Improved River Flood Routing with Spatially Variable Exponent Muskingum Model and Sine Cosine Optimization Algorithm
Due to advancements in optimization technology, numerous variable-parameter Muskingum models have been proposed in recent decades, aiming at enhancing the effectiveness of the Muskingum model. However, a knowledge gap exists in understanding the implications of incorporating spatial variations and l...
Saved in:
| Published in: | Environmental processes Vol. 10; no. 3; p. 42 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.09.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2198-7491, 2198-7505 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Due to advancements in optimization technology, numerous variable-parameter Muskingum models have been proposed in recent decades, aiming at enhancing the effectiveness of the Muskingum model. However, a knowledge gap exists in understanding the implications of incorporating spatial variations and lateral inflow considerations into the Muskingum model, as well as the performance and applicability of different sub-reach configurations, calling for further research in river flood routing. This study proposed a novel approach to river flood routing using a spatial variable exponent parameter nonlinear Muskingum model with lateral inflow considerations. Unlike previous studies that focused on modifying exponent parameters based on variable inflow levels (i.e., temporal variations), the proposed model considered spatial variations. The proposed Muskingum parameters were estimated using an improved Sine Cosine algorithm (SCA), applied to fit six previously reported case datasets. The proposed method minimized the sum of square errors (SSE) between observed and routed outflows. Results show that the proposed model outperforms others in the Wilson flood case study with an SSE of 6.072 for Number of Sub-reaches (NR)=2, representing an 82.89% reduction compared to NR=1 and constant exponent parameter. Additionally, both the Viessman and Lewis case study and the Dinavar case study demonstrate that NR=3 achieves the best performance and fit to observed data. NR=3 yields the best fit achieving SSE of 9.81 and 2466.62 in the Viessman and Lewis case and the Dinavar case, respectively. The Lawler flood case suggests that a traditional nonlinear model with an SSE of 0.36 for NR=1, 2, or 3 may suffice.
Highlights
The nonlinear Muskingum model is an extension of the standard Muskingum method.
Nonlinear Muskingum Model with Variable Exponent Parameter improves flood routing.
The proposed method minimized the sum of square errors (SSE) between observed and routed outflows.
The Wilson flood case study demonstrates SSE of 6.072 for NR=2. |
|---|---|
| AbstractList | Due to advancements in optimization technology, numerous variable-parameter Muskingum models have been proposed in recent decades, aiming at enhancing the effectiveness of the Muskingum model. However, a knowledge gap exists in understanding the implications of incorporating spatial variations and lateral inflow considerations into the Muskingum model, as well as the performance and applicability of different sub-reach configurations, calling for further research in river flood routing. This study proposed a novel approach to river flood routing using a spatial variable exponent parameter nonlinear Muskingum model with lateral inflow considerations. Unlike previous studies that focused on modifying exponent parameters based on variable inflow levels (i.e., temporal variations), the proposed model considered spatial variations. The proposed Muskingum parameters were estimated using an improved Sine Cosine algorithm (SCA), applied to fit six previously reported case datasets. The proposed method minimized the sum of square errors (SSE) between observed and routed outflows. Results show that the proposed model outperforms others in the Wilson flood case study with an SSE of 6.072 for Number of Sub-reaches (NR)=2, representing an 82.89% reduction compared to NR=1 and constant exponent parameter. Additionally, both the Viessman and Lewis case study and the Dinavar case study demonstrate that NR=3 achieves the best performance and fit to observed data. NR=3 yields the best fit achieving SSE of 9.81 and 2466.62 in the Viessman and Lewis case and the Dinavar case, respectively. The Lawler flood case suggests that a traditional nonlinear model with an SSE of 0.36 for NR=1, 2, or 3 may suffice.
Highlights
The nonlinear Muskingum model is an extension of the standard Muskingum method.
Nonlinear Muskingum Model with Variable Exponent Parameter improves flood routing.
The proposed method minimized the sum of square errors (SSE) between observed and routed outflows.
The Wilson flood case study demonstrates SSE of 6.072 for NR=2. Due to advancements in optimization technology, numerous variable-parameter Muskingum models have been proposed in recent decades, aiming at enhancing the effectiveness of the Muskingum model. However, a knowledge gap exists in understanding the implications of incorporating spatial variations and lateral inflow considerations into the Muskingum model, as well as the performance and applicability of different sub-reach configurations, calling for further research in river flood routing. This study proposed a novel approach to river flood routing using a spatial variable exponent parameter nonlinear Muskingum model with lateral inflow considerations. Unlike previous studies that focused on modifying exponent parameters based on variable inflow levels (i.e., temporal variations), the proposed model considered spatial variations. The proposed Muskingum parameters were estimated using an improved Sine Cosine algorithm (SCA), applied to fit six previously reported case datasets. The proposed method minimized the sum of square errors (SSE) between observed and routed outflows. Results show that the proposed model outperforms others in the Wilson flood case study with an SSE of 6.072 for Number of Sub-reaches (NR)=2, representing an 82.89% reduction compared to NR=1 and constant exponent parameter. Additionally, both the Viessman and Lewis case study and the Dinavar case study demonstrate that NR=3 achieves the best performance and fit to observed data. NR=3 yields the best fit achieving SSE of 9.81 and 2466.62 in the Viessman and Lewis case and the Dinavar case, respectively. The Lawler flood case suggests that a traditional nonlinear model with an SSE of 0.36 for NR=1, 2, or 3 may suffice.HighlightsThe nonlinear Muskingum model is an extension of the standard Muskingum method.Nonlinear Muskingum Model with Variable Exponent Parameter improves flood routing.The proposed method minimized the sum of square errors (SSE) between observed and routed outflows.The Wilson flood case study demonstrates SSE of 6.072 for NR=2. |
| ArticleNumber | 42 |
| Author | Atashi, Vida Barati, Reza Lim, Yeo Howe |
| Author_xml | – sequence: 1 givenname: Vida surname: Atashi fullname: Atashi, Vida email: Vida.atashi@und.edu organization: Department of Civil Engineering, University of North Dakota – sequence: 2 givenname: Reza surname: Barati fullname: Barati, Reza organization: Department of Civil Engineering, Tarbiat Modares University – sequence: 3 givenname: Yeo Howe surname: Lim fullname: Lim, Yeo Howe organization: Department of Civil Engineering, University of North Dakota |
| BookMark | eNp9kElPwzAQhS0EElD6BzhZ4hzwmuWIKjapCIntajnNtBgSO9gO26_HbUFIHHqaObzvzby3j7ats4DQISXHlJDiJAhSUJIRxjNCcllmfAvtMVqVWSGJ3P7dRUV30TiEZ0IIoyLJqz0Ur7reuzdo8K15A4_PW-fS7oZo7AK_m_iE73odjW7bT_yovdF1C_jso08v2Iivh_CShEOHr10DLda2wXfGAp64sBw3fTSd-UoGzuLTduF8cuwO0M5ctwHGP3OEHs7P7ieX2fTm4mpyOs1mXJYx05oJTiWpBa8LwUleA0AlhJZsxjWXDWUi17Jo6rzMNYUKyByYLIFSrmlR8xE6WvumiK8DhKie3eBtOqlYKSteVozJpGJr1cy7EDzMVe9Np_2nokQtC1brglVqTK0KVjxB5T9oZuIqZvTatJtRvkZDumMX4P--2kB9A9Icklo |
| CitedBy_id | crossref_primary_10_1038_s41598_023_48895_8 crossref_primary_10_3390_w16040572 crossref_primary_10_1007_s11269_024_04063_9 crossref_primary_10_1007_s40710_024_00716_4 crossref_primary_10_1007_s11269_023_03684_w crossref_primary_10_1007_s11269_025_04116_7 crossref_primary_10_1007_s11269_025_04146_1 crossref_primary_10_1007_s11269_024_03833_9 crossref_primary_10_1007_s11269_024_03846_4 crossref_primary_10_1007_s11269_025_04255_x crossref_primary_10_1007_s11269_023_03618_6 crossref_primary_10_2166_hydro_2023_029 crossref_primary_10_1007_s13201_025_02477_3 |
| Cites_doi | 10.1061/(ASCE)0733-9437(2004)130:2(140) 10.1061/(ASCE)HE.1943-5584.0000608 10.1016/j.asoc.2022.108997 10.1016/j.ijepes.2018.01.024 10.1016/j.dib.2020.105398 10.1007/s11269-017-1758-7 10.1007/s12665-016-6379-6 10.1061/(ASCE)0733-9429(1997)123:2(137) 10.1080/02626668509491013 10.1061/(ASCE)0733-9429(1987)113:1(61) 10.1016/j.jhydrol.2020.125223 10.1016/j.jare.2011.04.004 10.1061/(ASCE)1084-0699(2006)11:6(597) 10.1007/s12205-015-0154-1 10.1016/j.knosys.2015.12.022 10.1007/s11269-016-1278-x 10.1002/clen.200700122 10.30482/JHYD.2019.98964 10.1007/s11269-022-03257-3 10.1007/s10462-021-10026-y 10.1016/0022-1694(78)90153-1 10.1007/s11269-019-02247-2 10.21203/rs.3.rs-174369/v1 10.1061/(ASCE)HE.1943-5584.0000244 10.1061/(ASCE)0733-9429(1985)111:12(1447) 10.1061/(ASCE)07339437(2006)132:5(474) 10.1007/s10462-020-09909-3 10.1061/(ASCE)HE.1943-5584.0000702 10.1002/hyp.7012 10.1061/(ASCE)HE.1943-5584.0000978 10.1016/j.jhydrol.2017.07.050 10.1080/0305215X.2014.918115 10.2166/nh.2016.185 10.1061/(ASCE)HE.1943-5584.0002088 10.1007/s12205-015-0462-5 10.1061/(ASCE)HE.1943-5584.0000896 10.1007/s13201-022-01844-8 10.1007/s11269-023-03493-1 10.1109/ICCKE.2018.8566344 10.1007/978-1-349-11522-8_1 10.1680/wama.14.00034 10.1680/wama.10.00036 10.1680/wama.14.00030 10.13140/RG.2.2.20181.86244 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ PATMY PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY |
| DOI | 10.1007/s40710-023-00658-3 |
| DatabaseName | CrossRef ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection |
| DatabaseTitle | CrossRef ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Central Environmental Science Collection ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 2198-7505 |
| ExternalDocumentID | 10_1007_s40710_023_00658_3 |
| GroupedDBID | -EM 0R~ 203 2XV 4.4 406 AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFQWF AFRAH AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG ATCPS AUKKA AVWKF AVXWI AXYYD AZFZN BENPR BGNMA BHPHI CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD HCIFZ HG6 HVGLF IAG IAO IEP IKXTQ ITC IWAJR IXD J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PATMY PT4 PYCSY RLLFE ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c358t-aa243150b43b74306beee944a52c3a35d1246a57db686a1e9e0fe258e113a17b3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001058438300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-7491 |
| IngestDate | Tue Dec 02 15:57:12 EST 2025 Tue Nov 18 21:26:40 EST 2025 Sat Nov 29 05:37:44 EST 2025 Fri Feb 21 02:41:35 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Variable Exponent Parameter Sine Cosine Algorithm (SCA) Nonlinear Muskingum Model Spatial Variation Lateral inflow |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-aa243150b43b74306beee944a52c3a35d1246a57db686a1e9e0fe258e113a17b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2859389225 |
| PQPubID | 2044339 |
| ParticipantIDs | proquest_journals_2859389225 crossref_primary_10_1007_s40710_023_00658_3 crossref_citationtrail_10_1007_s40710_023_00658_3 springer_journals_10_1007_s40710_023_00658_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20230900 2023-09-00 20230901 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Environmental processes |
| PublicationTitleAbbrev | Environ. Process |
| PublicationYear | 2023 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Feng, Niu, Liu, Luo, Miao, Liu (CR17) 2020; 590 O’donnell (CR37) 1985; 30 Das (CR11) 2004; 130 Yoon, Padmanabhan (CR47) 1993; 119 Hosseini, Nodoushan, Barati, Shahheydari (CR21) 2016; 20 Kang, Zhou, Zhang (CR22) 2017; 31 CR16 Zhang, Kang, Zhou, Guo (CR48) 2016; 48 CR15 Bozorg-Haddad, Abdi-Dehkordi, Hamedi, Pazoki, Loáiciga (CR10) 2019; 33 CR14 Easa (CR13) 2015; 19 Badfar, Barati, Dogan, Tayfur (CR8) 2021; 26 Karahan, Gurarslan, Geem (CR24) 2015; 47 Easa (CR12) 2014; 19 Vatankhah (CR41) 2014; 19 Gabis, Meraihi, Mirjalili, Ramdane-Cherif (CR19) 2021; 54 Moghaddam, Behmanesh, Farsijani (CR33) 2016; 30 Abualigah, Diabat (CR1) 2021; 54 CR2 Tung (CR40) 1985; 111 Ayvaz, Gurarslan (CR7) 2017; 553 Akbari, Hessami-Kermani, Shojaee (CR4) 2019; 14 Lu, Ji, Wang, Zhang, Ealotswe, Qin, Lu, Liu, Shu (CR29) 2021; 35 Alizadeh, Shahheydari, Kavianpour, Shamloo, Barati (CR5) 2017; 76 Akbari, Nezhad, Barati (CR3) 2012; 3 CR28 CR9 CR27 Mohan (CR34) 1997; 123 Singh, Scarlatos (CR38) 1987; 113 Mirjalili (CR32) 2016; 96 Khalifeh, Esmaili, Khodashenas, Akbarifard (CR26) 2020; 30 CR46 Toprak, Cigizoglu (CR39) 2008; 22 CR45 Gill (CR20) 1978; 36 CR43 Wang, Hong, Gourley, Adhikari, Li, Su, Wang (CR44) 2014; 839 Kazemi, Barati (CR25) 2022; 124 Moradi, Yaghoubi, Shabanlou (CR35) 2022; 13 CR42 Fuat Toprak, Savci (CR18) 2007; 35 Attia, El Sehiemy, Hasanien (CR6) 2018; 99 Karahan, Gurarslan, Geem (CR23) 2013; 18 McCuen, Knight, Cutter (CR31) 2006; 11 Luo, Xie (CR30) 2010; 15 Norouzi, Bazargan (CR36) 2022; 36 658_CR42 VP Singh (658_CR38) 1987; 113 AB Gabis (658_CR19) 2021; 54 H Karahan (658_CR23) 2013; 18 S Mohan (658_CR34) 1997; 123 L Abualigah (658_CR1) 2021; 54 658_CR46 S Mirjalili (658_CR32) 2016; 96 658_CR45 658_CR9 658_CR43 658_CR28 MT Ayvaz (658_CR7) 2017; 553 SM Easa (658_CR13) 2015; 19 658_CR27 C Lu (658_CR29) 2021; 35 M Kazemi (658_CR25) 2022; 124 J Wang (658_CR44) 2014; 839 A Moghaddam (658_CR33) 2016; 30 J Yoon (658_CR47) 1993; 119 T O’donnell (658_CR37) 1985; 30 R Akbari (658_CR4) 2019; 14 MJ Alizadeh (658_CR5) 2017; 76 Z Fuat Toprak (658_CR18) 2007; 35 Z-k Feng (658_CR17) 2020; 590 A Das (658_CR11) 2004; 130 GH Akbari (658_CR3) 2012; 3 H Karahan (658_CR24) 2015; 47 ZF Toprak (658_CR39) 2008; 22 AR Vatankhah (658_CR41) 2014; 19 S Zhang (658_CR48) 2016; 48 A-F Attia (658_CR6) 2018; 99 J Luo (658_CR30) 2010; 15 E Moradi (658_CR35) 2022; 13 H Norouzi (658_CR36) 2022; 36 658_CR16 658_CR15 Y-K Tung (658_CR40) 1985; 111 658_CR14 S Khalifeh (658_CR26) 2020; 30 M Badfar (658_CR8) 2021; 26 O Bozorg-Haddad (658_CR10) 2019; 33 MA Gill (658_CR20) 1978; 36 K Hosseini (658_CR21) 2016; 20 RH McCuen (658_CR31) 2006; 11 L Kang (658_CR22) 2017; 31 SM Easa (658_CR12) 2014; 19 658_CR2 |
| References_xml | – volume: 130 start-page: 140 issue: 2 year: 2004 end-page: 147 ident: CR11 article-title: Parameter estimation for Muskingum models publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)0733-9437(2004)130:2(140) – volume: 18 start-page: 352 issue: 3 year: 2013 end-page: 360 ident: CR23 article-title: Parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid harmony search algorithm publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000608 – ident: CR45 – volume: 124 year: 2022 ident: CR25 article-title: Application of dimensional analysis and multi-gene genetic programming to predict the performance of tunnel boring machines publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.108997 – volume: 99 start-page: 331 year: 2018 end-page: 343 ident: CR6 article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2018.01.024 – volume: 30 year: 2020 ident: CR26 article-title: Data on optimization of the non-linear Muskingum flood routing in Kardeh River using Goa algorithm publication-title: Data in brief doi: 10.1016/j.dib.2020.105398 – ident: CR43 – ident: CR14 – ident: CR2 – ident: CR16 – volume: 31 start-page: 4449 year: 2017 end-page: 4467 ident: CR22 article-title: Parameter estimation of two improved nonlinear Muskingum models considering the lateral flow using a hybrid algorithm publication-title: Water Resour Manag doi: 10.1007/s11269-017-1758-7 – volume: 76 start-page: 1 year: 2017 end-page: 11 ident: CR5 article-title: Prediction of longitudinal dispersion coefficient in natural rivers using a cluster-based Bayesian network publication-title: Environ Earth Sci doi: 10.1007/s12665-016-6379-6 – volume: 123 start-page: 137 issue: 2 year: 1997 end-page: 142 ident: CR34 article-title: Parameter estimation of nonlinear Muskingum models using genetic algorithm publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(1997)123:2(137) – volume: 30 start-page: 479 issue: 4 year: 1985 end-page: 496 ident: CR37 article-title: A direct three-parameter Muskingum procedure incorporating lateral inflow publication-title: Hydrol Sci J doi: 10.1080/02626668509491013 – volume: 113 start-page: 61 issue: 1 year: 1987 end-page: 79 ident: CR38 article-title: Analysis of nonlinear Muskingum flood routing publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(1987)113:1(61) – volume: 590 year: 2020 ident: CR17 article-title: Multiple hydropower reservoirs operation optimization by adaptive mutation sine cosine algorithm based on neighborhood search and simplex search strategies publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125223 – ident: CR27 – ident: CR42 – volume: 3 start-page: 73 issue: 1 year: 2012 end-page: 79 ident: CR3 article-title: Developing a model for analysis of uncertainties in prediction of floods publication-title: J Adv Res doi: 10.1016/j.jare.2011.04.004 – volume: 11 start-page: 597 issue: 6 year: 2006 end-page: 602 ident: CR31 article-title: Evaluation of the Nash–Sutcliffe efficiency index publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2006)11:6(597) – volume: 19 start-page: 2281 year: 2015 end-page: 2290 ident: CR13 article-title: Evaluation of nonlinear Muskingum model with continuous and discontinuous exponent parameters publication-title: KSCE J Civ Eng doi: 10.1007/s12205-015-0154-1 – ident: CR46 – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: CR32 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 30 start-page: 2143 year: 2016 end-page: 2160 ident: CR33 article-title: Parameters estimation for the new four-parameter nonlinear Muskingum model using the particle swarm optimization publication-title: Water Resour Manag doi: 10.1007/s11269-016-1278-x – volume: 35 start-page: 626 issue: 6 year: 2007 end-page: 637 ident: CR18 article-title: Longitudinal dispersion coefficient modeling in natural channels using fuzzy logic publication-title: CLEAN–Soil, Air, Water doi: 10.1002/clen.200700122 – volume: 14 start-page: 17 issue: 3 year: 2019 ident: CR4 article-title: Flood Routing using Gravitational Search Algorithm and Investigation of Hydrological Parameters Uncertainty of Nonlinear Muskingum Model publication-title: J Hydraulics doi: 10.30482/JHYD.2019.98964 – volume: 36 start-page: 4343 issue: 11 year: 2022 end-page: 4361 ident: CR36 article-title: Calculation of Water Depth during Flood in Rivers using Linear Muskingum Method and Particle Swarm Optimization (PSO) Algorithm publication-title: Water Resour Manag doi: 10.1007/s11269-022-03257-3 – volume: 54 start-page: 5469 issue: 7 year: 2021 end-page: 5540 ident: CR19 article-title: A comprehensive survey of sine cosine algorithm: variants and applications publication-title: Artif Intell Rev doi: 10.1007/s10462-021-10026-y – ident: CR15 – volume: 36 start-page: 353 issue: 3-4 year: 1978 end-page: 363 ident: CR20 article-title: Flood routing by the Muskingum method publication-title: J Hydrol doi: 10.1016/0022-1694(78)90153-1 – volume: 33 start-page: 2677 year: 2019 end-page: 2691 ident: CR10 article-title: Generalized storage equations for flood routing with nonlinear Muskingum models publication-title: Water Resour Manag doi: 10.1007/s11269-019-02247-2 – volume: 35 start-page: 2649 issue: 8 year: 2021 end-page: 2666 ident: CR29 article-title: Estimation of the Interaction Between Groundwater and Surface Water Based on Flow Routing Using an Improved Nonlinear Muskingum-Cunge Method publication-title: Water Resour Manag doi: 10.21203/rs.3.rs-174369/v1 – volume: 15 start-page: 844 issue: 10 year: 2010 end-page: 851 ident: CR30 article-title: Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000244 – volume: 111 start-page: 1447 issue: 12 year: 1985 end-page: 1460 ident: CR40 article-title: River flood routing by nonlinear Muskingum method publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(1985)111:12(1447) – volume: 119 start-page: 600 issue: 5 year: 1993 end-page: 610 ident: CR47 article-title: Parameter estimation of linear and nonlinear Muskingum models publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)07339437(2006)132:5(474) – volume: 54 start-page: 2567 issue: 4 year: 2021 end-page: 2608 ident: CR1 article-title: Advances in sine cosine algorithm: a comprehensive survey publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09909-3 – volume: 19 start-page: 07014008 issue: 10 year: 2014 ident: CR12 article-title: Closure to “improved nonlinear Muskingum model with variable exponent parameter” by Said M. Easa publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000702 – ident: CR9 – volume: 22 start-page: 4106 issue: 20 year: 2008 end-page: 4129 ident: CR39 article-title: Predicting longitudinal dispersion coefficient in natural streams by artificial intelligence methods publication-title: Hydrol Process Intl J doi: 10.1002/hyp.7012 – volume: 19 start-page: 06014001 issue: 8 year: 2014 ident: CR41 article-title: Evaluation of explicit numerical solution methods of the Muskingum model publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000978 – volume: 553 start-page: 142 year: 2017 end-page: 159 ident: CR7 article-title: A new partitioning approach for nonlinear Muskingum flood routing models with lateral flow contribution publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.07.050 – volume: 47 start-page: 737 issue: 6 year: 2015 end-page: 749 ident: CR24 article-title: A new nonlinear Muskingum flood routing model incorporating lateral flow publication-title: Eng Optim doi: 10.1080/0305215X.2014.918115 – volume: 48 start-page: 17 issue: 1 year: 2016 end-page: 27 ident: CR48 article-title: A new modified nonlinear Muskingum model and its parameter estimation using the adaptive genetic algorithm publication-title: Hydrol Res doi: 10.2166/nh.2016.185 – volume: 26 start-page: 04021018 issue: 6 year: 2021 ident: CR8 article-title: Reverse flood routing in rivers using linear and nonlinear Muskingum models publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0002088 – volume: 20 start-page: 468 year: 2016 end-page: 477 ident: CR21 article-title: Optimal design of labyrinth spillways using meta-heuristic algorithms publication-title: KSCE J Civ Eng doi: 10.1007/s12205-015-0462-5 – ident: CR28 – volume: 839 start-page: 842 year: 2014 ident: CR44 article-title: Discussion of “parameter estimation of the nonlinear muskingum flood-routing model using a hybrid harmony search algorithm” by Halil Karahan, Gurhan Gurarslan, and Zong Woo Geem publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000896 – volume: 13 start-page: 49 issue: 2 year: 2022 ident: CR35 article-title: A new technique for flood routing by nonlinear Muskingum model and artificial gorilla troops algorithm publication-title: Appl Water Sci doi: 10.1007/s13201-022-01844-8 – ident: 658_CR45 doi: 10.1007/s11269-023-03493-1 – volume: 36 start-page: 353 issue: 3-4 year: 1978 ident: 658_CR20 publication-title: J Hydrol doi: 10.1016/0022-1694(78)90153-1 – volume: 96 start-page: 120 year: 2016 ident: 658_CR32 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 14 start-page: 17 issue: 3 year: 2019 ident: 658_CR4 publication-title: J Hydraulics doi: 10.30482/JHYD.2019.98964 – volume: 35 start-page: 2649 issue: 8 year: 2021 ident: 658_CR29 publication-title: Water Resour Manag doi: 10.21203/rs.3.rs-174369/v1 – volume: 590 year: 2020 ident: 658_CR17 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125223 – volume: 123 start-page: 137 issue: 2 year: 1997 ident: 658_CR34 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(1997)123:2(137) – volume: 99 start-page: 331 year: 2018 ident: 658_CR6 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2018.01.024 – volume: 15 start-page: 844 issue: 10 year: 2010 ident: 658_CR30 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000244 – volume: 11 start-page: 597 issue: 6 year: 2006 ident: 658_CR31 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2006)11:6(597) – volume: 30 start-page: 479 issue: 4 year: 1985 ident: 658_CR37 publication-title: Hydrol Sci J doi: 10.1080/02626668509491013 – volume: 31 start-page: 4449 year: 2017 ident: 658_CR22 publication-title: Water Resour Manag doi: 10.1007/s11269-017-1758-7 – volume: 36 start-page: 4343 issue: 11 year: 2022 ident: 658_CR36 publication-title: Water Resour Manag doi: 10.1007/s11269-022-03257-3 – ident: 658_CR16 doi: 10.1109/ICCKE.2018.8566344 – volume: 48 start-page: 17 issue: 1 year: 2016 ident: 658_CR48 publication-title: Hydrol Res doi: 10.2166/nh.2016.185 – ident: 658_CR46 doi: 10.1007/978-1-349-11522-8_1 – volume: 26 start-page: 04021018 issue: 6 year: 2021 ident: 658_CR8 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0002088 – ident: 658_CR42 – ident: 658_CR27 – ident: 658_CR14 doi: 10.1680/wama.14.00034 – volume: 20 start-page: 468 year: 2016 ident: 658_CR21 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-015-0462-5 – volume: 13 start-page: 49 issue: 2 year: 2022 ident: 658_CR35 publication-title: Appl Water Sci doi: 10.1007/s13201-022-01844-8 – volume: 839 start-page: 842 year: 2014 ident: 658_CR44 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000896 – volume: 54 start-page: 5469 issue: 7 year: 2021 ident: 658_CR19 publication-title: Artif Intell Rev doi: 10.1007/s10462-021-10026-y – volume: 35 start-page: 626 issue: 6 year: 2007 ident: 658_CR18 publication-title: CLEAN–Soil, Air, Water doi: 10.1002/clen.200700122 – volume: 124 year: 2022 ident: 658_CR25 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.108997 – volume: 19 start-page: 06014001 issue: 8 year: 2014 ident: 658_CR41 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000978 – volume: 54 start-page: 2567 issue: 4 year: 2021 ident: 658_CR1 publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09909-3 – volume: 19 start-page: 2281 year: 2015 ident: 658_CR13 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-015-0154-1 – volume: 30 start-page: 2143 year: 2016 ident: 658_CR33 publication-title: Water Resour Manag doi: 10.1007/s11269-016-1278-x – volume: 18 start-page: 352 issue: 3 year: 2013 ident: 658_CR23 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000608 – volume: 111 start-page: 1447 issue: 12 year: 1985 ident: 658_CR40 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(1985)111:12(1447) – volume: 76 start-page: 1 year: 2017 ident: 658_CR5 publication-title: Environ Earth Sci doi: 10.1007/s12665-016-6379-6 – volume: 3 start-page: 73 issue: 1 year: 2012 ident: 658_CR3 publication-title: J Adv Res doi: 10.1016/j.jare.2011.04.004 – volume: 33 start-page: 2677 year: 2019 ident: 658_CR10 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02247-2 – volume: 553 start-page: 142 year: 2017 ident: 658_CR7 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.07.050 – volume: 19 start-page: 07014008 issue: 10 year: 2014 ident: 658_CR12 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0000702 – volume: 47 start-page: 737 issue: 6 year: 2015 ident: 658_CR24 publication-title: Eng Optim doi: 10.1080/0305215X.2014.918115 – volume: 130 start-page: 140 issue: 2 year: 2004 ident: 658_CR11 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)0733-9437(2004)130:2(140) – volume: 119 start-page: 600 issue: 5 year: 1993 ident: 658_CR47 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)07339437(2006)132:5(474) – volume: 113 start-page: 61 issue: 1 year: 1987 ident: 658_CR38 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(1987)113:1(61) – volume: 30 year: 2020 ident: 658_CR26 publication-title: Data in brief doi: 10.1016/j.dib.2020.105398 – volume: 22 start-page: 4106 issue: 20 year: 2008 ident: 658_CR39 publication-title: Hydrol Process Intl J doi: 10.1002/hyp.7012 – ident: 658_CR2 doi: 10.1680/wama.10.00036 – ident: 658_CR15 doi: 10.1680/wama.14.00030 – ident: 658_CR28 – ident: 658_CR9 doi: 10.13140/RG.2.2.20181.86244 – ident: 658_CR43 |
| SSID | ssj0002140239 ssib031263280 |
| Score | 2.355188 |
| Snippet | Due to advancements in optimization technology, numerous variable-parameter Muskingum models have been proposed in recent decades, aiming at enhancing the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 42 |
| SubjectTerms | Algorithms Case studies Earth and Environmental Science Earth Sciences Environmental Management Environmental Science and Engineering Errors Flood routing Floods Inflow Mathematical models Optimization Outflow Parameter estimation Parameter modification Rivers Spatial variations Temporal variations Trigonometric functions Waste Management/Waste Technology Water Quality/Water Pollution |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLa4Bhbuilse2MBSHMeJMyLUigEKagGxRU7sIKQeqGkR_Hvec51WIECC2c6LZX_vst9ByIlQRoR5ypktTcIiIzXwnOCsFLwo8dkrMq66_lXSbqvHx_TWJ4VVdbR7_STpJPUs2Q1dj4CBjmFObzKxSJZB3Slkx073oUaR4FiC3KMS5XEIPkToWooBd2LxzJT77JnvyX7WUHOz88tLqVNArfX_LX2DrHmDk55PEbJJFuxgizSa8_w2GPQMXm2T8fSSwRrawYAN2sK4dophQ_A_ipe2FJsYA2h77_QB_GzMvKLNt5fhAEjR60mFV--TPsUeaz2qB4Z2wY6lF0OMr6c3IKD6PvOTnveehiOg2N8h963m3cUl840ZWCGkGjOtQ7A7ZJBHIgcLJIhza20aRVqGhdBCGjAaYi0Tk8cq1tymNihtKJXlXGie5KJBlgawrl1ClZHWqlwBLGJwNUUeFGlR6kiV0qikFHuE14eRFb5qOTbP6GWzestuczPY3MxtbgbfnM6-eZnW7Ph19mF9xpnn3yrDsn5gyoGw2yNn9ZnOh3-mtv-36QdkNXSwwKC1Q7I0Hk3sEVkpXsfP1ejY4foDIXTvug priority: 102 providerName: Springer Nature |
| Title | Improved River Flood Routing with Spatially Variable Exponent Muskingum Model and Sine Cosine Optimization Algorithm |
| URI | https://link.springer.com/article/10.1007/s40710-023-00658-3 https://www.proquest.com/docview/2859389225 |
| Volume | 10 |
| WOSCitedRecordID | wos001058438300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 2198-7505 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002140239 issn: 2198-7491 databaseCode: BENPR dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2198-7505 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002140239 issn: 2198-7491 databaseCode: PATMY dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Core Collection customDbUrl: eissn: 2198-7505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140239 issn: 2198-7491 databaseCode: RSV dateStart: 20140301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9iHQcujK-Jsa3ygRtYxHGcOKepm1pxgDJ1UO0WObEDSP2iSdH23-8911kFErtwjm05er_36fcB8FZqK-MyF9zVNuOJVQZ5TgpeS1HV9OyVWN9d_1M2Huvr6_wyBNyakFbZyUQvqO2yohj5B2q0hsoV4Xe2-sVpahS9roYRGnuwT53Kkh7snw_Hl5MOUVJQO_KAUJLNMfoTsR8vhpxKjTRzESppfD0deTcRxxXcq2Yu_9RWOxP0r1dTr4xGB__7G8_gaTBD2WCLm-fwyC1ewOFwV_WGHwPbNy-h3YYenGUTSuNgI8p2Z5RMhLdjFMplNNoYoTy7ZVP0vqkeiw1vVssFHsU-bxoKyG_mjCavzZhZWHaF1i27WFLWPfuCYmse6kHZYPYd79v-mL-Cb6Ph14uPPIxr4JVUuuXGxGiNqKhMZIl2SZSWzrk8SYyKK2mksmhKpEZltkx1aoTLXVS7WGknhDQiK-Uh9BZ4r9fAtFXO6VIjWFJ0QGUZVXlVm0TXyuqslkcgOrIUVehlTiM1ZsV9F2ZPygJJWXhSFrjn3f2e1baTx4OrTzr6FYGrm2JHvCN43yFg9_nfp715-LRjeBJ70FHq2gn02vXGncLj6nf7s1n3A6b7sDe5mt4B1t_8Wg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceFcUCvgAXMAitvNwDhxWZVeturtUsKBySp3YoZWyD7pZoH-K38hM1ukKJHrrgXPskeV88_K8AJ4rbZXMU8FdaRMe2sggzynBSyWKksJeoW266w-S0UgfHaWHG_CrrYWhtMpWJjaC2s4KeiN_Q43WULki_HwG5YE7_4H-2eLt_jv8mS-k7PfGu3vcjxDghYp0zY2RqCGjIA9VjroyiHPnXBqGJpKFMiqyqN5iEyU2j3VshEtdUDoZaSeEMiLJFdJ9Of_GaUoVRXP9yI5rsKnjNJYd2DzsjodfWgQrQe3PPUeQLpDov8hmnBlKBmrcmQpfudPU75E3FXBcwRtTgKs_tePa5P0rStsov_7t_-3a7sAtb2az7oov7sKGm96Drd66qg8_erG2uA_16mnFWfaB0lRYn7L5GSVL4W0weqpmNLoZWbU6Z58N8mxeOdb7OZ9NkRQbLhcUcFhOGE2Wq5iZWvYRrXe2O6OqAvYexfLE17uybvUVz1ufTB7Apyu5lC3oTPFcD4FpGzmnc43MEKODrfKgSIvShLqMrE5KtQ2ihUFW-F7tNDKkyi66TDfQyRA6WQOdDPe8utgzX3UquXT1TouXzEutRbYGyza8bhG3_vxvao8up_YMbuyNh4NssD86eAw3ZQN4StPbgU59tnRP4HrxvT5dnD31_MTg-Krh-RsRqlc4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwELZYmaa9DBhMFDrwA29gLY7jxHmsSisQpVR0VH2LnNiZkNK0atOJ_Xvu3KTdECBNe7Z9Tuw735199x0h74Qywk9jzmxuIhYYqUHmBGe54FmOz16Bcej6w2g0UrNZPL6Vxe-i3ZsnyW1OA6I0ldXF0uQXu8Q3dEM8BvqGOR3KxAF5HGDRIPTXJ9OGowRHOPKaQ_Fs9sGf8F15MZBUBNKMeZ1J83eyd7XV3gT949XUKaPBk4f_xlNyUhuitLvlnGfkkS1PyVl_n_cGjbXgr5-Tanv5YA39joEcdIDx7hTDiWBuipe5FIsbAzMXN3QK_jdmZNH-r-WiBFL062aNV_KbOcXaawXVpaETsG9pb4Fx9_QbHFzzOiOUdourxQoozl-QH4P-Ze8Tqws2sExIVTGtfbBHpJcGIgXLxAtTa20cBFr6mdBCGjAmQi0jk4Yq1NzG1sutL5XlXGgepeKMtEr4rpeEKiOtVakCdgnBBRWpl8VZrgOVS6OiXLQJbzYmyWo0cyyqUSQ7HGa3uAksbuIWN4Ex73djllssj__27jT7ndRyvU4Q7g9MPDgE2-RDs7_75n9Te3W_7m_J0fjjIBl-Hn15TY59xyEY19YhrWq1sefkMLuufq5Xbxy7_wbHufuC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+River+Flood+Routing+with+Spatially+Variable+Exponent+Muskingum+Model+and+Sine+Cosine+Optimization+Algorithm&rft.jtitle=Environmental+processes&rft.au=Atashi%2C+Vida&rft.au=Barati%2C+Reza&rft.au=Lim%2C+Yeo+Howe&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=2198-7491&rft.eissn=2198-7505&rft.volume=10&rft.issue=3&rft.spage=42&rft_id=info:doi/10.1007%2Fs40710-023-00658-3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-7491&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-7491&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-7491&client=summon |