/j.trc.2015.06.001_b0090
  article-title: On kinematic waves. I: flood movement in long rivers. II: a theory of traffic flow on long crowded roads
  publication-title: Proc. Roy. Soc. (Lond.)
– issue: 1
  year: 2007
  ident: 10.1016/j.trc.2015.06.001_b0105
  article-title: Queuing models for analysis of traffic adaptive signal control
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2006.888619
– ident: 10.1016/j.trc.2015.06.001_b0035
  doi: 10.1109/ITSC.2005.1520134
– volume: 15
  start-page: 135
  issue: 3
  year: 2007
  ident: 10.1016/j.trc.2015.06.001_b0060
  article-title: Vehicle reidentification and travel time measurement across freeway junctions using the existing detector infrastructure
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2007.03.001
– volume: 17
  start-page: 238
  issue: 2
  year: 1980
  ident: 10.1016/j.trc.2015.06.001_b0065
  article-title: Monotone piecewise cubic interpolation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0717021
– volume: 17
  start-page: 586
  issue: 6
  year: 2009
  ident: 10.1016/j.trc.2015.06.001_b0085
  article-title: Arterial travel time estimation based on vehicle re-identification using wireless magnetic sensors
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2009.04.003
– volume: 36
  start-page: 899
  year: 2002
  ident: 10.1016/j.trc.2015.06.001_b0055
  article-title: Vehicle reidentification and travel time measurement on congested freeways
  publication-title: Transport. Res. Part A: Policy Pract.
– start-page: 485
  year: 2015
  ident: 10.1016/j.trc.2015.06.001_b0150
  article-title: Generic first-order car-following models with stop-and-go waves and exclusion
– year: 2006
  ident: 10.1016/j.trc.2015.06.001_b0040
– volume: 4
  start-page: 42
  year: 1956
  ident: 10.1016/j.trc.2015.06.001_b0125
  article-title: Shock waves on the highway
  publication-title: Oper. Res.
  doi: 10.1287/opre.4.1.42
– year: 1985
  ident: 10.1016/j.trc.2015.06.001_b0030
– volume: 5
  start-page: 1389
  issue: 11
  year: 1995
  ident: 10.1016/j.trc.2015.06.001_b0015
  article-title: Phenomenological study of dynamical model of traffic flow
  publication-title: J. Phys. I
– ident: 10.1016/j.trc.2015.06.001_b0025
– volume: 9
  start-page: 209
  issue: 2
  year: 1961
  ident: 10.1016/j.trc.2015.06.001_b0110
  article-title: Nonlinear effects in the dynamics of car following
  publication-title: Oper. Res.
  doi: 10.1287/opre.9.2.209
– volume: 371
  issue: 1984
  year: 2013
  ident: 10.1016/j.trc.2015.06.001_b0130
  article-title: Gaussian processes for time-series modelling
  publication-title: Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci.
– volume: 11
  start-page: 639
  issue: 3
  year: 2010
  ident: 10.1016/j.trc.2015.06.001_b0075
  article-title: Freeway corridor performance measurement based on vehicle reidentification
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2010.2049105
– start-page: 118
  year: 1997
  ident: 10.1016/j.trc.2015.06.001_b0045
  article-title: Simulation optimization: methods and applications
– year: 1988
  ident: 10.1016/j.trc.2015.06.001_b0080
– volume: 2035
  start-page: 88
  year: 2007
  ident: 10.1016/j.trc.2015.06.001_b0135
  article-title: Input-output and hybrid techniques for real-time prediction of delay and maximum queue length at a signalized intersection
  publication-title: Transport. Res. Rec.
  doi: 10.3141/2035-10
– volume: 16
  start-page: 18
  issue: 1
  year: 2008
  ident: 10.1016/j.trc.2015.06.001_b0155
  article-title: Real-time estimation of vehicle-count within signalized links
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2007.06.002
– ident: 10.1016/j.trc.2015.06.001_b0010
– volume: 19
  start-page: 1133
  issue: 6
  year: 2011
  ident: 10.1016/j.trc.2015.06.001_b0020
  article-title: Real time queue length estimation for signalized intersections using travel times from mobile sensors
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2011.01.002
– volume: 8
  start-page: 460
  issue: 3
  year: 2007
  ident: 10.1016/j.trc.2015.06.001_b0120
  article-title: Anonymous vehicle reidentification using heterogeneous detection systems
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2007.899720
– volume: 12
  start-page: 64
  issue: 2
  year: 2008
  ident: 10.1016/j.trc.2015.06.001_b0140
  article-title: Real-time monitoring and control on signalized arterials
  publication-title: J. Intell. Transport. Syst.
  doi: 10.1080/15472450802023337
– ident: 10.1016/j.trc.2015.06.001_b0165
– volume: 7
  start-page: 223
  year: 1965
  ident: 10.1016/j.trc.2015.06.001_b0115
  article-title: Approximation methods for queues with application to the fixed-cycle traffic light
  publication-title: SIAM Rev.
  doi: 10.1137/1007038
– volume: 13A
  year: 1979
  ident: 10.1016/j.trc.2015.06.001_b0145
  article-title: Modeling and analysis of traffic queue dynamics at signalized intersections
  publication-title: Transport. Res.
– volume: 46
  start-page: 1097
  issue: 9
  year: 2012
  ident: 10.1016/j.trc.2015.06.001_b0070
  article-title: Arterial travel time forecast with streaming data: a hybrid approach of flow modeling and machine learning
  publication-title: Transport. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2012.03.006
– ident: 10.1016/j.trc.2015.06.001_b0100
– volume: 34
  start-page: 471
  issue: 6
  year: 2000
  ident: 10.1016/j.trc.2015.06.001_b0050
  article-title: Optimal signal timing for an oversaturated intersection
  publication-title: Transport. Res. Part B: Methodol.
  doi: 10.1016/S0191-2615(99)00034-X
SSID ssj0001957
Score 2.464566
Snippet •Utilizing license plate recognition (LPR) data for arterial queue length estimation.•Hybrid framework combines both machine learning techniques and traffic...
License plate recognition (LPR) data are emerging data sources that provide rich information in estimating the traffic conditions of urban arterials. While...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 85
SubjectTerms Boundary constrained car-following model
China
Cumulative arrival–departure curve
Data sources
Estimating
Gaussian process
Ground truth
Lane-based estimation
Lanes
License plate recognition data
Queues
Real time
Real-time queue length estimation
Recognition
Title Lane-based real-time queue length estimation using license plate recognition data
URI https://dx.doi.org/10.1016/j.trc.2015.06.001
https://www.proquest.com/docview/1778038248
Volume 57
WOSCitedRecordID wos000359175900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS9xAFB62Wmh9KK2tVFvLFPrUkCWXSTLzKKJoEelFS96GZDJBdImym4h97D_vmeuGLUp96Et2mU2G7Jwv3zk5cy4IfWpqRimTeZgUFQlJRmVIZc7CNiXAhXnCiOlaclKcntKyZF8nk98uF-Z2VnQdvbtjN_9V1DAGwlaps48Qt58UBuA7CB2OIHY4_pPgT6pOhko5qbyUahaq7vEBsP8gA9U1pb8IVGENk7EYDNpVMAO26BZStZTuVRsVG1MEv9vUNW-_-lro5nJbKuhiCpbovA_2NbOqhE6dhOW89qM4ReWfVieVgMpfwygeSAcVfB9UjzE3dn51NSwGkwn_o9Kll35Ox16KOPMxct7dmKswi6gcM68pTW2p03TusUo41mnYf_O7cTVcTvu5Kj8ZZ1Ozl7RUZm4Df0XH-chDF9R2yWEKrqbgJrDvCVpPiowBMa7vHR-UX7w6j5kpF-v-gNsa10GCK_dxn3Gzoua17XL2Er2wLx14z4DlFZrIbhM9cznpi020MSpL-Rp9W0IIewhhDSFsIISXEMIaQthCCGsI4RGEsILQG3R-eHC2fxTa1huhSDPah3WdUrBtZCZZU7eUxJEAu76N05qQNIJBCa-tpIWPWIhINLSWeVKA-Z7mYG8D52-hte66k28RziPRRlUVMdISUlFSizrNi1Y2WZo1DRPbKHJrxoWtS6_ao8z4vbLaRp_9JTemKMtDJxMnCG6tSmMtcgDVQ5d9dELjwLhqGw3W_npY8LgoYG1oQujOY-7jHXq-fDDeo7V-Pshd9FTcwvMz_2BR9wcUu6W6
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lane-based+real-time+queue+length+estimation+using+license+plate+recognition+data&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Zhan%2C+Xianyuan&rft.au=Li%2C+Ruimin&rft.au=Ukkusuri%2C+Satish+V.&rft.date=2015-08-01&rft.issn=0968-090X&rft.volume=57&rft.spage=85&rft.epage=102&rft_id=info:doi/10.1016%2Fj.trc.2015.06.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trc_2015_06_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon