Lane-based real-time queue length estimation using license plate recognition data
•Utilizing license plate recognition (LPR) data for arterial queue length estimation.•Hybrid framework combines both machine learning techniques and traffic flow theory.•Detailed lane level queue length estimation can be obtained efficiently in real time.•Real world LPR data from two field experimen...
Uložené v:
| Vydané v: | Transportation research. Part C, Emerging technologies Ročník 57; s. 85 - 102 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier India Pvt Ltd
01.08.2015
|
| Predmet: | |
| ISSN: | 0968-090X, 1879-2359 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Utilizing license plate recognition (LPR) data for arterial queue length estimation.•Hybrid framework combines both machine learning techniques and traffic flow theory.•Detailed lane level queue length estimation can be obtained efficiently in real time.•Real world LPR data from two field experiments are used for testing and validation.•Reasonable estimation accuracy achieved even using LPR data without high precision.
License plate recognition (LPR) data are emerging data sources that provide rich information in estimating the traffic conditions of urban arterials. While large-scale LPR system is not common in US, last few years have seen rapid developments and implementations in many other parts of world (e.g. China, Thailand and Middle East). Due to privacy issues, LPR data are seldom available to research communities. However, when available, this data source can be valuable in estimating real-time operational metrics in transportation systems. This paper proposes a lane-based real-time queue length estimation model using the license plate recognition (LPR) data. In the model, an interpolation method based on Gaussian process is developed to reconstruct the equivalent cumulative arrival–departure curve for each lane. The missing information for unrecognized or unmatched vehicles is obtained from the reconstructed arrival curve. With the complete arrival and departure information, a car-following based simulation scheme is applied to estimate the real-time queue length for each lane. The proposed model is validated using ground truth information of the maximum queue lengths from the city of Langfang in China. The results show that the model can capture the variations in queue lengths in the ground truth data, and the maximum queue length for each signal cycle can be estimated with a reasonable accuracy. The estimated queue length information using the proposed model can serve as a useful performance metric for various real-time traffic control applications. |
|---|---|
| AbstractList | •Utilizing license plate recognition (LPR) data for arterial queue length estimation.•Hybrid framework combines both machine learning techniques and traffic flow theory.•Detailed lane level queue length estimation can be obtained efficiently in real time.•Real world LPR data from two field experiments are used for testing and validation.•Reasonable estimation accuracy achieved even using LPR data without high precision.
License plate recognition (LPR) data are emerging data sources that provide rich information in estimating the traffic conditions of urban arterials. While large-scale LPR system is not common in US, last few years have seen rapid developments and implementations in many other parts of world (e.g. China, Thailand and Middle East). Due to privacy issues, LPR data are seldom available to research communities. However, when available, this data source can be valuable in estimating real-time operational metrics in transportation systems. This paper proposes a lane-based real-time queue length estimation model using the license plate recognition (LPR) data. In the model, an interpolation method based on Gaussian process is developed to reconstruct the equivalent cumulative arrival–departure curve for each lane. The missing information for unrecognized or unmatched vehicles is obtained from the reconstructed arrival curve. With the complete arrival and departure information, a car-following based simulation scheme is applied to estimate the real-time queue length for each lane. The proposed model is validated using ground truth information of the maximum queue lengths from the city of Langfang in China. The results show that the model can capture the variations in queue lengths in the ground truth data, and the maximum queue length for each signal cycle can be estimated with a reasonable accuracy. The estimated queue length information using the proposed model can serve as a useful performance metric for various real-time traffic control applications. License plate recognition (LPR) data are emerging data sources that provide rich information in estimating the traffic conditions of urban arterials. While large-scale LPR system is not common in US, last few years have seen rapid developments and implementations in many other parts of world (e.g. China, Thailand and Middle East). Due to privacy issues, LPR data are seldom available to research communities. However, when available, this data source can be valuable in estimating real-time operational metrics in transportation systems. This paper proposes a lane-based real-time queue length estimation model using the license plate recognition (LPR) data. In the model, an interpolation method based on Gaussian process is developed to reconstruct the equivalent cumulative arrival-departure curve for each lane. The missing information for unrecognized or unmatched vehicles is obtained from the reconstructed arrival curve. With the complete arrival and departure information, a car-following based simulation scheme is applied to estimate the real-time queue length for each lane. The proposed model is validated using ground truth information of the maximum queue lengths from the city of Langfang in China. The results show that the model can capture the variations in queue lengths in the ground truth data, and the maximum queue length for each signal cycle can be estimated with a reasonable accuracy. The estimated queue length information using the proposed model can serve as a useful performance metric for various real-time traffic control applications. |
| Author | Li, Ruimin Zhan, Xianyuan Ukkusuri, Satish V. |
| Author_xml | – sequence: 1 givenname: Xianyuan surname: Zhan fullname: Zhan, Xianyuan email: zhanxianyuan@purdue.edu organization: Lyles School of Civil Engineering, Purdue University, 550 Stadium Drive, West Lafayette, IN 47907, USA – sequence: 2 givenname: Ruimin surname: Li fullname: Li, Ruimin email: lrmin@tsinghua.edu.cn organization: Department of Civil Engineering, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Satish V. surname: Ukkusuri fullname: Ukkusuri, Satish V. email: sukkusur@purdue.edu organization: Lyles School of Civil Engineering, Purdue University, 550 Stadium Drive, West Lafayette, IN 47907, USA |
| BookMark | eNp9kE9LwzAYh4MouE0_gLcevbS-aZs2wZMM_8FABAVvIU3fzowsnUkm-O3NNk8ednrhze9J8num5NSNDgm5olBQoM3NqoheFyVQVkBTANATMqG8FXlZMXFKJiAanoOAj3MyDWEFKSFYOyGvC-Uw71TAPvOobB7NGrOvLW4xs-iW8TPDkHYqmtFl22DcMrNGowuYbayKmCg9Lp3Zn_cqqgtyNigb8PJvzsj7w_3b_ClfvDw-z-8Wua4Yj3nXVRyqBhmKvht4TUGzlg206uq6grTEuuT1kAbVGnTPO2zKFjirGlGKVlQzcn24d-PH9N8Q5doEjdamQuM2SNq26QFe1jxF20NU-zEEj4PUJu4bRa-MlRTkTqJcySRR7iRKaGRSlEj6j9z4JMP_HGVuDwym9t8GvQzaoNPYm-Qqyn40R-hfcWGMtA |
| CitedBy_id | crossref_primary_10_1186_s12544_020_00405_x crossref_primary_10_1109_TKDE_2016_2621104 crossref_primary_10_1038_s41598_024_80563_3 crossref_primary_10_1109_TITS_2024_3491433 crossref_primary_10_1016_j_ins_2019_05_032 crossref_primary_10_1016_j_neucom_2020_05_038 crossref_primary_10_1007_s11067_021_09542_9 crossref_primary_10_1049_iet_its_2018_5073 crossref_primary_10_1016_j_inffus_2023_102030 crossref_primary_10_1109_MITS_2021_3051489 crossref_primary_10_1109_ACCESS_2019_2933663 crossref_primary_10_1049_iet_its_2017_0138 crossref_primary_10_1109_TITS_2024_3360090 crossref_primary_10_1080_21680566_2023_2165191 crossref_primary_10_1155_2022_9568723 crossref_primary_10_3390_electronics14173464 crossref_primary_10_1016_j_procs_2021_02_089 crossref_primary_10_1016_j_physa_2024_129790 crossref_primary_10_1016_j_trc_2019_09_006 crossref_primary_10_1016_j_eswa_2021_115618 crossref_primary_10_1080_23249935_2025_2525291 crossref_primary_10_1007_s12652_022_03892_z crossref_primary_10_1109_MITS_2019_2919541 crossref_primary_10_1016_j_aap_2020_105703 crossref_primary_10_1016_j_physa_2023_128995 crossref_primary_10_1155_2023_5070504 crossref_primary_10_1016_j_trc_2020_102739 crossref_primary_10_1016_j_autcon_2015_12_007 crossref_primary_10_1016_j_trc_2025_105029 crossref_primary_10_1109_TITS_2017_2650947 crossref_primary_10_1109_TITS_2022_3191091 crossref_primary_10_3390_math13152536 crossref_primary_10_1007_s13177_020_00225_2 crossref_primary_10_1080_15472450_2024_2392720 crossref_primary_10_1016_j_trc_2018_11_004 crossref_primary_10_1088_1742_6596_1549_4_042077 crossref_primary_10_1016_j_physa_2022_128243 crossref_primary_10_3390_su12083074 crossref_primary_10_1016_j_physa_2022_127079 crossref_primary_10_1109_TITS_2024_3358625 crossref_primary_10_1007_s40030_022_00698_2 crossref_primary_10_3390_info11050267 crossref_primary_10_1038_s41597_022_01850_0 crossref_primary_10_3390_s21010195 crossref_primary_10_1016_j_trb_2020_08_009 crossref_primary_10_1145_3715902 crossref_primary_10_1109_TITS_2018_2866936 crossref_primary_10_1155_2022_2507033 crossref_primary_10_1016_j_trc_2019_10_003 crossref_primary_10_1016_j_trc_2019_10_002 crossref_primary_10_1016_j_trc_2020_102660 crossref_primary_10_1080_23249935_2021_2012299 crossref_primary_10_1080_21680566_2021_1991504 crossref_primary_10_1080_19439962_2019_1673859 crossref_primary_10_3390_su11216152 crossref_primary_10_3390_ijgi10030177 crossref_primary_10_1109_TBDATA_2019_2935057 crossref_primary_10_1109_TITS_2017_2780093 crossref_primary_10_1109_TITS_2022_3168865 crossref_primary_10_1080_23249935_2025_2517306 crossref_primary_10_1080_15472450_2020_1732217 crossref_primary_10_1109_TITS_2019_2919595 crossref_primary_10_1016_j_trc_2019_04_022 crossref_primary_10_1109_TITS_2019_2932785 crossref_primary_10_1016_j_trc_2019_06_009 crossref_primary_10_1016_j_physa_2019_01_139 crossref_primary_10_1080_21680566_2024_2363273 crossref_primary_10_1155_2022_7729068 crossref_primary_10_1016_j_jclepro_2021_129386 crossref_primary_10_1155_2022_5119209 crossref_primary_10_26599_JICV_2023_9210036 crossref_primary_10_1016_j_trc_2020_102870 crossref_primary_10_1016_j_trc_2021_103142 crossref_primary_10_1155_2017_1738085 crossref_primary_10_1155_2018_5020518 crossref_primary_10_1016_j_trc_2017_07_006 |
| Cites_doi | 10.1016/j.trc.2009.02.003 10.1109/TITS.2006.888619 10.1109/ITSC.2005.1520134 10.1016/j.trc.2007.03.001 10.1137/0717021 10.1016/j.trc.2009.04.003 10.1287/opre.4.1.42 10.1287/opre.9.2.209 10.1109/TITS.2010.2049105 10.3141/2035-10 10.1016/j.trc.2007.06.002 10.1016/j.trc.2011.01.002 10.1109/TITS.2007.899720 10.1080/15472450802023337 10.1137/1007038 10.1016/j.trb.2012.03.006 10.1016/S0191-2615(99)00034-X |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd |
| Copyright_xml | – notice: 2015 Elsevier Ltd |
| DBID | AAYXX CITATION 8FD F28 FR3 KR7 |
| DOI | 10.1016/j.trc.2015.06.001 |
| DatabaseName | CrossRef Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-2359 |
| EndPage | 102 |
| ExternalDocumentID | 10_1016_j_trc_2015_06_001 S0968090X15002168 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD 8FD F28 FR3 KR7 |
| ID | FETCH-LOGICAL-c358t-bb38036e5e9dbf8410c575f13b4430e9de4284fde41cc0cd8be62708536929793 |
| ISICitedReferencesCount | 99 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359175900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0968-090X |
| IngestDate | Sat Sep 27 16:23:00 EDT 2025 Sat Nov 29 03:00:57 EST 2025 Tue Nov 18 21:38:40 EST 2025 Fri Feb 23 02:16:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Real-time queue length estimation Boundary constrained car-following model Gaussian process Cumulative arrival–departure curve License plate recognition data Lane-based estimation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c358t-bb38036e5e9dbf8410c575f13b4430e9de4284fde41cc0cd8be62708536929793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1778038248 |
| PQPubID | 23500 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_1778038248 crossref_citationtrail_10_1016_j_trc_2015_06_001 crossref_primary_10_1016_j_trc_2015_06_001 elsevier_sciencedirect_doi_10_1016_j_trc_2015_06_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-08-01 |
| PublicationDateYYYYMMDD | 2015-08-01 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Transportation research. Part C, Emerging technologies |
| PublicationYear | 2015 |
| Publisher | Elsevier India Pvt Ltd |
| Publisher_xml | – name: Elsevier India Pvt Ltd |
| References | Akcelik, R., 1999. A Queue Model for HCM 2000. ARRB Transportation Research Ltd., Vermont South, Australia. Kwong, Kavaler, Rajagopal, Varaiya (b0085) 2009; 17 Carson, Maria (b0045) 1997 Berger (b0030) 1985 Oh, Ritchie, Jeng (b0120) 2007; 8 Beijing Municipal Committee, July 2012. The Twelfth Five-Year Plan for the Transportation Development of Beijing. Retrieved from Newell (b0110) 1961; 9 Richards (b0125) 1956; 4 Sharma, Bullock, Bonneson (b0135) 2007; 2035 Ban, Hao, Sun (b0020) 2011; 19 Chang, Lin (b0050) 2000; 34 Mirchandani, Zou (b0105) 2007 Hofleitner, Herring, Bayen (b0070) 2012; 46 Coifman, Cassidy (b0055) 2002; 36 Newell (b0115) 1965; 7 Coifman, Krishnamurthy (b0060) 2007; 15 May, A.D., 1975. Traffic flow theory-the traffic engineers challenge. In: Proceedings of the Institute of Traffic Engineering, pp. 290–303. Jeng, Tok, Ritchie (b0075) 2010; 11 Vigos, Papageorgiou, Wang (b0155) 2008; 16 Bertini, R.L., Lasky, M., Monsere, C.M., 2005. Validating predicted rural corridor travel times from an automated license plate recognition system: Oregon’s frontier project. In: Proceedings of 2005IEEE Intelligent Transportation Systems, pp. 296–301. Bando, Hasebe, Nakanishi, Nakayama, Shibata, Sugiyama (b0015) 1995; 5 Webster, F.V., 1958. Traffic Signal Settings. Road Research Laboratory Technical Paper No. 39, HMSO, London. . Kahaner, Moler, Nash (b0080) 1988 Skabardonis, Geroliminis (b0140) 2008; 12 Roberts, Osborne, Ebden, Reece, Gibson, Aigrain (b0130) 2013; 371 Tordeux, Lassarre, Roussignol, Aguiléra (b0150) 2015 Lighthill, Whitham (b0090) 1955; A229 Bishop (b0040) 2006 Fritsch, Carlson (b0065) 1980; 17 Yasin, A.M., Karim, M.R., Abdullah, A.S., 2009. Travel time measurement in real-time using automatic number plate recognition for Malaysian environment. In: Proceedings of the Eastern Asia Society for Transportation Studies, vol. 2009(0), pp. 324–324. Stephanopoulos, Michalopoulos (b0145) 1979; 13A Liu, Wu, Ma, Hu (b0095) 2009; 17 Balke, K., Charara, H., Parker, R., 2005. Development of a Traffic Signal Performance Measurement System (TSPMS). Texas Transportation Institute, Report 0-4422-2. 10.1016/j.trc.2015.06.001_b0165 Richards (10.1016/j.trc.2015.06.001_b0125) 1956; 4 Roberts (10.1016/j.trc.2015.06.001_b0130) 2013; 371 10.1016/j.trc.2015.06.001_b0160 Newell (10.1016/j.trc.2015.06.001_b0115) 1965; 7 Skabardonis (10.1016/j.trc.2015.06.001_b0140) 2008; 12 Coifman (10.1016/j.trc.2015.06.001_b0060) 2007; 15 Bando (10.1016/j.trc.2015.06.001_b0015) 1995; 5 Oh (10.1016/j.trc.2015.06.001_b0120) 2007; 8 Ban (10.1016/j.trc.2015.06.001_b0020) 2011; 19 Sharma (10.1016/j.trc.2015.06.001_b0135) 2007; 2035 Hofleitner (10.1016/j.trc.2015.06.001_b0070) 2012; 46 10.1016/j.trc.2015.06.001_b0005 10.1016/j.trc.2015.06.001_b0025 Carson (10.1016/j.trc.2015.06.001_b0045) 1997 10.1016/j.trc.2015.06.001_b0100 Bishop (10.1016/j.trc.2015.06.001_b0040) 2006 10.1016/j.trc.2015.06.001_b0010 Mirchandani (10.1016/j.trc.2015.06.001_b0105) 2007 Newell (10.1016/j.trc.2015.06.001_b0110) 1961; 9 Kahaner (10.1016/j.trc.2015.06.001_b0080) 1988 Coifman (10.1016/j.trc.2015.06.001_b0055) 2002; 36 Jeng (10.1016/j.trc.2015.06.001_b0075) 2010; 11 Vigos (10.1016/j.trc.2015.06.001_b0155) 2008; 16 Stephanopoulos (10.1016/j.trc.2015.06.001_b0145) 1979; 13A Kwong (10.1016/j.trc.2015.06.001_b0085) 2009; 17 Liu (10.1016/j.trc.2015.06.001_b0095) 2009; 17 Lighthill (10.1016/j.trc.2015.06.001_b0090) 1955; A229 Berger (10.1016/j.trc.2015.06.001_b0030) 1985 Chang (10.1016/j.trc.2015.06.001_b0050) 2000; 34 Fritsch (10.1016/j.trc.2015.06.001_b0065) 1980; 17 10.1016/j.trc.2015.06.001_b0035 Tordeux (10.1016/j.trc.2015.06.001_b0150) 2015 |
| References_xml | – volume: 4 start-page: 42 year: 1956 end-page: 51 ident: b0125 article-title: Shock waves on the highway publication-title: Oper. Res. – volume: 7 start-page: 223 year: 1965 end-page: 240 ident: b0115 article-title: Approximation methods for queues with application to the fixed-cycle traffic light publication-title: SIAM Rev. – volume: 9 start-page: 209 year: 1961 end-page: 229 ident: b0110 article-title: Nonlinear effects in the dynamics of car following publication-title: Oper. Res. – volume: 17 start-page: 412 year: 2009 end-page: 427 ident: b0095 article-title: Real-time queue length estimation for congested signalized intersections publication-title: Transport. Res. Part C: Emerg. Technol. – volume: 371 year: 2013 ident: b0130 article-title: Gaussian processes for time-series modelling publication-title: Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. – year: 1985 ident: b0030 article-title: Statistical Decision Theory and Bayesian Analysis – start-page: 118 year: 1997 end-page: 126 ident: b0045 article-title: Simulation optimization: methods and applications publication-title: Proceedings of the 29th Conference on Winter Simulation – volume: 15 start-page: 135 year: 2007 end-page: 153 ident: b0060 article-title: Vehicle reidentification and travel time measurement across freeway junctions using the existing detector infrastructure publication-title: Transport. Res. Part C: Emerg. Technol. – reference: Balke, K., Charara, H., Parker, R., 2005. Development of a Traffic Signal Performance Measurement System (TSPMS). Texas Transportation Institute, Report 0-4422-2. – volume: 16 start-page: 18 year: 2008 end-page: 35 ident: b0155 article-title: Real-time estimation of vehicle-count within signalized links publication-title: Transport. Res. Part C: Emerg. Technol. – volume: 36 start-page: 899 year: 2002 end-page: 917 ident: b0055 article-title: Vehicle reidentification and travel time measurement on congested freeways publication-title: Transport. Res. Part A: Policy Pract. – volume: 11 start-page: 639 year: 2010 end-page: 646 ident: b0075 article-title: Freeway corridor performance measurement based on vehicle reidentification publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 19 start-page: 1133 year: 2011 end-page: 1156 ident: b0020 article-title: Real time queue length estimation for signalized intersections using travel times from mobile sensors publication-title: Transport. Res. Part C: Emerg. Technol. – volume: 8 start-page: 460 year: 2007 end-page: 469 ident: b0120 article-title: Anonymous vehicle reidentification using heterogeneous detection systems publication-title: IEEE Trans. Intell. Transport. Syst. – year: 1988 ident: b0080 article-title: Numerical Methods and Software – volume: 17 start-page: 238 year: 1980 end-page: 246 ident: b0065 article-title: Monotone piecewise cubic interpolation publication-title: SIAM J. Numer. Anal. – reference: Akcelik, R., 1999. A Queue Model for HCM 2000. ARRB Transportation Research Ltd., Vermont South, Australia. – reference: Bertini, R.L., Lasky, M., Monsere, C.M., 2005. Validating predicted rural corridor travel times from an automated license plate recognition system: Oregon’s frontier project. In: Proceedings of 2005IEEE Intelligent Transportation Systems, pp. 296–301. – volume: 12 start-page: 64 year: 2008 end-page: 74 ident: b0140 article-title: Real-time monitoring and control on signalized arterials publication-title: J. Intell. Transport. Syst. – reference: Beijing Municipal Committee, July 2012. The Twelfth Five-Year Plan for the Transportation Development of Beijing. Retrieved from < – year: 2007 ident: b0105 article-title: Queuing models for analysis of traffic adaptive signal control publication-title: IEEE Trans. Intell. Transport. Syst. – reference: >. – reference: May, A.D., 1975. Traffic flow theory-the traffic engineers challenge. In: Proceedings of the Institute of Traffic Engineering, pp. 290–303. – volume: 46 start-page: 1097 year: 2012 end-page: 1122 ident: b0070 article-title: Arterial travel time forecast with streaming data: a hybrid approach of flow modeling and machine learning publication-title: Transport. Res. Part B: Methodol. – year: 2006 ident: b0040 article-title: Pattern Recognition and Machine Learning – volume: 17 start-page: 586 year: 2009 end-page: 606 ident: b0085 article-title: Arterial travel time estimation based on vehicle re-identification using wireless magnetic sensors publication-title: Transport. Res. Part C: Emerg. Technol. – reference: Webster, F.V., 1958. Traffic Signal Settings. Road Research Laboratory Technical Paper No. 39, HMSO, London. – volume: 5 start-page: 1389 year: 1995 end-page: 1399 ident: b0015 article-title: Phenomenological study of dynamical model of traffic flow publication-title: J. Phys. I – volume: 34 start-page: 471 year: 2000 end-page: 491 ident: b0050 article-title: Optimal signal timing for an oversaturated intersection publication-title: Transport. Res. Part B: Methodol. – volume: 2035 start-page: 88 year: 2007 end-page: 96 ident: b0135 article-title: Input-output and hybrid techniques for real-time prediction of delay and maximum queue length at a signalized intersection publication-title: Transport. Res. Rec. – start-page: 485 year: 2015 end-page: 493 ident: b0150 article-title: Generic first-order car-following models with stop-and-go waves and exclusion publication-title: Traffic and Granular Flow’13 – volume: A229 start-page: 281 year: 1955 end-page: 345 ident: b0090 article-title: On kinematic waves. I: flood movement in long rivers. II: a theory of traffic flow on long crowded roads publication-title: Proc. Roy. Soc. (Lond.) – reference: Yasin, A.M., Karim, M.R., Abdullah, A.S., 2009. Travel time measurement in real-time using automatic number plate recognition for Malaysian environment. In: Proceedings of the Eastern Asia Society for Transportation Studies, vol. 2009(0), pp. 324–324. – volume: 13A year: 1979 ident: b0145 article-title: Modeling and analysis of traffic queue dynamics at signalized intersections publication-title: Transport. Res. – volume: 17 start-page: 412 issue: 4 year: 2009 ident: 10.1016/j.trc.2015.06.001_b0095 article-title: Real-time queue length estimation for congested signalized intersections publication-title: Transport. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2009.02.003 – ident: 10.1016/j.trc.2015.06.001_b0160 – ident: 10.1016/j.trc.2015.06.001_b0005 – volume: A229 start-page: 281 year: 1955 ident: 10.1016/j.trc.2015.06.001_b0090 article-title: On kinematic waves. I: flood movement in long rivers. II: a theory of traffic flow on long crowded roads publication-title: Proc. Roy. Soc. (Lond.) – issue: 1 year: 2007 ident: 10.1016/j.trc.2015.06.001_b0105 article-title: Queuing models for analysis of traffic adaptive signal control publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2006.888619 – ident: 10.1016/j.trc.2015.06.001_b0035 doi: 10.1109/ITSC.2005.1520134 – volume: 15 start-page: 135 issue: 3 year: 2007 ident: 10.1016/j.trc.2015.06.001_b0060 article-title: Vehicle reidentification and travel time measurement across freeway junctions using the existing detector infrastructure publication-title: Transport. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2007.03.001 – volume: 17 start-page: 238 issue: 2 year: 1980 ident: 10.1016/j.trc.2015.06.001_b0065 article-title: Monotone piecewise cubic interpolation publication-title: SIAM J. Numer. Anal. doi: 10.1137/0717021 – volume: 17 start-page: 586 issue: 6 year: 2009 ident: 10.1016/j.trc.2015.06.001_b0085 article-title: Arterial travel time estimation based on vehicle re-identification using wireless magnetic sensors publication-title: Transport. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2009.04.003 – volume: 36 start-page: 899 year: 2002 ident: 10.1016/j.trc.2015.06.001_b0055 article-title: Vehicle reidentification and travel time measurement on congested freeways publication-title: Transport. Res. Part A: Policy Pract. – start-page: 485 year: 2015 ident: 10.1016/j.trc.2015.06.001_b0150 article-title: Generic first-order car-following models with stop-and-go waves and exclusion – year: 2006 ident: 10.1016/j.trc.2015.06.001_b0040 – volume: 4 start-page: 42 year: 1956 ident: 10.1016/j.trc.2015.06.001_b0125 article-title: Shock waves on the highway publication-title: Oper. Res. doi: 10.1287/opre.4.1.42 – year: 1985 ident: 10.1016/j.trc.2015.06.001_b0030 – volume: 5 start-page: 1389 issue: 11 year: 1995 ident: 10.1016/j.trc.2015.06.001_b0015 article-title: Phenomenological study of dynamical model of traffic flow publication-title: J. Phys. I – ident: 10.1016/j.trc.2015.06.001_b0025 – volume: 9 start-page: 209 issue: 2 year: 1961 ident: 10.1016/j.trc.2015.06.001_b0110 article-title: Nonlinear effects in the dynamics of car following publication-title: Oper. Res. doi: 10.1287/opre.9.2.209 – volume: 371 issue: 1984 year: 2013 ident: 10.1016/j.trc.2015.06.001_b0130 article-title: Gaussian processes for time-series modelling publication-title: Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. – volume: 11 start-page: 639 issue: 3 year: 2010 ident: 10.1016/j.trc.2015.06.001_b0075 article-title: Freeway corridor performance measurement based on vehicle reidentification publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2010.2049105 – start-page: 118 year: 1997 ident: 10.1016/j.trc.2015.06.001_b0045 article-title: Simulation optimization: methods and applications – year: 1988 ident: 10.1016/j.trc.2015.06.001_b0080 – volume: 2035 start-page: 88 year: 2007 ident: 10.1016/j.trc.2015.06.001_b0135 article-title: Input-output and hybrid techniques for real-time prediction of delay and maximum queue length at a signalized intersection publication-title: Transport. Res. Rec. doi: 10.3141/2035-10 – volume: 16 start-page: 18 issue: 1 year: 2008 ident: 10.1016/j.trc.2015.06.001_b0155 article-title: Real-time estimation of vehicle-count within signalized links publication-title: Transport. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2007.06.002 – ident: 10.1016/j.trc.2015.06.001_b0010 – volume: 19 start-page: 1133 issue: 6 year: 2011 ident: 10.1016/j.trc.2015.06.001_b0020 article-title: Real time queue length estimation for signalized intersections using travel times from mobile sensors publication-title: Transport. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2011.01.002 – volume: 8 start-page: 460 issue: 3 year: 2007 ident: 10.1016/j.trc.2015.06.001_b0120 article-title: Anonymous vehicle reidentification using heterogeneous detection systems publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2007.899720 – volume: 12 start-page: 64 issue: 2 year: 2008 ident: 10.1016/j.trc.2015.06.001_b0140 article-title: Real-time monitoring and control on signalized arterials publication-title: J. Intell. Transport. Syst. doi: 10.1080/15472450802023337 – ident: 10.1016/j.trc.2015.06.001_b0165 – volume: 7 start-page: 223 year: 1965 ident: 10.1016/j.trc.2015.06.001_b0115 article-title: Approximation methods for queues with application to the fixed-cycle traffic light publication-title: SIAM Rev. doi: 10.1137/1007038 – volume: 13A year: 1979 ident: 10.1016/j.trc.2015.06.001_b0145 article-title: Modeling and analysis of traffic queue dynamics at signalized intersections publication-title: Transport. Res. – volume: 46 start-page: 1097 issue: 9 year: 2012 ident: 10.1016/j.trc.2015.06.001_b0070 article-title: Arterial travel time forecast with streaming data: a hybrid approach of flow modeling and machine learning publication-title: Transport. Res. Part B: Methodol. doi: 10.1016/j.trb.2012.03.006 – ident: 10.1016/j.trc.2015.06.001_b0100 – volume: 34 start-page: 471 issue: 6 year: 2000 ident: 10.1016/j.trc.2015.06.001_b0050 article-title: Optimal signal timing for an oversaturated intersection publication-title: Transport. Res. Part B: Methodol. doi: 10.1016/S0191-2615(99)00034-X |
| SSID | ssj0001957 |
| Score | 2.464566 |
| Snippet | •Utilizing license plate recognition (LPR) data for arterial queue length estimation.•Hybrid framework combines both machine learning techniques and traffic... License plate recognition (LPR) data are emerging data sources that provide rich information in estimating the traffic conditions of urban arterials. While... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 85 |
| SubjectTerms | Boundary constrained car-following model China Cumulative arrival–departure curve Data sources Estimating Gaussian process Ground truth Lane-based estimation Lanes License plate recognition data Queues Real time Real-time queue length estimation Recognition |
| Title | Lane-based real-time queue length estimation using license plate recognition data |
| URI | https://dx.doi.org/10.1016/j.trc.2015.06.001 https://www.proquest.com/docview/1778038248 |
| Volume | 57 |
| WOSCitedRecordID | wos000359175900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS9xAFB62Wmh9KK2tVFvLFPrUkCWXSTLzKKJoEelFS96GZDJBdImym4h97D_vmeuGLUp96Et2mU2G7Jwv3zk5cy4IfWpqRimTeZgUFQlJRmVIZc7CNiXAhXnCiOlaclKcntKyZF8nk98uF-Z2VnQdvbtjN_9V1DAGwlaps48Qt58UBuA7CB2OIHY4_pPgT6pOhko5qbyUahaq7vEBsP8gA9U1pb8IVGENk7EYDNpVMAO26BZStZTuVRsVG1MEv9vUNW-_-lro5nJbKuhiCpbovA_2NbOqhE6dhOW89qM4ReWfVieVgMpfwygeSAcVfB9UjzE3dn51NSwGkwn_o9Kll35Ox16KOPMxct7dmKswi6gcM68pTW2p03TusUo41mnYf_O7cTVcTvu5Kj8ZZ1Ozl7RUZm4Df0XH-chDF9R2yWEKrqbgJrDvCVpPiowBMa7vHR-UX7w6j5kpF-v-gNsa10GCK_dxn3Gzoua17XL2Er2wLx14z4DlFZrIbhM9cznpi020MSpL-Rp9W0IIewhhDSFsIISXEMIaQthCCGsI4RGEsILQG3R-eHC2fxTa1huhSDPah3WdUrBtZCZZU7eUxJEAu76N05qQNIJBCa-tpIWPWIhINLSWeVKA-Z7mYG8D52-hte66k28RziPRRlUVMdISUlFSizrNi1Y2WZo1DRPbKHJrxoWtS6_ao8z4vbLaRp_9JTemKMtDJxMnCG6tSmMtcgDVQ5d9dELjwLhqGw3W_npY8LgoYG1oQujOY-7jHXq-fDDeo7V-Pshd9FTcwvMz_2BR9wcUu6W6 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lane-based+real-time+queue+length+estimation+using+license+plate+recognition+data&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Zhan%2C+Xianyuan&rft.au=Li%2C+Ruimin&rft.au=Ukkusuri%2C+Satish+V.&rft.date=2015-08-01&rft.issn=0968-090X&rft.volume=57&rft.spage=85&rft.epage=102&rft_id=info:doi/10.1016%2Fj.trc.2015.06.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trc_2015_06_001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |