Online Topology Inference from Streaming Stationary Graph Signals with Partial Connectivity Information

We develop online graph learning algorithms from streaming network data. Our goal is to track the (possibly) time-varying network topology, and affect memory and computational savings by processing the data on-the-fly as they are acquired. The setup entails observations modeled as stationary graph s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithms Ročník 13; číslo 9; s. 228
Hlavní autori: Shafipour, Rasoul, Mateos, Gonzalo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.09.2020
Predmet:
ISSN:1999-4893, 1999-4893
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We develop online graph learning algorithms from streaming network data. Our goal is to track the (possibly) time-varying network topology, and affect memory and computational savings by processing the data on-the-fly as they are acquired. The setup entails observations modeled as stationary graph signals generated by local diffusion dynamics on the unknown network. Moreover, we may have a priori information on the presence or absence of a few edges as in the link prediction problem. The stationarity assumption implies that the observations’ covariance matrix and the so-called graph shift operator (GSO—a matrix encoding the graph topology) commute under mild requirements. This motivates formulating the topology inference task as an inverse problem, whereby one searches for a sparse GSO that is structurally admissible and approximately commutes with the observations’ empirical covariance matrix. For streaming data, said covariance can be updated recursively, and we show online proximal gradient iterations can be brought to bear to efficiently track the time-varying solution of the inverse problem with quantifiable guarantees. Specifically, we derive conditions under which the GSO recovery cost is strongly convex and use this property to prove that the online algorithm converges to within a neighborhood of the optimal time-varying batch solution. Numerical tests illustrate the effectiveness of the proposed graph learning approach in adapting to streaming information and tracking changes in the sought dynamic network.
AbstractList We develop online graph learning algorithms from streaming network data. Our goal is to track the (possibly) time-varying network topology, and affect memory and computational savings by processing the data on-the-fly as they are acquired. The setup entails observations modeled as stationary graph signals generated by local diffusion dynamics on the unknown network. Moreover, we may have a priori information on the presence or absence of a few edges as in the link prediction problem. The stationarity assumption implies that the observations’ covariance matrix and the so-called graph shift operator (GSO—a matrix encoding the graph topology) commute under mild requirements. This motivates formulating the topology inference task as an inverse problem, whereby one searches for a sparse GSO that is structurally admissible and approximately commutes with the observations’ empirical covariance matrix. For streaming data, said covariance can be updated recursively, and we show online proximal gradient iterations can be brought to bear to efficiently track the time-varying solution of the inverse problem with quantifiable guarantees. Specifically, we derive conditions under which the GSO recovery cost is strongly convex and use this property to prove that the online algorithm converges to within a neighborhood of the optimal time-varying batch solution. Numerical tests illustrate the effectiveness of the proposed graph learning approach in adapting to streaming information and tracking changes in the sought dynamic network.
Author Shafipour, Rasoul
Mateos, Gonzalo
Author_xml – sequence: 1
  givenname: Rasoul
  orcidid: 0000-0002-2996-2671
  surname: Shafipour
  fullname: Shafipour, Rasoul
– sequence: 2
  givenname: Gonzalo
  orcidid: 0000-0002-9847-6298
  surname: Mateos
  fullname: Mateos, Gonzalo
BookMark eNptkU1LBDEMhoso-HnwHxQ8eVjt13QmR1n8WBAU1HPJdDpjl9l27VRl_72zuyIinhLCkzdvkkOyG2JwhJxydiElsEvkkgETotohBxwAJqoCufsr3yeHwzBnTBeg-QHpHkLvg6PPcRn72K3oLLQuuWAdbVNc0KecHC586MYMs48B04reJly-0iffBewH-unzK33ElD32dBpDcDb7D583WjEtNm3HZK8dYXfyHY_Iy8318_Rucv9wO5te3U-sLKo8qRlvhaiFLllrwUFdNlrWULDCMlCal1jWpea20iixgQpRuQJbtFVZFI2q5BGZbXWbiHOzTH4xGjYRvdkUYurM2qntnQEQwiJohAZUbUXFOddKSdc0XIvGjVpnW61lim_vbshmHt_TemcjlBJKSsX4SJ1vKZviMCTX_kzlzKx_Yn5-MrKXf1jrt2fNCX3_T8cXZACQBQ
CitedBy_id crossref_primary_10_1007_s41060_023_00452_2
crossref_primary_10_1109_TSP_2023_3238272
crossref_primary_10_1109_TSP_2024_3460194
crossref_primary_10_1109_TSIPN_2022_3161079
crossref_primary_10_1109_LSP_2021_3123459
crossref_primary_10_1109_OJSP_2025_3534692
crossref_primary_10_1109_TSP_2023_3303639
crossref_primary_10_1016_j_sigpro_2021_108101
crossref_primary_10_1109_TSIPN_2023_3279513
crossref_primary_10_1109_TSP_2023_3300632
crossref_primary_10_1109_TSP_2024_3392348
crossref_primary_10_1109_TSP_2025_3588173
Cites_doi 10.1109/IEEECONF51394.2020.9443573
10.1109/TSP.2009.2016892
10.1109/EUSIPCO.2015.7362637
10.1137/080716542
10.1109/TSP.2016.2634543
10.1109/JPROC.2018.2804318
10.1109/TSP.2017.2708035
10.1109/MSP.2014.2327238
10.1109/MSP.2018.2887284
10.1109/JSTSP.2014.2317284
10.1145/2487788.2488173
10.1109/MSP.2018.2890143
10.1109/DSW.2018.8439913
10.1109/ICASSP.2017.7953415
10.1002/cpa.20042
10.1109/JPROC.2018.2820126
10.1109/TSP.2017.2698369
10.1093/biostatistics/kxm045
10.2307/2528966
10.1109/JSTSP.2017.2726975
10.1214/009053606000000281
10.1007/s10107-004-0552-5
10.1109/DSW.2019.8755556
10.1109/TSP.2016.2602809
10.1109/DSW.2019.8755560
10.1109/TSP.2019.2903025
10.1109/ICASSP.2017.7952672
10.1109/OJSP.2021.3063926
10.1109/TSP.2018.2835384
10.1109/TSP.2017.2739099
10.1109/TSP.2016.2614793
10.1137/1.9781611974997
10.1109/ICASSP.2017.7953410
10.1007/978-0-387-88146-1
10.1109/CAMSAP.2017.8313129
10.1109/ICASSP.2017.7953282
10.1007/978-1-4419-9467-7
10.1109/MSP.2020.2968813
10.1109/ICASSP.2019.8682716
10.1109/CAMSAP45676.2019.9022677
10.1109/TSP.2017.2690388
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/a13090228
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_9922ca96a9d94bc281116443edd162de
10_3390_a13090228
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
COVID
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-b01f22b2670fc9e9b7d63b9505c094617a7b761c86a3ad98aa4e5afac8755d483
IEDL.DBID DOA
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000579232400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4893
IngestDate Fri Oct 03 12:51:21 EDT 2025
Fri Jul 25 12:06:09 EDT 2025
Tue Nov 18 21:51:32 EST 2025
Sat Nov 29 07:14:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-b01f22b2670fc9e9b7d63b9505c094617a7b761c86a3ad98aa4e5afac8755d483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9847-6298
0000-0002-2996-2671
OpenAccessLink https://doaj.org/article/9922ca96a9d94bc281116443edd162de
PQID 2442433401
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_9922ca96a9d94bc281116443edd162de
proquest_journals_2442433401
crossref_primary_10_3390_a13090228
crossref_citationtrail_10_3390_a13090228
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Dempster (ref_17) 1972; 28
Egilmez (ref_20) 2017; 11
ref_14
Friedman (ref_18) 2008; 9
ref_13
Segarra (ref_6) 2017; 3
Slavakis (ref_2) 2014; 31
ref_52
ref_51
ref_19
ref_16
ref_15
Isufi (ref_36) 2017; 65
ref_24
Marques (ref_7) 2017; 65
Meinshausen (ref_21) 2006; 34
ref_28
Berger (ref_29) 2020; 6
Simonetto (ref_39) 2020; 37
ref_27
ref_26
Dong (ref_5) 2019; 36
Daubechies (ref_43) 2004; 57
Thanou (ref_25) 2017; 3
Banelli (ref_40) 2017; 65
ref_34
ref_33
ref_32
ref_31
ref_30
Beck (ref_12) 2009; 2
Ioannidis (ref_42) 2019; 67
Perraudin (ref_8) 2017; 65
Giannakis (ref_38) 2018; 106
Mei (ref_23) 2017; 65
Parikh (ref_11) 2014; 1
ref_46
Dong (ref_22) 2016; 64
ref_45
Nesterov (ref_47) 2005; 103
ref_1
Mateos (ref_4) 2019; 36
Ortega (ref_3) 2018; 106
ref_49
ref_48
ref_9
Wright (ref_44) 2009; 57
Pasdeloup (ref_10) 2018; 4
Banelli (ref_41) 2018; 66
Shen (ref_35) 2017; 65
Baingana (ref_37) 2014; 8
References_xml – volume: 3
  start-page: 467
  year: 2017
  ident: ref_6
  article-title: Network topology inference from spectral templates
  publication-title: IEEE Trans. Signal Inf. Process. Netw.
– ident: ref_49
– ident: ref_32
  doi: 10.1109/IEEECONF51394.2020.9443573
– ident: ref_26
– ident: ref_51
– volume: 57
  start-page: 2479
  year: 2009
  ident: ref_44
  article-title: Sparse reconstruction by separable approximation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2016892
– ident: ref_9
  doi: 10.1109/EUSIPCO.2015.7362637
– volume: 4
  start-page: 481
  year: 2018
  ident: ref_10
  article-title: Characterization and inference of graph diffusion processes from observations of stationary signals
  publication-title: IEEE Trans. Signal Inf. Process. Netw.
– volume: 2
  start-page: 183
  year: 2009
  ident: ref_12
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/080716542
– volume: 65
  start-page: 2077
  year: 2017
  ident: ref_23
  article-title: Signal processing on graphs: Causal modeling of unstructured data
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2634543
– volume: 106
  start-page: 787
  year: 2018
  ident: ref_38
  article-title: Topology identification and learning over graphs: Accounting for nonlinearities and dynamics
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2018.2804318
– volume: 65
  start-page: 4193
  year: 2017
  ident: ref_40
  article-title: Distributed adaptive learning of graph signals
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2708035
– volume: 31
  start-page: 18
  year: 2014
  ident: ref_2
  article-title: Modeling and optimization for big data analytics: (Statistical) learning tools for our era of data deluge
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2014.2327238
– volume: 36
  start-page: 44
  year: 2019
  ident: ref_5
  article-title: Learning graphs from data: A signal representation perspective
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2018.2887284
– volume: 8
  start-page: 563
  year: 2014
  ident: ref_37
  article-title: Proximal-gradient algorithms for tracking cascades over social networks
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2014.2317284
– ident: ref_50
  doi: 10.1145/2487788.2488173
– ident: ref_48
– volume: 36
  start-page: 16
  year: 2019
  ident: ref_4
  article-title: Connecting the dots: Identifying network structure via graph signal processing
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2018.2890143
– ident: ref_34
  doi: 10.1109/DSW.2018.8439913
– ident: ref_28
  doi: 10.1109/ICASSP.2017.7953415
– volume: 57
  start-page: 1413
  year: 2004
  ident: ref_43
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20042
– volume: 106
  start-page: 808
  year: 2018
  ident: ref_3
  article-title: Graph signal processing: Overview, challenges and applications
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2018.2820126
– volume: 65
  start-page: 3675
  year: 2017
  ident: ref_35
  article-title: Tensor decompositions for identifying directed graph topologies and tracking dynamic networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2698369
– volume: 9
  start-page: 432
  year: 2008
  ident: ref_18
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxm045
– volume: 28
  start-page: 157
  year: 1972
  ident: ref_17
  article-title: Covariance selection
  publication-title: Biometrics
  doi: 10.2307/2528966
– volume: 11
  start-page: 825
  year: 2017
  ident: ref_20
  article-title: Graph learning from data under Laplacian and structural constraints
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2017.2726975
– ident: ref_24
– volume: 3
  start-page: 484
  year: 2017
  ident: ref_25
  article-title: Learning heat diffusion graphs
  publication-title: IEEE Trans. Signal Inf. Process. Netw.
– volume: 34
  start-page: 1436
  year: 2006
  ident: ref_21
  article-title: High-dimensional graphs and variable selection with the lasso
  publication-title: Ann. Stat.
  doi: 10.1214/009053606000000281
– volume: 103
  start-page: 127
  year: 2005
  ident: ref_47
  article-title: Smooth minimization of nonsmooth functions
  publication-title: Math. Prog.
  doi: 10.1007/s10107-004-0552-5
– volume: 1
  start-page: 123
  year: 2014
  ident: ref_11
  article-title: Proximal algorithms
  publication-title: Found. Trends Optim.
– ident: ref_16
  doi: 10.1109/DSW.2019.8755556
– volume: 64
  start-page: 6160
  year: 2016
  ident: ref_22
  article-title: Learning Laplacian matrix in smooth graph signal representations
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2602809
– ident: ref_13
  doi: 10.1109/DSW.2019.8755560
– volume: 67
  start-page: 2263
  year: 2019
  ident: ref_42
  article-title: Semi-blind inference of topologies and dynamical processes over dynamic graphs
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2903025
– ident: ref_33
  doi: 10.1109/ICASSP.2017.7952672
– ident: ref_30
  doi: 10.1109/OJSP.2021.3063926
– volume: 6
  start-page: 105
  year: 2020
  ident: ref_29
  article-title: Efficient graph learning from noisy and incomplete data
  publication-title: IEEE Trans. Signal Inf. Process. Netw.
– volume: 66
  start-page: 3584
  year: 2018
  ident: ref_41
  article-title: Adaptive graph signal processing: Algorithms and optimal sampling strategies
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2835384
– volume: 65
  start-page: 5911
  year: 2017
  ident: ref_7
  article-title: Stationary graph processes and spectral estimation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2739099
– volume: 65
  start-page: 274
  year: 2017
  ident: ref_36
  article-title: Autoregressive moving average graph filtering
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2614793
– ident: ref_45
  doi: 10.1137/1.9781611974997
– ident: ref_27
  doi: 10.1109/ICASSP.2017.7953410
– ident: ref_1
  doi: 10.1007/978-0-387-88146-1
– ident: ref_15
  doi: 10.1109/CAMSAP.2017.8313129
– ident: ref_31
  doi: 10.1109/ICASSP.2017.7953282
– ident: ref_46
  doi: 10.1007/978-1-4419-9467-7
– ident: ref_19
– volume: 37
  start-page: 71
  year: 2020
  ident: ref_39
  article-title: Optimization and learning with information streams: Time-varying algorithms and applications
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2020.2968813
– ident: ref_52
  doi: 10.1109/ICASSP.2019.8682716
– ident: ref_14
  doi: 10.1109/CAMSAP45676.2019.9022677
– volume: 65
  start-page: 3462
  year: 2017
  ident: ref_8
  article-title: Stationary signal processing on graphs
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2690388
SSID ssj0065961
Score 2.3966641
Snippet We develop online graph learning algorithms from streaming network data. Our goal is to track the (possibly) time-varying network topology, and affect memory...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 228
SubjectTerms Algorithms
Covariance matrix
graph signal processing
Inference
Inverse problems
Machine learning
Network topologies
network topology inference
online optimization
proximal gradient algorithm
Signal processing
streaming data
SummonAdditionalLinks – databaseName: Computer Science Database (ProQuest)
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58Hbz4FqtVFvHgJbTZ3W6yJ1GxKooIVukt7CuloK22Vei_dybZVETx4jXZkJCZncfOzPcRcmRjl8skdlHqmiYSWohIe4-dObnUhhmXFOPRT7fJ3V3a7ar7cOA2Dm2VlU0sDLUbWjwjb4AbYoJzSAdOXt8iZI3C6mqg0JgnizFjMer5TRJVlli2lIxLNCEOqX1Dg71WiPfyzQcVUP0_LHHhXtqr__2wNbISAkt6WmrCOpnzgw2yWpE20LCHN0mvBBelnZIdYUqvq5E_iqMmFMvU-gUcGn0oq_R6NKWXCGtNH_o9RFumeHZL71Hn4IVFp4wtOShoGG7Cx7bIY_uic34VBbaFyPJWOolMM84ZM0wmzdwqr0ziJDcKIiQLKSAEOjoxiYxtKjXXTqVaC9_SubaQ8bScSPk2WRgMB36HUOu4E00NwYLhIk9zyPGsgUDOK4hPc29r5Lj6_5kNUOTIiPGcQUqCospmoqqRw9nS1xJ_47dFZyjE2QKEzC4uDEe9LOzADAF4rVZSK6eEsSwFKw_BIPfOxZI5XyP1Sr5Z2Mfj7Eu4u3_f3iPLDDPxovusThYmo3e_T5bsx6Q_Hh0UavkJfgvt1Q
  priority: 102
  providerName: ProQuest
Title Online Topology Inference from Streaming Stationary Graph Signals with Partial Connectivity Information
URI https://www.proquest.com/docview/2442433401
https://doaj.org/article/9922ca96a9d94bc281116443edd162de
Volume 13
WOSCitedRecordID wos000579232400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: K7-
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M7S
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQYWDhjSiUykIMLFGb2HXiEVALFVBFFFCZIr-CkKCgUpBY-O3cxUkFAomFxUPiyMn57LsvvvuOkH0T2lzEoQ0S29YBV5wHyjmMzMmF0pG2cZEefXMeDwbJaCTTL6W-MCbM0wN7wbWQN9UoKZS0kmsTJbA4wYYzZ20oIutw9wWvpwJTfg8WHSlCzyPEANS3FOzUEplevlmfgqT_xx5cGJbeClkqPUJ66N9klcy58RpZrqot0HLxrZM7zwpKr3xZg3far3L1KOaIUDxfVo9giejQH6-ryTs9QT5qOry_Q5pkij9daYrfDAMWIS7GF4-gZVYSPrZBrnvdq-PToCyTEBjWSaaBbod5FOlIxO3cSCd1bAXTElwbA9gNPBQV61iEJhGKKSsTpbjrqFwZgCodyxO2SWrjp7HbItRYZnlbgZXXjOdJDuDMaPDAnAQR587UyUElvsyUHOJYyuIhAyyBks5mkq6TvVnXZ0-c8VunI5yDWQfkui4ugAZkpQZkf2lAnTSqGczKBfiSgdcSccYAPW7_xxg7ZDFCoF0ElzVIbTp5dbtkwbxN718mTTJ_1B2kl81CB6E9i4MmBpEOsf3owv20f5HefgK_5-Y7
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BalcKK-KQCkrBBIXq_buZu09IAS0pVFDVCkB9ebuy1GlNilJAOVP8RuZWdtBCNRbD1zttS17P89jd-b7AF66zFcqz3xS-NQm0kiZmBCoMqdSxnLr89ge_aWfDwbF6ak-WYOfbS8MlVW2NjEaaj91tEa-h26ISyEwHXh79TUh1SjaXW0lNGpYHIflD0zZ5m96-zi_rzg_PBh9OEoaVYHEiW6xSGyaVZxbrvK0cjpom3slrMZIwGGqgw7d5BZze1coI4zXhTEydE1lHEb2XS8Lgfddh1uSrH8sFRy2ll91tcpq9iIhdLpncIQmfpk_fF6UBvjL8kd3drj1v32Ie3C3CZzZuxrp92EtTB7AVitKwRob9RDGNXkqG9XqD0vWa1saGbXSMNqGN5fosNmwrkIwsyX7SLTdbHg-JjZpRmvT7IT-KXxgrARytcYGa5q36LJH8PlGXncbNibTSXgMzHnhZWowGLJCVkWFOayzGKgGjfF3FVwHXrfzXbqGap0UPy5KTLkIGuUKGh14sRp6VfOL_GvQewLNagBRgscD09m4bCxMSQTDzmhltNfSOl6gF8NgVwTvM8V96MBOi6eysVPz8jeYnlx_-jlsHo0-9ct-b3D8FO5wWnWIlXY7sLGYfQvP4Lb7vjifz3bjL8Hg7Kah9wsVeUr3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFiEulKcIFFghkLhYsXc3a--hQvQRiFpFES2oN3efUSWatEkA5a_11zHjRyoE4tYDV3tty_bsfN_sznwD8MZlPqo880nhU5tII2ViQqDMnKiM5dbnVXn018N8OCxOTvRoDa7aWhhKq2x9YuWo_dTRGnkXYYhLITAc6MYmLWK0139_cZlQBynaaW3badQmchCWPzF8m28P9vBfv-W8v3-8-ylpOgwkTvSKRWLTLHJuucrT6HTQNvdKWI2swGHYg-BucotxviuUEcbrwhgZeiYahyy_52Uh8L63YCNHkoGza2Nnfzj63OKA6mmV1VpGQui0axAtNKnN_IaAVaOAP3CgArf-5v_8We7DvYZSsw_1HHgAa2HyEDbbdhWs8V6PYFzLqrLjui_Ekg3aYkdGRTaMNujNOUI5O6rzE8xsyT6SoDc7OhuTzjSjVWs2otmGD6xyhFzdfYM1ZV102WP4ciOv-wTWJ9NJeArMeeFlapAmWSFjETG6dRYpbNDIzGNwHXjX_vvSNSLs1AvkW4nBGJlJuTKTDrxeDb2olUf-NmiHDGg1gMTCqwPT2bhsfE9J0sPOaGW019I6XiC-IQ0WwftMcR86sNXaVtl4sHl5bVjP_n36FdxBiysPB8OD53CX03JElYK3BeuL2ffwAm67H4uz-exlMz8YnN607f0C4X1VCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Topology+Inference+from+Streaming+Stationary+Graph+Signals+with+Partial+Connectivity+Information&rft.jtitle=Algorithms&rft.au=Rasoul+Shafipour&rft.au=Gonzalo+Mateos&rft.date=2020-09-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=13&rft.issue=9&rft.spage=228&rft_id=info:doi/10.3390%2Fa13090228&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9922ca96a9d94bc281116443edd162de
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon