An improved exact algorithm for undirected feedback vertex set
A feedback vertex set in an undirected graph is a subset of vertices removal of which leaves a graph with no cycles. Razgon (in: Proceedings of the 10th Scandinavian workshop on algorithm theory (SWAT 2006), pp. 160–171, 2006 ) gave a 1 . 8899 n n O ( 1 ) -time algorithm for finding a minimum feedba...
Uloženo v:
| Vydáno v: | Journal of combinatorial optimization Ročník 30; číslo 2; s. 214 - 241 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2015
|
| Témata: | |
| ISSN: | 1382-6905, 1573-2886 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A feedback vertex set in an undirected graph is a subset of vertices removal of which leaves a graph with no cycles. Razgon (in: Proceedings of the 10th Scandinavian workshop on algorithm theory (SWAT 2006), pp. 160–171,
2006
) gave a
1
.
8899
n
n
O
(
1
)
-time algorithm for finding a minimum feedback vertex set in an
n
-vertex undirected graph, which is the first exact algorithm for the problem that breaks the trivial barrier of
2
n
. Later, Fomin
et al.
(Algorithmica 52:293–307,
2008
) improved the result to
1
.
7548
n
n
O
(
1
)
. In this paper, we further improve the result to
1
.
7266
n
n
O
(
1
)
. Our algorithm is analyzed by the measure-and-conquer method. We get the improvement by designing new reductions based on biconnectivity of instances and introducing a new measure scheme on the structure of reduced graphs. |
|---|---|
| ISSN: | 1382-6905 1573-2886 |
| DOI: | 10.1007/s10878-014-9737-x |