Online Topology Inference from Streaming Stationary Graph Signals with Partial Connectivity Information
We develop online graph learning algorithms from streaming network data. Our goal is to track the (possibly) time-varying network topology, and affect memory and computational savings by processing the data on-the-fly as they are acquired. The setup entails observations modeled as stationary graph s...
Uložené v:
| Vydané v: | Algorithms Ročník 13; číslo 9; s. 228 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.09.2020
|
| Predmet: | |
| ISSN: | 1999-4893, 1999-4893 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We develop online graph learning algorithms from streaming network data. Our goal is to track the (possibly) time-varying network topology, and affect memory and computational savings by processing the data on-the-fly as they are acquired. The setup entails observations modeled as stationary graph signals generated by local diffusion dynamics on the unknown network. Moreover, we may have a priori information on the presence or absence of a few edges as in the link prediction problem. The stationarity assumption implies that the observations’ covariance matrix and the so-called graph shift operator (GSO—a matrix encoding the graph topology) commute under mild requirements. This motivates formulating the topology inference task as an inverse problem, whereby one searches for a sparse GSO that is structurally admissible and approximately commutes with the observations’ empirical covariance matrix. For streaming data, said covariance can be updated recursively, and we show online proximal gradient iterations can be brought to bear to efficiently track the time-varying solution of the inverse problem with quantifiable guarantees. Specifically, we derive conditions under which the GSO recovery cost is strongly convex and use this property to prove that the online algorithm converges to within a neighborhood of the optimal time-varying batch solution. Numerical tests illustrate the effectiveness of the proposed graph learning approach in adapting to streaming information and tracking changes in the sought dynamic network. |
|---|---|
| AbstractList | We develop online graph learning algorithms from streaming network data. Our goal is to track the (possibly) time-varying network topology, and affect memory and computational savings by processing the data on-the-fly as they are acquired. The setup entails observations modeled as stationary graph signals generated by local diffusion dynamics on the unknown network. Moreover, we may have a priori information on the presence or absence of a few edges as in the link prediction problem. The stationarity assumption implies that the observations’ covariance matrix and the so-called graph shift operator (GSO—a matrix encoding the graph topology) commute under mild requirements. This motivates formulating the topology inference task as an inverse problem, whereby one searches for a sparse GSO that is structurally admissible and approximately commutes with the observations’ empirical covariance matrix. For streaming data, said covariance can be updated recursively, and we show online proximal gradient iterations can be brought to bear to efficiently track the time-varying solution of the inverse problem with quantifiable guarantees. Specifically, we derive conditions under which the GSO recovery cost is strongly convex and use this property to prove that the online algorithm converges to within a neighborhood of the optimal time-varying batch solution. Numerical tests illustrate the effectiveness of the proposed graph learning approach in adapting to streaming information and tracking changes in the sought dynamic network. |
| Author | Shafipour, Rasoul Mateos, Gonzalo |
| Author_xml | – sequence: 1 givenname: Rasoul orcidid: 0000-0002-2996-2671 surname: Shafipour fullname: Shafipour, Rasoul – sequence: 2 givenname: Gonzalo orcidid: 0000-0002-9847-6298 surname: Mateos fullname: Mateos, Gonzalo |
| BookMark | eNptkU1LBDEMhoso-HnwHxQ8eVjt13QmR1n8WBAU1HPJdDpjl9l27VRl_72zuyIinhLCkzdvkkOyG2JwhJxydiElsEvkkgETotohBxwAJqoCufsr3yeHwzBnTBeg-QHpHkLvg6PPcRn72K3oLLQuuWAdbVNc0KecHC586MYMs48B04reJly-0iffBewH-unzK33ElD32dBpDcDb7D583WjEtNm3HZK8dYXfyHY_Iy8318_Rucv9wO5te3U-sLKo8qRlvhaiFLllrwUFdNlrWULDCMlCal1jWpea20iixgQpRuQJbtFVZFI2q5BGZbXWbiHOzTH4xGjYRvdkUYurM2qntnQEQwiJohAZUbUXFOddKSdc0XIvGjVpnW61lim_vbshmHt_TemcjlBJKSsX4SJ1vKZviMCTX_kzlzKx_Yn5-MrKXf1jrt2fNCX3_T8cXZACQBQ |
| CitedBy_id | crossref_primary_10_1007_s41060_023_00452_2 crossref_primary_10_1109_TSP_2023_3238272 crossref_primary_10_1109_TSP_2024_3460194 crossref_primary_10_1109_TSIPN_2022_3161079 crossref_primary_10_1109_LSP_2021_3123459 crossref_primary_10_1109_OJSP_2025_3534692 crossref_primary_10_1109_TSP_2023_3303639 crossref_primary_10_1016_j_sigpro_2021_108101 crossref_primary_10_1109_TSIPN_2023_3279513 crossref_primary_10_1109_TSP_2023_3300632 crossref_primary_10_1109_TSP_2024_3392348 crossref_primary_10_1109_TSP_2025_3588173 |
| Cites_doi | 10.1109/IEEECONF51394.2020.9443573 10.1109/TSP.2009.2016892 10.1109/EUSIPCO.2015.7362637 10.1137/080716542 10.1109/TSP.2016.2634543 10.1109/JPROC.2018.2804318 10.1109/TSP.2017.2708035 10.1109/MSP.2014.2327238 10.1109/MSP.2018.2887284 10.1109/JSTSP.2014.2317284 10.1145/2487788.2488173 10.1109/MSP.2018.2890143 10.1109/DSW.2018.8439913 10.1109/ICASSP.2017.7953415 10.1002/cpa.20042 10.1109/JPROC.2018.2820126 10.1109/TSP.2017.2698369 10.1093/biostatistics/kxm045 10.2307/2528966 10.1109/JSTSP.2017.2726975 10.1214/009053606000000281 10.1007/s10107-004-0552-5 10.1109/DSW.2019.8755556 10.1109/TSP.2016.2602809 10.1109/DSW.2019.8755560 10.1109/TSP.2019.2903025 10.1109/ICASSP.2017.7952672 10.1109/OJSP.2021.3063926 10.1109/TSP.2018.2835384 10.1109/TSP.2017.2739099 10.1109/TSP.2016.2614793 10.1137/1.9781611974997 10.1109/ICASSP.2017.7953410 10.1007/978-0-387-88146-1 10.1109/CAMSAP.2017.8313129 10.1109/ICASSP.2017.7953282 10.1007/978-1-4419-9467-7 10.1109/MSP.2020.2968813 10.1109/ICASSP.2019.8682716 10.1109/CAMSAP45676.2019.9022677 10.1109/TSP.2017.2690388 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/a13090228 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_9922ca96a9d94bc281116443edd162de 10_3390_a13090228 |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK COVID FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c358t-b01f22b2670fc9e9b7d63b9505c094617a7b761c86a3ad98aa4e5afac8755d483 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579232400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4893 |
| IngestDate | Fri Oct 03 12:51:21 EDT 2025 Fri Jul 25 12:06:09 EDT 2025 Tue Nov 18 21:51:32 EST 2025 Sat Nov 29 07:14:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-b01f22b2670fc9e9b7d63b9505c094617a7b761c86a3ad98aa4e5afac8755d483 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9847-6298 0000-0002-2996-2671 |
| OpenAccessLink | https://doaj.org/article/9922ca96a9d94bc281116443edd162de |
| PQID | 2442433401 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9922ca96a9d94bc281116443edd162de proquest_journals_2442433401 crossref_primary_10_3390_a13090228 crossref_citationtrail_10_3390_a13090228 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Dempster (ref_17) 1972; 28 Egilmez (ref_20) 2017; 11 ref_14 Friedman (ref_18) 2008; 9 ref_13 Segarra (ref_6) 2017; 3 Slavakis (ref_2) 2014; 31 ref_52 ref_51 ref_19 ref_16 ref_15 Isufi (ref_36) 2017; 65 ref_24 Marques (ref_7) 2017; 65 Meinshausen (ref_21) 2006; 34 ref_28 Berger (ref_29) 2020; 6 Simonetto (ref_39) 2020; 37 ref_27 ref_26 Dong (ref_5) 2019; 36 Daubechies (ref_43) 2004; 57 Thanou (ref_25) 2017; 3 Banelli (ref_40) 2017; 65 ref_34 ref_33 ref_32 ref_31 ref_30 Beck (ref_12) 2009; 2 Ioannidis (ref_42) 2019; 67 Perraudin (ref_8) 2017; 65 Giannakis (ref_38) 2018; 106 Mei (ref_23) 2017; 65 Parikh (ref_11) 2014; 1 ref_46 Dong (ref_22) 2016; 64 ref_45 Nesterov (ref_47) 2005; 103 ref_1 Mateos (ref_4) 2019; 36 Ortega (ref_3) 2018; 106 ref_49 ref_48 ref_9 Wright (ref_44) 2009; 57 Pasdeloup (ref_10) 2018; 4 Banelli (ref_41) 2018; 66 Shen (ref_35) 2017; 65 Baingana (ref_37) 2014; 8 |
| References_xml | – volume: 3 start-page: 467 year: 2017 ident: ref_6 article-title: Network topology inference from spectral templates publication-title: IEEE Trans. Signal Inf. Process. Netw. – ident: ref_49 – ident: ref_32 doi: 10.1109/IEEECONF51394.2020.9443573 – ident: ref_26 – ident: ref_51 – volume: 57 start-page: 2479 year: 2009 ident: ref_44 article-title: Sparse reconstruction by separable approximation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2016892 – ident: ref_9 doi: 10.1109/EUSIPCO.2015.7362637 – volume: 4 start-page: 481 year: 2018 ident: ref_10 article-title: Characterization and inference of graph diffusion processes from observations of stationary signals publication-title: IEEE Trans. Signal Inf. Process. Netw. – volume: 2 start-page: 183 year: 2009 ident: ref_12 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imag. Sci. doi: 10.1137/080716542 – volume: 65 start-page: 2077 year: 2017 ident: ref_23 article-title: Signal processing on graphs: Causal modeling of unstructured data publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2634543 – volume: 106 start-page: 787 year: 2018 ident: ref_38 article-title: Topology identification and learning over graphs: Accounting for nonlinearities and dynamics publication-title: Proc. IEEE doi: 10.1109/JPROC.2018.2804318 – volume: 65 start-page: 4193 year: 2017 ident: ref_40 article-title: Distributed adaptive learning of graph signals publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2708035 – volume: 31 start-page: 18 year: 2014 ident: ref_2 article-title: Modeling and optimization for big data analytics: (Statistical) learning tools for our era of data deluge publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2014.2327238 – volume: 36 start-page: 44 year: 2019 ident: ref_5 article-title: Learning graphs from data: A signal representation perspective publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2018.2887284 – volume: 8 start-page: 563 year: 2014 ident: ref_37 article-title: Proximal-gradient algorithms for tracking cascades over social networks publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2014.2317284 – ident: ref_50 doi: 10.1145/2487788.2488173 – ident: ref_48 – volume: 36 start-page: 16 year: 2019 ident: ref_4 article-title: Connecting the dots: Identifying network structure via graph signal processing publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2018.2890143 – ident: ref_34 doi: 10.1109/DSW.2018.8439913 – ident: ref_28 doi: 10.1109/ICASSP.2017.7953415 – volume: 57 start-page: 1413 year: 2004 ident: ref_43 article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20042 – volume: 106 start-page: 808 year: 2018 ident: ref_3 article-title: Graph signal processing: Overview, challenges and applications publication-title: Proc. IEEE doi: 10.1109/JPROC.2018.2820126 – volume: 65 start-page: 3675 year: 2017 ident: ref_35 article-title: Tensor decompositions for identifying directed graph topologies and tracking dynamic networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2698369 – volume: 9 start-page: 432 year: 2008 ident: ref_18 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics doi: 10.1093/biostatistics/kxm045 – volume: 28 start-page: 157 year: 1972 ident: ref_17 article-title: Covariance selection publication-title: Biometrics doi: 10.2307/2528966 – volume: 11 start-page: 825 year: 2017 ident: ref_20 article-title: Graph learning from data under Laplacian and structural constraints publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2017.2726975 – ident: ref_24 – volume: 3 start-page: 484 year: 2017 ident: ref_25 article-title: Learning heat diffusion graphs publication-title: IEEE Trans. Signal Inf. Process. Netw. – volume: 34 start-page: 1436 year: 2006 ident: ref_21 article-title: High-dimensional graphs and variable selection with the lasso publication-title: Ann. Stat. doi: 10.1214/009053606000000281 – volume: 103 start-page: 127 year: 2005 ident: ref_47 article-title: Smooth minimization of nonsmooth functions publication-title: Math. Prog. doi: 10.1007/s10107-004-0552-5 – volume: 1 start-page: 123 year: 2014 ident: ref_11 article-title: Proximal algorithms publication-title: Found. Trends Optim. – ident: ref_16 doi: 10.1109/DSW.2019.8755556 – volume: 64 start-page: 6160 year: 2016 ident: ref_22 article-title: Learning Laplacian matrix in smooth graph signal representations publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2602809 – ident: ref_13 doi: 10.1109/DSW.2019.8755560 – volume: 67 start-page: 2263 year: 2019 ident: ref_42 article-title: Semi-blind inference of topologies and dynamical processes over dynamic graphs publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2903025 – ident: ref_33 doi: 10.1109/ICASSP.2017.7952672 – ident: ref_30 doi: 10.1109/OJSP.2021.3063926 – volume: 6 start-page: 105 year: 2020 ident: ref_29 article-title: Efficient graph learning from noisy and incomplete data publication-title: IEEE Trans. Signal Inf. Process. Netw. – volume: 66 start-page: 3584 year: 2018 ident: ref_41 article-title: Adaptive graph signal processing: Algorithms and optimal sampling strategies publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2835384 – volume: 65 start-page: 5911 year: 2017 ident: ref_7 article-title: Stationary graph processes and spectral estimation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2739099 – volume: 65 start-page: 274 year: 2017 ident: ref_36 article-title: Autoregressive moving average graph filtering publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2614793 – ident: ref_45 doi: 10.1137/1.9781611974997 – ident: ref_27 doi: 10.1109/ICASSP.2017.7953410 – ident: ref_1 doi: 10.1007/978-0-387-88146-1 – ident: ref_15 doi: 10.1109/CAMSAP.2017.8313129 – ident: ref_31 doi: 10.1109/ICASSP.2017.7953282 – ident: ref_46 doi: 10.1007/978-1-4419-9467-7 – ident: ref_19 – volume: 37 start-page: 71 year: 2020 ident: ref_39 article-title: Optimization and learning with information streams: Time-varying algorithms and applications publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2020.2968813 – ident: ref_52 doi: 10.1109/ICASSP.2019.8682716 – ident: ref_14 doi: 10.1109/CAMSAP45676.2019.9022677 – volume: 65 start-page: 3462 year: 2017 ident: ref_8 article-title: Stationary signal processing on graphs publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2690388 |
| SSID | ssj0065961 |
| Score | 2.3966641 |
| Snippet | We develop online graph learning algorithms from streaming network data. Our goal is to track the (possibly) time-varying network topology, and affect memory... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 228 |
| SubjectTerms | Algorithms Covariance matrix graph signal processing Inference Inverse problems Machine learning Network topologies network topology inference online optimization proximal gradient algorithm Signal processing streaming data |
| SummonAdditionalLinks | – databaseName: Computer Science Database (ProQuest) dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58Hbz4FqtVFvHgJbTZ3W6yJ1GxKooIVukt7CuloK22Vei_dybZVETx4jXZkJCZncfOzPcRcmRjl8skdlHqmiYSWohIe4-dObnUhhmXFOPRT7fJ3V3a7ar7cOA2Dm2VlU0sDLUbWjwjb4AbYoJzSAdOXt8iZI3C6mqg0JgnizFjMer5TRJVlli2lIxLNCEOqX1Dg71WiPfyzQcVUP0_LHHhXtqr__2wNbISAkt6WmrCOpnzgw2yWpE20LCHN0mvBBelnZIdYUqvq5E_iqMmFMvU-gUcGn0oq_R6NKWXCGtNH_o9RFumeHZL71Hn4IVFp4wtOShoGG7Cx7bIY_uic34VBbaFyPJWOolMM84ZM0wmzdwqr0ziJDcKIiQLKSAEOjoxiYxtKjXXTqVaC9_SubaQ8bScSPk2WRgMB36HUOu4E00NwYLhIk9zyPGsgUDOK4hPc29r5Lj6_5kNUOTIiPGcQUqCospmoqqRw9nS1xJ_47dFZyjE2QKEzC4uDEe9LOzADAF4rVZSK6eEsSwFKw_BIPfOxZI5XyP1Sr5Z2Mfj7Eu4u3_f3iPLDDPxovusThYmo3e_T5bsx6Q_Hh0UavkJfgvt1Q priority: 102 providerName: ProQuest |
| Title | Online Topology Inference from Streaming Stationary Graph Signals with Partial Connectivity Information |
| URI | https://www.proquest.com/docview/2442433401 https://doaj.org/article/9922ca96a9d94bc281116443edd162de |
| Volume | 13 |
| WOSCitedRecordID | wos000579232400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: K7- dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M7S dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQYWDhjSiUykIMLFGb2HXiEVALFVBFFFCZIr-CkKCgUpBY-O3cxUkFAomFxUPiyMn57LsvvvuOkH0T2lzEoQ0S29YBV5wHyjmMzMmF0pG2cZEefXMeDwbJaCTTL6W-MCbM0wN7wbWQN9UoKZS0kmsTJbA4wYYzZ20oIutw9wWvpwJTfg8WHSlCzyPEANS3FOzUEplevlmfgqT_xx5cGJbeClkqPUJ66N9klcy58RpZrqot0HLxrZM7zwpKr3xZg3far3L1KOaIUDxfVo9giejQH6-ryTs9QT5qOry_Q5pkij9daYrfDAMWIS7GF4-gZVYSPrZBrnvdq-PToCyTEBjWSaaBbod5FOlIxO3cSCd1bAXTElwbA9gNPBQV61iEJhGKKSsTpbjrqFwZgCodyxO2SWrjp7HbItRYZnlbgZXXjOdJDuDMaPDAnAQR587UyUElvsyUHOJYyuIhAyyBks5mkq6TvVnXZ0-c8VunI5yDWQfkui4ugAZkpQZkf2lAnTSqGczKBfiSgdcSccYAPW7_xxg7ZDFCoF0ElzVIbTp5dbtkwbxN718mTTJ_1B2kl81CB6E9i4MmBpEOsf3owv20f5HefgK_5-Y7 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BalcKK-KQCkrBBIXq_buZu09IAS0pVFDVCkB9ebuy1GlNilJAOVP8RuZWdtBCNRbD1zttS17P89jd-b7AF66zFcqz3xS-NQm0kiZmBCoMqdSxnLr89ge_aWfDwbF6ak-WYOfbS8MlVW2NjEaaj91tEa-h26ISyEwHXh79TUh1SjaXW0lNGpYHIflD0zZ5m96-zi_rzg_PBh9OEoaVYHEiW6xSGyaVZxbrvK0cjpom3slrMZIwGGqgw7d5BZze1coI4zXhTEydE1lHEb2XS8Lgfddh1uSrH8sFRy2ll91tcpq9iIhdLpncIQmfpk_fF6UBvjL8kd3drj1v32Ie3C3CZzZuxrp92EtTB7AVitKwRob9RDGNXkqG9XqD0vWa1saGbXSMNqGN5fosNmwrkIwsyX7SLTdbHg-JjZpRmvT7IT-KXxgrARytcYGa5q36LJH8PlGXncbNibTSXgMzHnhZWowGLJCVkWFOayzGKgGjfF3FVwHXrfzXbqGap0UPy5KTLkIGuUKGh14sRp6VfOL_GvQewLNagBRgscD09m4bCxMSQTDzmhltNfSOl6gF8NgVwTvM8V96MBOi6eysVPz8jeYnlx_-jlsHo0-9ct-b3D8FO5wWnWIlXY7sLGYfQvP4Lb7vjifz3bjL8Hg7Kah9wsVeUr3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFiEulKcIFFghkLhYsXc3a--hQvQRiFpFES2oN3efUSWatEkA5a_11zHjRyoE4tYDV3tty_bsfN_sznwD8MZlPqo880nhU5tII2ViQqDMnKiM5dbnVXn018N8OCxOTvRoDa7aWhhKq2x9YuWo_dTRGnkXYYhLITAc6MYmLWK0139_cZlQBynaaW3badQmchCWPzF8m28P9vBfv-W8v3-8-ylpOgwkTvSKRWLTLHJuucrT6HTQNvdKWI2swGHYg-BucotxviuUEcbrwhgZeiYahyy_52Uh8L63YCNHkoGza2Nnfzj63OKA6mmV1VpGQui0axAtNKnN_IaAVaOAP3CgArf-5v_8We7DvYZSsw_1HHgAa2HyEDbbdhWs8V6PYFzLqrLjui_Ekg3aYkdGRTaMNujNOUI5O6rzE8xsyT6SoDc7OhuTzjSjVWs2otmGD6xyhFzdfYM1ZV102WP4ciOv-wTWJ9NJeArMeeFlapAmWSFjETG6dRYpbNDIzGNwHXjX_vvSNSLs1AvkW4nBGJlJuTKTDrxeDb2olUf-NmiHDGg1gMTCqwPT2bhsfE9J0sPOaGW019I6XiC-IQ0WwftMcR86sNXaVtl4sHl5bVjP_n36FdxBiysPB8OD53CX03JElYK3BeuL2ffwAm67H4uz-exlMz8YnN607f0C4X1VCA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Topology+Inference+from+Streaming+Stationary+Graph+Signals+with+Partial+Connectivity+Information&rft.jtitle=Algorithms&rft.au=Rasoul+Shafipour&rft.au=Gonzalo+Mateos&rft.date=2020-09-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=13&rft.issue=9&rft.spage=228&rft_id=info:doi/10.3390%2Fa13090228&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9922ca96a9d94bc281116443edd162de |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |