Polyadic approximations, fibrations and intersection types

Starting from an exact correspondence between linear approximations and non-idempotent intersection types, we develop a general framework for building systems of intersection types characterizing normalization properties. We show how this construction, which uses in a fundamental way Melliès and Zei...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of ACM on programming languages Ročník 2; číslo POPL; s. 1 - 28
Hlavní autoři: Mazza, Damiano, Pellissier, Luc, Vial, Pierre
Médium: Journal Article
Jazyk:angličtina
Vydáno: ACM 01.01.2018
Témata:
ISSN:2475-1421, 2475-1421
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Starting from an exact correspondence between linear approximations and non-idempotent intersection types, we develop a general framework for building systems of intersection types characterizing normalization properties. We show how this construction, which uses in a fundamental way Melliès and Zeilberger's ``type systems as functors'' viewpoint, allows us to recover equivalent versions of every well known intersection type system (including Coppo and Dezani's original system, as well as its non-idempotent variants independently introduced by Gardner and de Carvalho). We also show how new systems of intersection types may be built almost automatically in this way.
ISSN:2475-1421
2475-1421
DOI:10.1145/3158094