Improved River Flood Routing with Spatially Variable Exponent Muskingum Model and Sine Cosine Optimization Algorithm

Due to advancements in optimization technology, numerous variable-parameter Muskingum models have been proposed in recent decades, aiming at enhancing the effectiveness of the Muskingum model. However, a knowledge gap exists in understanding the implications of incorporating spatial variations and l...

Full description

Saved in:
Bibliographic Details
Published in:Environmental processes Vol. 10; no. 3; p. 42
Main Authors: Atashi, Vida, Barati, Reza, Lim, Yeo Howe
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.09.2023
Springer Nature B.V
Subjects:
ISSN:2198-7491, 2198-7505
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to advancements in optimization technology, numerous variable-parameter Muskingum models have been proposed in recent decades, aiming at enhancing the effectiveness of the Muskingum model. However, a knowledge gap exists in understanding the implications of incorporating spatial variations and lateral inflow considerations into the Muskingum model, as well as the performance and applicability of different sub-reach configurations, calling for further research in river flood routing. This study proposed a novel approach to river flood routing using a spatial variable exponent parameter nonlinear Muskingum model with lateral inflow considerations. Unlike previous studies that focused on modifying exponent parameters based on variable inflow levels (i.e., temporal variations), the proposed model considered spatial variations. The proposed Muskingum parameters were estimated using an improved Sine Cosine algorithm (SCA), applied to fit six previously reported case datasets. The proposed method minimized the sum of square errors (SSE) between observed and routed outflows. Results show that the proposed model outperforms others in the Wilson flood case study with an SSE of 6.072 for Number of Sub-reaches (NR)=2, representing an 82.89% reduction compared to NR=1 and constant exponent parameter. Additionally, both the Viessman and Lewis case study and the Dinavar case study demonstrate that NR=3 achieves the best performance and fit to observed data. NR=3 yields the best fit achieving SSE of 9.81 and 2466.62 in the Viessman and Lewis case and the Dinavar case, respectively. The Lawler flood case suggests that a traditional nonlinear model with an SSE of 0.36 for NR=1, 2, or 3 may suffice. Highlights The nonlinear Muskingum model is an extension of the standard Muskingum method. Nonlinear Muskingum Model with Variable Exponent Parameter improves flood routing. The proposed method minimized the sum of square errors (SSE) between observed and routed outflows. The Wilson flood case study demonstrates SSE of 6.072 for NR=2.
AbstractList Due to advancements in optimization technology, numerous variable-parameter Muskingum models have been proposed in recent decades, aiming at enhancing the effectiveness of the Muskingum model. However, a knowledge gap exists in understanding the implications of incorporating spatial variations and lateral inflow considerations into the Muskingum model, as well as the performance and applicability of different sub-reach configurations, calling for further research in river flood routing. This study proposed a novel approach to river flood routing using a spatial variable exponent parameter nonlinear Muskingum model with lateral inflow considerations. Unlike previous studies that focused on modifying exponent parameters based on variable inflow levels (i.e., temporal variations), the proposed model considered spatial variations. The proposed Muskingum parameters were estimated using an improved Sine Cosine algorithm (SCA), applied to fit six previously reported case datasets. The proposed method minimized the sum of square errors (SSE) between observed and routed outflows. Results show that the proposed model outperforms others in the Wilson flood case study with an SSE of 6.072 for Number of Sub-reaches (NR)=2, representing an 82.89% reduction compared to NR=1 and constant exponent parameter. Additionally, both the Viessman and Lewis case study and the Dinavar case study demonstrate that NR=3 achieves the best performance and fit to observed data. NR=3 yields the best fit achieving SSE of 9.81 and 2466.62 in the Viessman and Lewis case and the Dinavar case, respectively. The Lawler flood case suggests that a traditional nonlinear model with an SSE of 0.36 for NR=1, 2, or 3 may suffice. Highlights The nonlinear Muskingum model is an extension of the standard Muskingum method. Nonlinear Muskingum Model with Variable Exponent Parameter improves flood routing. The proposed method minimized the sum of square errors (SSE) between observed and routed outflows. The Wilson flood case study demonstrates SSE of 6.072 for NR=2.
Due to advancements in optimization technology, numerous variable-parameter Muskingum models have been proposed in recent decades, aiming at enhancing the effectiveness of the Muskingum model. However, a knowledge gap exists in understanding the implications of incorporating spatial variations and lateral inflow considerations into the Muskingum model, as well as the performance and applicability of different sub-reach configurations, calling for further research in river flood routing. This study proposed a novel approach to river flood routing using a spatial variable exponent parameter nonlinear Muskingum model with lateral inflow considerations. Unlike previous studies that focused on modifying exponent parameters based on variable inflow levels (i.e., temporal variations), the proposed model considered spatial variations. The proposed Muskingum parameters were estimated using an improved Sine Cosine algorithm (SCA), applied to fit six previously reported case datasets. The proposed method minimized the sum of square errors (SSE) between observed and routed outflows. Results show that the proposed model outperforms others in the Wilson flood case study with an SSE of 6.072 for Number of Sub-reaches (NR)=2, representing an 82.89% reduction compared to NR=1 and constant exponent parameter. Additionally, both the Viessman and Lewis case study and the Dinavar case study demonstrate that NR=3 achieves the best performance and fit to observed data. NR=3 yields the best fit achieving SSE of 9.81 and 2466.62 in the Viessman and Lewis case and the Dinavar case, respectively. The Lawler flood case suggests that a traditional nonlinear model with an SSE of 0.36 for NR=1, 2, or 3 may suffice.HighlightsThe nonlinear Muskingum model is an extension of the standard Muskingum method.Nonlinear Muskingum Model with Variable Exponent Parameter improves flood routing.The proposed method minimized the sum of square errors (SSE) between observed and routed outflows.The Wilson flood case study demonstrates SSE of 6.072 for NR=2.
ArticleNumber 42
Author Atashi, Vida
Barati, Reza
Lim, Yeo Howe
Author_xml – sequence: 1
  givenname: Vida
  surname: Atashi
  fullname: Atashi, Vida
  email: Vida.atashi@und.edu
  organization: Department of Civil Engineering, University of North Dakota
– sequence: 2
  givenname: Reza
  surname: Barati
  fullname: Barati, Reza
  organization: Department of Civil Engineering, Tarbiat Modares University
– sequence: 3
  givenname: Yeo Howe
  surname: Lim
  fullname: Lim, Yeo Howe
  organization: Department of Civil Engineering, University of North Dakota
BookMark eNp9kElPwzAQhS0EElD6BzhZ4hzwmuWIKjapCIntajnNtBgSO9gO26_HbUFIHHqaObzvzby3j7ats4DQISXHlJDiJAhSUJIRxjNCcllmfAvtMVqVWSGJ3P7dRUV30TiEZ0IIoyLJqz0Ur7reuzdo8K15A4_PW-fS7oZo7AK_m_iE73odjW7bT_yovdF1C_jso08v2Iivh_CShEOHr10DLda2wXfGAp64sBw3fTSd-UoGzuLTduF8cuwO0M5ctwHGP3OEHs7P7ieX2fTm4mpyOs1mXJYx05oJTiWpBa8LwUleA0AlhJZsxjWXDWUi17Jo6rzMNYUKyByYLIFSrmlR8xE6WvumiK8DhKie3eBtOqlYKSteVozJpGJr1cy7EDzMVe9Np_2nokQtC1brglVqTK0KVjxB5T9oZuIqZvTatJtRvkZDumMX4P--2kB9A9Icklo
CitedBy_id crossref_primary_10_1038_s41598_023_48895_8
crossref_primary_10_3390_w16040572
crossref_primary_10_1007_s11269_024_04063_9
crossref_primary_10_1007_s40710_024_00716_4
crossref_primary_10_1007_s11269_023_03684_w
crossref_primary_10_1007_s11269_025_04116_7
crossref_primary_10_1007_s11269_025_04146_1
crossref_primary_10_1007_s11269_024_03833_9
crossref_primary_10_1007_s11269_024_03846_4
crossref_primary_10_1007_s11269_025_04255_x
crossref_primary_10_1007_s11269_023_03618_6
crossref_primary_10_2166_hydro_2023_029
crossref_primary_10_1007_s13201_025_02477_3
Cites_doi 10.1061/(ASCE)0733-9437(2004)130:2(140)
10.1061/(ASCE)HE.1943-5584.0000608
10.1016/j.asoc.2022.108997
10.1016/j.ijepes.2018.01.024
10.1016/j.dib.2020.105398
10.1007/s11269-017-1758-7
10.1007/s12665-016-6379-6
10.1061/(ASCE)0733-9429(1997)123:2(137)
10.1080/02626668509491013
10.1061/(ASCE)0733-9429(1987)113:1(61)
10.1016/j.jhydrol.2020.125223
10.1016/j.jare.2011.04.004
10.1061/(ASCE)1084-0699(2006)11:6(597)
10.1007/s12205-015-0154-1
10.1016/j.knosys.2015.12.022
10.1007/s11269-016-1278-x
10.1002/clen.200700122
10.30482/JHYD.2019.98964
10.1007/s11269-022-03257-3
10.1007/s10462-021-10026-y
10.1016/0022-1694(78)90153-1
10.1007/s11269-019-02247-2
10.21203/rs.3.rs-174369/v1
10.1061/(ASCE)HE.1943-5584.0000244
10.1061/(ASCE)0733-9429(1985)111:12(1447)
10.1061/(ASCE)07339437(2006)132:5(474)
10.1007/s10462-020-09909-3
10.1061/(ASCE)HE.1943-5584.0000702
10.1002/hyp.7012
10.1061/(ASCE)HE.1943-5584.0000978
10.1016/j.jhydrol.2017.07.050
10.1080/0305215X.2014.918115
10.2166/nh.2016.185
10.1061/(ASCE)HE.1943-5584.0002088
10.1007/s12205-015-0462-5
10.1061/(ASCE)HE.1943-5584.0000896
10.1007/s13201-022-01844-8
10.1007/s11269-023-03493-1
10.1109/ICCKE.2018.8566344
10.1007/978-1-349-11522-8_1
10.1680/wama.14.00034
10.1680/wama.10.00036
10.1680/wama.14.00030
10.13140/RG.2.2.20181.86244
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
DOI 10.1007/s40710-023-00658-3
DatabaseName CrossRef
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Environmental Science Collection
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2198-7505
ExternalDocumentID 10_1007_s40710_023_00658_3
GroupedDBID -EM
0R~
203
2XV
4.4
406
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFRAH
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
ATCPS
AUKKA
AVWKF
AVXWI
AXYYD
AZFZN
BENPR
BGNMA
BHPHI
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
HCIFZ
HG6
HVGLF
IAG
IAO
IEP
IKXTQ
ITC
IWAJR
IXD
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PATMY
PT4
PYCSY
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c358t-aa243150b43b74306beee944a52c3a35d1246a57db686a1e9e0fe258e113a17b3
IEDL.DBID BENPR
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001058438300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-7491
IngestDate Tue Dec 02 15:57:12 EST 2025
Tue Nov 18 21:26:40 EST 2025
Sat Nov 29 05:37:44 EST 2025
Fri Feb 21 02:41:35 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Variable Exponent Parameter
Sine Cosine Algorithm (SCA)
Nonlinear Muskingum Model
Spatial Variation
Lateral inflow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-aa243150b43b74306beee944a52c3a35d1246a57db686a1e9e0fe258e113a17b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2859389225
PQPubID 2044339
ParticipantIDs proquest_journals_2859389225
crossref_primary_10_1007_s40710_023_00658_3
crossref_citationtrail_10_1007_s40710_023_00658_3
springer_journals_10_1007_s40710_023_00658_3
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationSubtitle An International Journal
PublicationTitle Environmental processes
PublicationTitleAbbrev Environ. Process
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Feng, Niu, Liu, Luo, Miao, Liu (CR17) 2020; 590
O’donnell (CR37) 1985; 30
Das (CR11) 2004; 130
Yoon, Padmanabhan (CR47) 1993; 119
Hosseini, Nodoushan, Barati, Shahheydari (CR21) 2016; 20
Kang, Zhou, Zhang (CR22) 2017; 31
CR16
Zhang, Kang, Zhou, Guo (CR48) 2016; 48
CR15
Bozorg-Haddad, Abdi-Dehkordi, Hamedi, Pazoki, Loáiciga (CR10) 2019; 33
CR14
Easa (CR13) 2015; 19
Badfar, Barati, Dogan, Tayfur (CR8) 2021; 26
Karahan, Gurarslan, Geem (CR24) 2015; 47
Easa (CR12) 2014; 19
Vatankhah (CR41) 2014; 19
Gabis, Meraihi, Mirjalili, Ramdane-Cherif (CR19) 2021; 54
Moghaddam, Behmanesh, Farsijani (CR33) 2016; 30
Abualigah, Diabat (CR1) 2021; 54
CR2
Tung (CR40) 1985; 111
Ayvaz, Gurarslan (CR7) 2017; 553
Akbari, Hessami-Kermani, Shojaee (CR4) 2019; 14
Lu, Ji, Wang, Zhang, Ealotswe, Qin, Lu, Liu, Shu (CR29) 2021; 35
Alizadeh, Shahheydari, Kavianpour, Shamloo, Barati (CR5) 2017; 76
Akbari, Nezhad, Barati (CR3) 2012; 3
CR28
CR9
CR27
Mohan (CR34) 1997; 123
Singh, Scarlatos (CR38) 1987; 113
Mirjalili (CR32) 2016; 96
Khalifeh, Esmaili, Khodashenas, Akbarifard (CR26) 2020; 30
CR46
Toprak, Cigizoglu (CR39) 2008; 22
CR45
Gill (CR20) 1978; 36
CR43
Wang, Hong, Gourley, Adhikari, Li, Su, Wang (CR44) 2014; 839
Kazemi, Barati (CR25) 2022; 124
Moradi, Yaghoubi, Shabanlou (CR35) 2022; 13
CR42
Fuat Toprak, Savci (CR18) 2007; 35
Attia, El Sehiemy, Hasanien (CR6) 2018; 99
Karahan, Gurarslan, Geem (CR23) 2013; 18
McCuen, Knight, Cutter (CR31) 2006; 11
Luo, Xie (CR30) 2010; 15
Norouzi, Bazargan (CR36) 2022; 36
658_CR42
VP Singh (658_CR38) 1987; 113
AB Gabis (658_CR19) 2021; 54
H Karahan (658_CR23) 2013; 18
S Mohan (658_CR34) 1997; 123
L Abualigah (658_CR1) 2021; 54
658_CR46
S Mirjalili (658_CR32) 2016; 96
658_CR45
658_CR9
658_CR43
658_CR28
MT Ayvaz (658_CR7) 2017; 553
SM Easa (658_CR13) 2015; 19
658_CR27
C Lu (658_CR29) 2021; 35
M Kazemi (658_CR25) 2022; 124
J Wang (658_CR44) 2014; 839
A Moghaddam (658_CR33) 2016; 30
J Yoon (658_CR47) 1993; 119
T O’donnell (658_CR37) 1985; 30
R Akbari (658_CR4) 2019; 14
MJ Alizadeh (658_CR5) 2017; 76
Z Fuat Toprak (658_CR18) 2007; 35
Z-k Feng (658_CR17) 2020; 590
A Das (658_CR11) 2004; 130
GH Akbari (658_CR3) 2012; 3
H Karahan (658_CR24) 2015; 47
ZF Toprak (658_CR39) 2008; 22
AR Vatankhah (658_CR41) 2014; 19
S Zhang (658_CR48) 2016; 48
A-F Attia (658_CR6) 2018; 99
J Luo (658_CR30) 2010; 15
E Moradi (658_CR35) 2022; 13
H Norouzi (658_CR36) 2022; 36
658_CR16
658_CR15
Y-K Tung (658_CR40) 1985; 111
658_CR14
S Khalifeh (658_CR26) 2020; 30
M Badfar (658_CR8) 2021; 26
O Bozorg-Haddad (658_CR10) 2019; 33
MA Gill (658_CR20) 1978; 36
K Hosseini (658_CR21) 2016; 20
RH McCuen (658_CR31) 2006; 11
L Kang (658_CR22) 2017; 31
SM Easa (658_CR12) 2014; 19
658_CR2
References_xml – volume: 130
  start-page: 140
  issue: 2
  year: 2004
  end-page: 147
  ident: CR11
  article-title: Parameter estimation for Muskingum models
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)0733-9437(2004)130:2(140)
– volume: 18
  start-page: 352
  issue: 3
  year: 2013
  end-page: 360
  ident: CR23
  article-title: Parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid harmony search algorithm
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000608
– ident: CR45
– volume: 124
  year: 2022
  ident: CR25
  article-title: Application of dimensional analysis and multi-gene genetic programming to predict the performance of tunnel boring machines
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.108997
– volume: 99
  start-page: 331
  year: 2018
  end-page: 343
  ident: CR6
  article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2018.01.024
– volume: 30
  year: 2020
  ident: CR26
  article-title: Data on optimization of the non-linear Muskingum flood routing in Kardeh River using Goa algorithm
  publication-title: Data in brief
  doi: 10.1016/j.dib.2020.105398
– ident: CR43
– ident: CR14
– ident: CR2
– ident: CR16
– volume: 31
  start-page: 4449
  year: 2017
  end-page: 4467
  ident: CR22
  article-title: Parameter estimation of two improved nonlinear Muskingum models considering the lateral flow using a hybrid algorithm
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1758-7
– volume: 76
  start-page: 1
  year: 2017
  end-page: 11
  ident: CR5
  article-title: Prediction of longitudinal dispersion coefficient in natural rivers using a cluster-based Bayesian network
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-6379-6
– volume: 123
  start-page: 137
  issue: 2
  year: 1997
  end-page: 142
  ident: CR34
  article-title: Parameter estimation of nonlinear Muskingum models using genetic algorithm
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(1997)123:2(137)
– volume: 30
  start-page: 479
  issue: 4
  year: 1985
  end-page: 496
  ident: CR37
  article-title: A direct three-parameter Muskingum procedure incorporating lateral inflow
  publication-title: Hydrol Sci J
  doi: 10.1080/02626668509491013
– volume: 113
  start-page: 61
  issue: 1
  year: 1987
  end-page: 79
  ident: CR38
  article-title: Analysis of nonlinear Muskingum flood routing
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(1987)113:1(61)
– volume: 590
  year: 2020
  ident: CR17
  article-title: Multiple hydropower reservoirs operation optimization by adaptive mutation sine cosine algorithm based on neighborhood search and simplex search strategies
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125223
– ident: CR27
– ident: CR42
– volume: 3
  start-page: 73
  issue: 1
  year: 2012
  end-page: 79
  ident: CR3
  article-title: Developing a model for analysis of uncertainties in prediction of floods
  publication-title: J Adv Res
  doi: 10.1016/j.jare.2011.04.004
– volume: 11
  start-page: 597
  issue: 6
  year: 2006
  end-page: 602
  ident: CR31
  article-title: Evaluation of the Nash–Sutcliffe efficiency index
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2006)11:6(597)
– volume: 19
  start-page: 2281
  year: 2015
  end-page: 2290
  ident: CR13
  article-title: Evaluation of nonlinear Muskingum model with continuous and discontinuous exponent parameters
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-015-0154-1
– ident: CR46
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: CR32
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 30
  start-page: 2143
  year: 2016
  end-page: 2160
  ident: CR33
  article-title: Parameters estimation for the new four-parameter nonlinear Muskingum model using the particle swarm optimization
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-016-1278-x
– volume: 35
  start-page: 626
  issue: 6
  year: 2007
  end-page: 637
  ident: CR18
  article-title: Longitudinal dispersion coefficient modeling in natural channels using fuzzy logic
  publication-title: CLEAN–Soil, Air, Water
  doi: 10.1002/clen.200700122
– volume: 14
  start-page: 17
  issue: 3
  year: 2019
  ident: CR4
  article-title: Flood Routing using Gravitational Search Algorithm and Investigation of Hydrological Parameters Uncertainty of Nonlinear Muskingum Model
  publication-title: J Hydraulics
  doi: 10.30482/JHYD.2019.98964
– volume: 36
  start-page: 4343
  issue: 11
  year: 2022
  end-page: 4361
  ident: CR36
  article-title: Calculation of Water Depth during Flood in Rivers using Linear Muskingum Method and Particle Swarm Optimization (PSO) Algorithm
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-022-03257-3
– volume: 54
  start-page: 5469
  issue: 7
  year: 2021
  end-page: 5540
  ident: CR19
  article-title: A comprehensive survey of sine cosine algorithm: variants and applications
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-10026-y
– ident: CR15
– volume: 36
  start-page: 353
  issue: 3-4
  year: 1978
  end-page: 363
  ident: CR20
  article-title: Flood routing by the Muskingum method
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(78)90153-1
– volume: 33
  start-page: 2677
  year: 2019
  end-page: 2691
  ident: CR10
  article-title: Generalized storage equations for flood routing with nonlinear Muskingum models
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02247-2
– volume: 35
  start-page: 2649
  issue: 8
  year: 2021
  end-page: 2666
  ident: CR29
  article-title: Estimation of the Interaction Between Groundwater and Surface Water Based on Flow Routing Using an Improved Nonlinear Muskingum-Cunge Method
  publication-title: Water Resour Manag
  doi: 10.21203/rs.3.rs-174369/v1
– volume: 15
  start-page: 844
  issue: 10
  year: 2010
  end-page: 851
  ident: CR30
  article-title: Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000244
– volume: 111
  start-page: 1447
  issue: 12
  year: 1985
  end-page: 1460
  ident: CR40
  article-title: River flood routing by nonlinear Muskingum method
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(1985)111:12(1447)
– volume: 119
  start-page: 600
  issue: 5
  year: 1993
  end-page: 610
  ident: CR47
  article-title: Parameter estimation of linear and nonlinear Muskingum models
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)07339437(2006)132:5(474)
– volume: 54
  start-page: 2567
  issue: 4
  year: 2021
  end-page: 2608
  ident: CR1
  article-title: Advances in sine cosine algorithm: a comprehensive survey
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09909-3
– volume: 19
  start-page: 07014008
  issue: 10
  year: 2014
  ident: CR12
  article-title: Closure to “improved nonlinear Muskingum model with variable exponent parameter” by Said M. Easa
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000702
– ident: CR9
– volume: 22
  start-page: 4106
  issue: 20
  year: 2008
  end-page: 4129
  ident: CR39
  article-title: Predicting longitudinal dispersion coefficient in natural streams by artificial intelligence methods
  publication-title: Hydrol Process Intl J
  doi: 10.1002/hyp.7012
– volume: 19
  start-page: 06014001
  issue: 8
  year: 2014
  ident: CR41
  article-title: Evaluation of explicit numerical solution methods of the Muskingum model
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000978
– volume: 553
  start-page: 142
  year: 2017
  end-page: 159
  ident: CR7
  article-title: A new partitioning approach for nonlinear Muskingum flood routing models with lateral flow contribution
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.07.050
– volume: 47
  start-page: 737
  issue: 6
  year: 2015
  end-page: 749
  ident: CR24
  article-title: A new nonlinear Muskingum flood routing model incorporating lateral flow
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2014.918115
– volume: 48
  start-page: 17
  issue: 1
  year: 2016
  end-page: 27
  ident: CR48
  article-title: A new modified nonlinear Muskingum model and its parameter estimation using the adaptive genetic algorithm
  publication-title: Hydrol Res
  doi: 10.2166/nh.2016.185
– volume: 26
  start-page: 04021018
  issue: 6
  year: 2021
  ident: CR8
  article-title: Reverse flood routing in rivers using linear and nonlinear Muskingum models
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0002088
– volume: 20
  start-page: 468
  year: 2016
  end-page: 477
  ident: CR21
  article-title: Optimal design of labyrinth spillways using meta-heuristic algorithms
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-015-0462-5
– ident: CR28
– volume: 839
  start-page: 842
  year: 2014
  ident: CR44
  article-title: Discussion of “parameter estimation of the nonlinear muskingum flood-routing model using a hybrid harmony search algorithm” by Halil Karahan, Gurhan Gurarslan, and Zong Woo Geem
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000896
– volume: 13
  start-page: 49
  issue: 2
  year: 2022
  ident: CR35
  article-title: A new technique for flood routing by nonlinear Muskingum model and artificial gorilla troops algorithm
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-022-01844-8
– ident: 658_CR45
  doi: 10.1007/s11269-023-03493-1
– volume: 36
  start-page: 353
  issue: 3-4
  year: 1978
  ident: 658_CR20
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(78)90153-1
– volume: 96
  start-page: 120
  year: 2016
  ident: 658_CR32
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 14
  start-page: 17
  issue: 3
  year: 2019
  ident: 658_CR4
  publication-title: J Hydraulics
  doi: 10.30482/JHYD.2019.98964
– volume: 35
  start-page: 2649
  issue: 8
  year: 2021
  ident: 658_CR29
  publication-title: Water Resour Manag
  doi: 10.21203/rs.3.rs-174369/v1
– volume: 590
  year: 2020
  ident: 658_CR17
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125223
– volume: 123
  start-page: 137
  issue: 2
  year: 1997
  ident: 658_CR34
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(1997)123:2(137)
– volume: 99
  start-page: 331
  year: 2018
  ident: 658_CR6
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2018.01.024
– volume: 15
  start-page: 844
  issue: 10
  year: 2010
  ident: 658_CR30
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000244
– volume: 11
  start-page: 597
  issue: 6
  year: 2006
  ident: 658_CR31
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2006)11:6(597)
– volume: 30
  start-page: 479
  issue: 4
  year: 1985
  ident: 658_CR37
  publication-title: Hydrol Sci J
  doi: 10.1080/02626668509491013
– volume: 31
  start-page: 4449
  year: 2017
  ident: 658_CR22
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1758-7
– volume: 36
  start-page: 4343
  issue: 11
  year: 2022
  ident: 658_CR36
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-022-03257-3
– ident: 658_CR16
  doi: 10.1109/ICCKE.2018.8566344
– volume: 48
  start-page: 17
  issue: 1
  year: 2016
  ident: 658_CR48
  publication-title: Hydrol Res
  doi: 10.2166/nh.2016.185
– ident: 658_CR46
  doi: 10.1007/978-1-349-11522-8_1
– volume: 26
  start-page: 04021018
  issue: 6
  year: 2021
  ident: 658_CR8
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0002088
– ident: 658_CR42
– ident: 658_CR27
– ident: 658_CR14
  doi: 10.1680/wama.14.00034
– volume: 20
  start-page: 468
  year: 2016
  ident: 658_CR21
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-015-0462-5
– volume: 13
  start-page: 49
  issue: 2
  year: 2022
  ident: 658_CR35
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-022-01844-8
– volume: 839
  start-page: 842
  year: 2014
  ident: 658_CR44
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000896
– volume: 54
  start-page: 5469
  issue: 7
  year: 2021
  ident: 658_CR19
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-10026-y
– volume: 35
  start-page: 626
  issue: 6
  year: 2007
  ident: 658_CR18
  publication-title: CLEAN–Soil, Air, Water
  doi: 10.1002/clen.200700122
– volume: 124
  year: 2022
  ident: 658_CR25
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.108997
– volume: 19
  start-page: 06014001
  issue: 8
  year: 2014
  ident: 658_CR41
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000978
– volume: 54
  start-page: 2567
  issue: 4
  year: 2021
  ident: 658_CR1
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09909-3
– volume: 19
  start-page: 2281
  year: 2015
  ident: 658_CR13
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-015-0154-1
– volume: 30
  start-page: 2143
  year: 2016
  ident: 658_CR33
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-016-1278-x
– volume: 18
  start-page: 352
  issue: 3
  year: 2013
  ident: 658_CR23
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000608
– volume: 111
  start-page: 1447
  issue: 12
  year: 1985
  ident: 658_CR40
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(1985)111:12(1447)
– volume: 76
  start-page: 1
  year: 2017
  ident: 658_CR5
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-6379-6
– volume: 3
  start-page: 73
  issue: 1
  year: 2012
  ident: 658_CR3
  publication-title: J Adv Res
  doi: 10.1016/j.jare.2011.04.004
– volume: 33
  start-page: 2677
  year: 2019
  ident: 658_CR10
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02247-2
– volume: 553
  start-page: 142
  year: 2017
  ident: 658_CR7
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.07.050
– volume: 19
  start-page: 07014008
  issue: 10
  year: 2014
  ident: 658_CR12
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0000702
– volume: 47
  start-page: 737
  issue: 6
  year: 2015
  ident: 658_CR24
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2014.918115
– volume: 130
  start-page: 140
  issue: 2
  year: 2004
  ident: 658_CR11
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)0733-9437(2004)130:2(140)
– volume: 119
  start-page: 600
  issue: 5
  year: 1993
  ident: 658_CR47
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)07339437(2006)132:5(474)
– volume: 113
  start-page: 61
  issue: 1
  year: 1987
  ident: 658_CR38
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(1987)113:1(61)
– volume: 30
  year: 2020
  ident: 658_CR26
  publication-title: Data in brief
  doi: 10.1016/j.dib.2020.105398
– volume: 22
  start-page: 4106
  issue: 20
  year: 2008
  ident: 658_CR39
  publication-title: Hydrol Process Intl J
  doi: 10.1002/hyp.7012
– ident: 658_CR2
  doi: 10.1680/wama.10.00036
– ident: 658_CR15
  doi: 10.1680/wama.14.00030
– ident: 658_CR28
– ident: 658_CR9
  doi: 10.13140/RG.2.2.20181.86244
– ident: 658_CR43
SSID ssj0002140239
ssib031263280
Score 2.355188
Snippet Due to advancements in optimization technology, numerous variable-parameter Muskingum models have been proposed in recent decades, aiming at enhancing the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 42
SubjectTerms Algorithms
Case studies
Earth and Environmental Science
Earth Sciences
Environmental Management
Environmental Science and Engineering
Errors
Flood routing
Floods
Inflow
Mathematical models
Optimization
Outflow
Parameter estimation
Parameter modification
Rivers
Spatial variations
Temporal variations
Trigonometric functions
Waste Management/Waste Technology
Water Quality/Water Pollution
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLa4Bhbuilse2MBSHMeJMyLUigEKagGxRU7sIKQeqGkR_Hvec51WIECC2c6LZX_vst9ByIlQRoR5ypktTcIiIzXwnOCsFLwo8dkrMq66_lXSbqvHx_TWJ4VVdbR7_STpJPUs2Q1dj4CBjmFObzKxSJZB3Slkx073oUaR4FiC3KMS5XEIPkToWooBd2LxzJT77JnvyX7WUHOz88tLqVNArfX_LX2DrHmDk55PEbJJFuxgizSa8_w2GPQMXm2T8fSSwRrawYAN2sK4dophQ_A_ipe2FJsYA2h77_QB_GzMvKLNt5fhAEjR60mFV--TPsUeaz2qB4Z2wY6lF0OMr6c3IKD6PvOTnveehiOg2N8h963m3cUl840ZWCGkGjOtQ7A7ZJBHIgcLJIhza20aRVqGhdBCGjAaYi0Tk8cq1tymNihtKJXlXGie5KJBlgawrl1ClZHWqlwBLGJwNUUeFGlR6kiV0qikFHuE14eRFb5qOTbP6GWzestuczPY3MxtbgbfnM6-eZnW7Ph19mF9xpnn3yrDsn5gyoGw2yNn9ZnOh3-mtv-36QdkNXSwwKC1Q7I0Hk3sEVkpXsfP1ejY4foDIXTvug
  priority: 102
  providerName: Springer Nature
Title Improved River Flood Routing with Spatially Variable Exponent Muskingum Model and Sine Cosine Optimization Algorithm
URI https://link.springer.com/article/10.1007/s40710-023-00658-3
https://www.proquest.com/docview/2859389225
Volume 10
WOSCitedRecordID wos001058438300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 2198-7505
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002140239
  issn: 2198-7491
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2198-7505
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002140239
  issn: 2198-7491
  databaseCode: PATMY
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Core Collection
  customDbUrl:
  eissn: 2198-7505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140239
  issn: 2198-7491
  databaseCode: RSV
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9iHQcujK-Jsa3ygRtYxHGcOKepm1pxgDJ1UO0WObEDSP2iSdH23-8911kFErtwjm05er_36fcB8FZqK-MyF9zVNuOJVQZ5TgpeS1HV9OyVWN9d_1M2Huvr6_wyBNyakFbZyUQvqO2yohj5B2q0hsoV4Xe2-sVpahS9roYRGnuwT53Kkh7snw_Hl5MOUVJQO_KAUJLNMfoTsR8vhpxKjTRzESppfD0deTcRxxXcq2Yu_9RWOxP0r1dTr4xGB__7G8_gaTBD2WCLm-fwyC1ewOFwV_WGHwPbNy-h3YYenGUTSuNgI8p2Z5RMhLdjFMplNNoYoTy7ZVP0vqkeiw1vVssFHsU-bxoKyG_mjCavzZhZWHaF1i27WFLWPfuCYmse6kHZYPYd79v-mL-Cb6Ph14uPPIxr4JVUuuXGxGiNqKhMZIl2SZSWzrk8SYyKK2mksmhKpEZltkx1aoTLXVS7WGknhDQiK-Uh9BZ4r9fAtFXO6VIjWFJ0QGUZVXlVm0TXyuqslkcgOrIUVehlTiM1ZsV9F2ZPygJJWXhSFrjn3f2e1baTx4OrTzr6FYGrm2JHvCN43yFg9_nfp715-LRjeBJ70FHq2gn02vXGncLj6nf7s1n3A6b7sDe5mt4B1t_8Wg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceFcUCvgAXMAitvNwDhxWZVeturtUsKBySp3YoZWyD7pZoH-K38hM1ukKJHrrgXPskeV88_K8AJ4rbZXMU8FdaRMe2sggzynBSyWKksJeoW266w-S0UgfHaWHG_CrrYWhtMpWJjaC2s4KeiN_Q43WULki_HwG5YE7_4H-2eLt_jv8mS-k7PfGu3vcjxDghYp0zY2RqCGjIA9VjroyiHPnXBqGJpKFMiqyqN5iEyU2j3VshEtdUDoZaSeEMiLJFdJ9Of_GaUoVRXP9yI5rsKnjNJYd2DzsjodfWgQrQe3PPUeQLpDov8hmnBlKBmrcmQpfudPU75E3FXBcwRtTgKs_tePa5P0rStsov_7t_-3a7sAtb2az7oov7sKGm96Drd66qg8_erG2uA_16mnFWfaB0lRYn7L5GSVL4W0weqpmNLoZWbU6Z58N8mxeOdb7OZ9NkRQbLhcUcFhOGE2Wq5iZWvYRrXe2O6OqAvYexfLE17uybvUVz1ufTB7Apyu5lC3oTPFcD4FpGzmnc43MEKODrfKgSIvShLqMrE5KtQ2ihUFW-F7tNDKkyi66TDfQyRA6WQOdDPe8utgzX3UquXT1TouXzEutRbYGyza8bhG3_vxvao8up_YMbuyNh4NssD86eAw3ZQN4StPbgU59tnRP4HrxvT5dnD31_MTg-Krh-RsRqlc4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwELZYmaa9DBhMFDrwA29gLY7jxHmsSisQpVR0VH2LnNiZkNK0atOJ_Xvu3KTdECBNe7Z9Tuw735199x0h74Qywk9jzmxuIhYYqUHmBGe54FmOz16Bcej6w2g0UrNZPL6Vxe-i3ZsnyW1OA6I0ldXF0uQXu8Q3dEM8BvqGOR3KxAF5HGDRIPTXJ9OGowRHOPKaQ_Fs9sGf8F15MZBUBNKMeZ1J83eyd7XV3gT949XUKaPBk4f_xlNyUhuitLvlnGfkkS1PyVl_n_cGjbXgr5-Tanv5YA39joEcdIDx7hTDiWBuipe5FIsbAzMXN3QK_jdmZNH-r-WiBFL062aNV_KbOcXaawXVpaETsG9pb4Fx9_QbHFzzOiOUdourxQoozl-QH4P-Ze8Tqws2sExIVTGtfbBHpJcGIgXLxAtTa20cBFr6mdBCGjAmQi0jk4Yq1NzG1sutL5XlXGgepeKMtEr4rpeEKiOtVakCdgnBBRWpl8VZrgOVS6OiXLQJbzYmyWo0cyyqUSQ7HGa3uAksbuIWN4Ex73djllssj__27jT7ndRyvU4Q7g9MPDgE2-RDs7_75n9Te3W_7m_J0fjjIBl-Hn15TY59xyEY19YhrWq1sefkMLuufq5Xbxy7_wbHufuC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+River+Flood+Routing+with+Spatially+Variable+Exponent+Muskingum+Model+and+Sine+Cosine+Optimization+Algorithm&rft.jtitle=Environmental+processes&rft.au=Atashi%2C+Vida&rft.au=Barati%2C+Reza&rft.au=Lim%2C+Yeo+Howe&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=2198-7491&rft.eissn=2198-7505&rft.volume=10&rft.issue=3&rft.spage=42&rft_id=info:doi/10.1007%2Fs40710-023-00658-3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-7491&client=summon