A novel adaptive memetic binary optimization algorithm for feature selection

Feature selection (FS) determines the beneficial features in data and decreases the disadvantages of the curse of dimensionality. This work proposes a novel adaptive memetic binary optimization (AMBO) algoraaithm for FS. FS is an NP-Hard binary optimization problem. AMBO is a pure binary optimizatio...

Full description

Saved in:
Bibliographic Details
Published in:The Artificial intelligence review Vol. 56; no. 11; pp. 13463 - 13520
Main Author: Cinar, Ahmet Cevahir
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.11.2023
Springer
Springer Nature B.V
Subjects:
ISSN:0269-2821, 1573-7462
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Feature selection (FS) determines the beneficial features in data and decreases the disadvantages of the curse of dimensionality. This work proposes a novel adaptive memetic binary optimization (AMBO) algoraaithm for FS. FS is an NP-Hard binary optimization problem. AMBO is a pure binary optimization algorithm that works in binary discrete search space. New candidate individuals are adaptively created by a single point, double point, uniform crossovers, and canonical mutation mechanism. Local improvement for the best and worst individuals is provided with a new binary logic-gate based memetic smart local search mechanism. The balance between exploration and exploitation is achieved by adaptively. A diverse dimension dataset experimental setup is provided for determining the success of the proposed method. AMBO firstly was compared with binary particle swarm optimization (BPSO), a genetic algorithm with a random wheel selection strategy (GARW), a genetic algorithm with a tournaments selection strategy (GATS), and a genetic algorithm with a random selection strategy (GARS). AMBO outperformed the opponents on 11 datasets, especially the largest one. Wilcoxon signed-rank test and Friedman’s test were conducted to show the statistical significance of AMBO. For an additional experiment with state-of-art metaheuristic algorithms in the literature, Population reduction binary gaining sharing knowledge-based algorithm with V-4 shaped transfer function (PbGSK-V4), binary salp swarm algorithm (BSSA), binary differential evolution algorithm (BDE), binary dragonfly algorithm (BDA), binary particle swarm optimization algorithm (BPSO), binary bat algorithm (BBA), binary ant lion optimization (BALO) and binary grey wolf optimizer (BGWO) are used in experiments with 21 datasets. The experimental results of the proposed AMBO algorithm are significantly better than the state-of-art algorithms, in terms of classification error rate, fitness function, and average selected features.
AbstractList Feature selection (FS) determines the beneficial features in data and decreases the disadvantages of the curse of dimensionality. This work proposes a novel adaptive memetic binary optimization (AMBO) algoraaithm for FS. FS is an NP-Hard binary optimization problem. AMBO is a pure binary optimization algorithm that works in binary discrete search space. New candidate individuals are adaptively created by a single point, double point, uniform crossovers, and canonical mutation mechanism. Local improvement for the best and worst individuals is provided with a new binary logic-gate based memetic smart local search mechanism. The balance between exploration and exploitation is achieved by adaptively. A diverse dimension dataset experimental setup is provided for determining the success of the proposed method. AMBO firstly was compared with binary particle swarm optimization (BPSO), a genetic algorithm with a random wheel selection strategy (GARW), a genetic algorithm with a tournaments selection strategy (GATS), and a genetic algorithm with a random selection strategy (GARS). AMBO outperformed the opponents on 11 datasets, especially the largest one. Wilcoxon signed-rank test and Friedman's test were conducted to show the statistical significance of AMBO. For an additional experiment with state-of-art metaheuristic algorithms in the literature, Population reduction binary gaining sharing knowledge-based algorithm with V-4 shaped transfer function (PbGSK-V4), binary salp swarm algorithm (BSSA), binary differential evolution algorithm (BDE), binary dragonfly algorithm (BDA), binary particle swarm optimization algorithm (BPSO), binary bat algorithm (BBA), binary ant lion optimization (BALO) and binary grey wolf optimizer (BGWO) are used in experiments with 21 datasets. The experimental results of the proposed AMBO algorithm are significantly better than the state-of-art algorithms, in terms of classification error rate, fitness function, and average selected features.
Audience Academic
Author Cinar, Ahmet Cevahir
Author_xml – sequence: 1
  givenname: Ahmet Cevahir
  surname: Cinar
  fullname: Cinar, Ahmet Cevahir
  email: accinar@selcuk.edu.tr, ahmetcevahircinar@gmail.com
  organization: Department of Computer Engineering, Faculty of Technology, Selçuk University
BookMark eNp9kE9LHDEYh0Ox0NX6BXoKeB7N_2SOi2gVFnppzyGTvLNGZibbJCvop290BKEHySHhl9-T8D6n6GRJCyD0g5JLSoi-KpQIxTrCeNdOhnXmC9pQqXmnW36CNoSpvmOG0W_otJRHQohkgm_QbouX9AQTdsEdanwCPMMMNXo8xMXlZ5xaOscXV2NasJv2Kcf6MOMxZTyCq8cMuMAE_vX-O_o6uqnA-ft-hv7c3vy-vut2v37eX293nefS1M45SmWvRkcEMKeGfjCBMSKcFINzRHnJAgteDFKGgfQEetAQJASuw0iF52foYn33kNPfI5RqH9MxL-1Ly4zSgkpuRGtdrq29m8DGZUw1O99WgDn65m-MLd9qpTjRSusGmBXwOZWSYbQ-1rfBGxgnS4l9lW1X2bbJtm-yrWko-w895Dg3f59DfIVKKy97yB9jfEL9A3-4lF4
CitedBy_id crossref_primary_10_1002_widm_70026
crossref_primary_10_1093_jcde_qwae051
crossref_primary_10_1007_s10462_025_11244_4
crossref_primary_10_1007_s00500_024_10320_1
crossref_primary_10_1016_j_knosys_2025_114119
crossref_primary_10_1371_journal_pone_0324866
crossref_primary_10_1007_s13042_025_02588_y
crossref_primary_10_1109_TNSRE_2025_3557275
crossref_primary_10_1109_ACCESS_2024_3459390
crossref_primary_10_1016_j_asoc_2024_111650
crossref_primary_10_1016_j_ins_2024_120867
Cites_doi 10.1016/j.eswa.2020.113185
10.1016/j.asoc.2018.02.051
10.1007/s13369-020-04871-2
10.1016/j.ins.2014.09.020
10.1016/j.neucom.2016.03.101
10.1016/j.eswa.2018.08.051
10.1016/j.eswa.2020.113572
10.1016/j.compbiomed.2021.105152
10.1007/s10489-021-02233-5
10.1016/j.neucom.2015.06.083
10.1016/j.swevo.2020.100663
10.1111/coin.12196
10.1109/ACCESS.2019.2906757
10.1109/ACCESS.2020.3013617
10.1016/j.compbiolchem.2007.09.005
10.3390/computation7010012
10.1016/j.eswa.2009.09.064
10.1016/j.eswa.2020.113873
10.1109/TSMCB.2012.2227469
10.1016/j.swevo.2011.11.003
10.1142/S0218001408006351
10.1007/s12293-020-00300-x
10.1109/MCI.2010.936311
10.1016/j.swevo.2018.02.021
10.1007/s12293-015-0153-2
10.1109/TSMCB.2006.883267
10.1007/s00521-020-05210-0
10.1016/j.eswa.2017.07.037
10.1007/s00521-019-04171-3
10.1016/j.asoc.2017.11.006
10.1109/JAS.2019.1911447
10.1016/j.eswa.2018.09.015
10.1016/j.ins.2019.08.040
10.1109/ACCESS.2019.2919991
10.1016/j.knosys.2018.05.009
10.1093/jcde/qwac040
10.1016/j.knosys.2017.12.037
10.1109/ACCESS.2020.3007291
10.3906/elk-1606-122
10.1016/j.eswa.2021.114737
10.1016/j.amc.2006.05.128
10.1109/AICI.2009.438
10.7551/mitpress/1090.001.0001
10.1109/SIBGRAPI.2012.47
10.1007/978-3-642-23247-3
10.1007/978-3-319-93025-1_4
10.1007/978-3-540-71629-7_53
10.1007/s13369-020-04486-7
10.1145/3321707.3321753
10.1109/IDAACS-SWS.2018.8525522
10.1007/978-3-540-39930-8_3
10.1109/ICTCS.2017.43
10.1109/CEC.2019.8789889
10.1007/0-306-48056-5_5
10.1007/978-3-642-16699-0_2
10.1016/j.compbiomed.2022.105675
10.1007/978-1-4419-1665-5_6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright Springer Nature B.V. Nov 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
– notice: Copyright Springer Nature B.V. Nov 2023
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-023-10482-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
Library & Information Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 13520
ExternalDocumentID A766307677
10_1007_s10462_023_10482_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PRQQA
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-aa11596fa04e2a6b9b8d2204a54baa06c52d2dc4b55db090e9e7ed5ed37df14c3
IEDL.DBID 7WY
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000969753800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-2821
IngestDate Fri Nov 14 18:38:59 EST 2025
Sat Nov 29 10:30:54 EST 2025
Sat Nov 29 02:43:27 EST 2025
Tue Nov 18 22:22:45 EST 2025
Fri Feb 21 02:41:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Memetic computing
Logic gates
Local search
Feature selection
Binary optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-aa11596fa04e2a6b9b8d2204a54baa06c52d2dc4b55db090e9e7ed5ed37df14c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2867415384
PQPubID 36790
PageCount 58
ParticipantIDs proquest_journals_2867415384
gale_infotracacademiconefile_A766307677
crossref_citationtrail_10_1007_s10462_023_10482_8
crossref_primary_10_1007_s10462_023_10482_8
springer_journals_10_1007_s10462_023_10482_8
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2023
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Gabardo, Berretta, Moscato (CR24) 2020; 12
Kundu, Mallipeddi (CR30) 2022; 9
Nekkaa, Boughaci (CR47) 2015; 7
Zawbaa, Emary, Grosan, Snasel (CR56) 2018; 42
CR38
Tubishat, Ja'afar, Alswaitti, Mirjalili, Idris, Ismail, Omar (CR54) 2020
Arora, Anand (CR9) 2019; 116
Liu, Zhou, Liu (CR32) 2019; 6
CR34
Mafarja, Aljarah, Heidari, Hammouri, Faris, Ala’M, Mirjalili (CR36) 2018; 145
Babaoglu, Findik, Ülker (CR15) 2010; 37
Zhu, Jia, Ji (CR59) 2010; 5
Albrecht (CR7) 2006; 183
Faris, Mafarja, Heidari, Aljarah, Ala’MMirjaliliFujita (CR22) 2018; 154
Zhang, Gong, Gao, Tian, Sun (CR58) 2020; 507
Gao, Zhou, Luo (CR23) 2020; 8
CR6
CR46
CR44
Alweshah, Al Khalaileh, Gupta, Almomani, Hammouri, Al-Betar (CR5) 2020
CR43
Lee, Kim (CR31) 2015; 293
CR42
CR41
Emary, Zawbaa, Hassanien (CR19) 2016; 213
CR40
Agrawal, Ganesh, Oliva, Mohamed (CR2) 2022
Altun, Kocer, Allahverdi (CR8) 2008; 22
Al-Tashi, Kadir, Rais, Mirjalili, Alhussian (CR4) 2019; 7
Abu Zaher, Berretta, Noman, Moscato (CR1) 2019; 35
Nguyen, Xue, Zhang (CR48) 2020; 54
Ertuğrul, Tağluk (CR21) 2017; 25
Ghosh, Guha, Sarkar, Abraham (CR25) 2019
Ouadfel, Abd Elaziz (CR50) 2020; 159
CR16
CR14
CR13
Maldonado, López (CR33) 2018; 67
Mlakar, Fister, Brest, Potočnik (CR39) 2017; 89
CR10
Mafarja, Mirjalili (CR35) 2018; 62
Emary, Zawbaa, Hassanien (CR20) 2016; 172
CR53
CR51
Mafarja, Aljarah, Faris, Hammouri, Ala’M, Mirjalili (CR37) 2019; 117
Nouri-Moghaddam, Ghazanfari, Fathian (CR49) 2021; 175
Al-Tashi, Abdulkadir, Rais, Mirjalili, Alhussian (CR3) 2020; 8
Neri, Cotta (CR45) 2012; 2
Too, Abdullah, Mohd Saad, Tee (CR52) 2019; 7
Jia, Li, Song, Peng, Lang, Li (CR29) 2019; 7
Zhu, Ong, Dash (CR57) 2007; 37
Awadallah, Al-Betar, Hammouri, Alomari (CR12) 2020
CR28
CR27
CR26
Xue, Zhang, Browne (CR55) 2012; 43
CR60
Awadallah, Hammouri, Al-Betar, Braik, Abd Elaziz (CR11) 2022; 141
Chuang, Chang, Tu, Yang (CR17) 2008; 32
Emine, Ülker (CR18) 2020; 146
AA Albrecht (10482_CR7) 2006; 183
10482_CR6
H Liu (10482_CR32) 2019; 6
10482_CR34
J Too (10482_CR52) 2019; 7
F Neri (10482_CR45) 2012; 2
M Alweshah (10482_CR5) 2020
10482_CR38
U Mlakar (10482_CR39) 2017; 89
10482_CR40
M Ghosh (10482_CR25) 2019
10482_CR43
10482_CR44
MA Awadallah (10482_CR12) 2020
10482_CR41
10482_CR42
M Tubishat (10482_CR54) 2020
HM Zawbaa (10482_CR56) 2018; 42
MA Awadallah (10482_CR11) 2022; 141
M Nekkaa (10482_CR47) 2015; 7
10482_CR26
E Emary (10482_CR20) 2016; 172
10482_CR27
İ Babaoglu (10482_CR15) 2010; 37
10482_CR28
AC Gabardo (10482_CR24) 2020; 12
S Ouadfel (10482_CR50) 2020; 159
10482_CR14
S Arora (10482_CR9) 2019; 116
E Emary (10482_CR19) 2016; 213
H Faris (10482_CR22) 2018; 154
10482_CR13
H Jia (10482_CR29) 2019; 7
Z Zhu (10482_CR59) 2010; 5
AA Altun (10482_CR8) 2008; 22
Q Al-Tashi (10482_CR3) 2020; 8
10482_CR16
10482_CR60
B Emine (10482_CR18) 2020; 146
BH Nguyen (10482_CR48) 2020; 54
M Mafarja (10482_CR36) 2018; 145
L-Y Chuang (10482_CR17) 2008; 32
M Mafarja (10482_CR35) 2018; 62
J Lee (10482_CR31) 2015; 293
M Mafarja (10482_CR37) 2019; 117
Y Gao (10482_CR23) 2020; 8
A Abu Zaher (10482_CR1) 2019; 35
Y Zhang (10482_CR58) 2020; 507
10482_CR46
S Maldonado (10482_CR33) 2018; 67
B Xue (10482_CR55) 2012; 43
ÖF Ertuğrul (10482_CR21) 2017; 25
Z Zhu (10482_CR57) 2007; 37
10482_CR51
P Agrawal (10482_CR2) 2022
10482_CR10
B Nouri-Moghaddam (10482_CR49) 2021; 175
10482_CR53
Q Al-Tashi (10482_CR4) 2019; 7
R Kundu (10482_CR30) 2022; 9
References_xml – volume: 146
  year: 2020
  ident: CR18
  article-title: An efficient binary social spider algorithm for feature selection problem
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113185
– volume: 67
  start-page: 94
  year: 2018
  end-page: 105
  ident: CR33
  article-title: Dealing with high-dimensional class-imbalanced datasets: embedded feature selection for SVM classification
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.02.051
– year: 2020
  ident: CR12
  article-title: Binary JAYA algorithm with adaptive mutation for feature selection
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-020-04871-2
– volume: 293
  start-page: 80
  year: 2015
  end-page: 96
  ident: CR31
  article-title: Memetic feature selection algorithm for multi-label classification
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.09.020
– ident: CR16
– volume: 213
  start-page: 54
  year: 2016
  end-page: 65
  ident: CR19
  article-title: Binary ant lion approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.101
– ident: CR51
– volume: 116
  start-page: 147
  year: 2019
  end-page: 160
  ident: CR9
  article-title: Binary butterfly optimization approaches for feature selection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.08.051
– volume: 159
  start-page: 113572
  year: 2020
  ident: CR50
  article-title: Enhanced crow search algorithm for feature selection
  publication-title: Expert Syst with Applic
  doi: 10.1016/j.eswa.2020.113572
– volume: 141
  start-page: 105152
  year: 2022
  ident: CR11
  article-title: Binary Horse herd optimization algorithm with crossover operators for feature selection
  publication-title: Computers in Biol Med
  doi: 10.1016/j.compbiomed.2021.105152
– year: 2022
  ident: CR2
  article-title: S-shaped and v-shaped gaining-sharing knowledge-based algorithm for feature selection
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02233-5
– ident: CR42
– ident: CR46
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: CR20
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 54
  start-page: 100663
  year: 2020
  ident: CR48
  article-title: A survey on swarm intelligence approaches to feature selection in data mining
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100663
– volume: 35
  start-page: 156
  year: 2019
  end-page: 183
  ident: CR1
  article-title: An adaptive memetic algorithm for feature selection using proximity graphs
  publication-title: Computational Intell
  doi: 10.1111/coin.12196
– volume: 7
  start-page: 39496
  year: 2019
  end-page: 39508
  ident: CR4
  article-title: Binary optimization using hybrid grey wolf optimization for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906757
– volume: 8
  start-page: 140936
  year: 2020
  end-page: 140963
  ident: CR23
  article-title: An efficient binary equilibrium optimizer algorithm for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3013617
– volume: 32
  start-page: 29
  year: 2008
  end-page: 38
  ident: CR17
  article-title: Improved binary PSO for feature selection using gene expression data
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2007.09.005
– volume: 7
  start-page: 12
  year: 2019
  ident: CR52
  article-title: EMG feature selection and classification using a Pbest-guide binary particle swarm optimization
  publication-title: Computation
  doi: 10.3390/computation7010012
– ident: CR60
– volume: 37
  start-page: 3177
  year: 2010
  end-page: 3183
  ident: CR15
  article-title: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.09.064
– year: 2020
  ident: CR54
  article-title: Dynamic salp swarm algorithm for feature selectio
  publication-title: Expert Syst with Appl
  doi: 10.1016/j.eswa.2020.113873
– volume: 43
  start-page: 1656
  year: 2012
  end-page: 1671
  ident: CR55
  article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach
  publication-title: IEEE Transac on Cybernet
  doi: 10.1109/TSMCB.2012.2227469
– ident: CR26
– volume: 2
  start-page: 1
  year: 2012
  end-page: 14
  ident: CR45
  article-title: Memetic algorithms and memetic computing optimization: a literature review
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.11.003
– ident: CR43
– volume: 22
  start-page: 585
  year: 2008
  end-page: 600
  ident: CR8
  article-title: Genetic algorithm based feature selection level fusion using fingerprint and iris biometrics
  publication-title: Int J Pattern Recognit Artif Intell
  doi: 10.1142/S0218001408006351
– volume: 12
  start-page: 1
  year: 2020
  end-page: 13
  ident: CR24
  article-title: M-Link: a link clustering memetic algorithm for overlapping community detection
  publication-title: Memetic Comput
  doi: 10.1007/s12293-020-00300-x
– volume: 5
  start-page: 41
  year: 2010
  end-page: 53
  ident: CR59
  article-title: Towards a memetic feature selection paradigm [application notes]
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2010.936311
– ident: CR14
– ident: CR53
– volume: 42
  start-page: 29
  year: 2018
  end-page: 42
  ident: CR56
  article-title: Large-dimensionality small-instance set feature selection: a hybrid bio-inspired heuristic approach
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2018.02.021
– volume: 183
  start-page: 1148
  year: 2006
  end-page: 1164
  ident: CR7
  article-title: Stochastic local search for the feature set problem, with applications to microarray data
  publication-title: Appl Math Comput
– volume: 7
  start-page: 59
  year: 2015
  end-page: 73
  ident: CR47
  article-title: A memetic algorithm with support vector machine for feature selection and classification
  publication-title: Memetic Computing
  doi: 10.1007/s12293-015-0153-2
– volume: 37
  start-page: 70
  year: 2007
  end-page: 76
  ident: CR57
  article-title: Wrapper–filter feature selection algorithm using a memetic framework
  publication-title: IEEE Transac Syst, Man, Cybernet Part B (cybernetics)
  doi: 10.1109/TSMCB.2006.883267
– year: 2020
  ident: CR5
  article-title: The monarch butterfly optimization algorithm for solving feature selection problems
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-020-05210-0
– ident: CR10
– volume: 89
  start-page: 129
  year: 2017
  end-page: 137
  ident: CR39
  article-title: Multi-objective differential evolution for feature selection in facial expression recognition systems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.07.037
– ident: CR6
– year: 2019
  ident: CR25
  article-title: A wrapper-filter feature selection technique based on ant colony optimization
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04171-3
– ident: CR40
– ident: CR27
– volume: 62
  start-page: 441
  year: 2018
  end-page: 453
  ident: CR35
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.11.006
– ident: CR44
– volume: 6
  start-page: 703
  year: 2019
  end-page: 715
  ident: CR32
  article-title: An embedded feature selection method for imbalanced data classification
  publication-title: IEEE/CAA J Automatica Sinica
  doi: 10.1109/JAS.2019.1911447
– volume: 117
  start-page: 267
  year: 2019
  end-page: 286
  ident: CR37
  article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems
  publication-title: Expert Syst with Appl
  doi: 10.1016/j.eswa.2018.09.015
– volume: 507
  start-page: 67
  year: 2020
  end-page: 85
  ident: CR58
  article-title: Binary differential evolution with self-learning for multi-objective feature selection
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.08.040
– ident: CR38
– ident: CR13
– volume: 7
  start-page: 71943
  year: 2019
  end-page: 71962
  ident: CR29
  article-title: Spotted hyena optimization algorithm with simulated annealing for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919991
– volume: 154
  start-page: 43
  year: 2018
  end-page: 67
  ident: CR22
  article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2018.05.009
– ident: CR34
– volume: 9
  start-page: 949
  year: 2022
  end-page: 965
  ident: CR30
  article-title: HFMOEA: a hybrid framework for multi-objective feature selection
  publication-title: J Comput Design and Eng
  doi: 10.1093/jcde/qwac040
– volume: 145
  start-page: 25
  year: 2018
  end-page: 45
  ident: CR36
  article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2017.12.037
– volume: 8
  start-page: 125076
  year: 2020
  end-page: 125096
  ident: CR3
  article-title: Approaches to multi-objective feature selection: A systematic literature review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3007291
– ident: CR28
– ident: CR41
– volume: 25
  start-page: 3409
  year: 2017
  end-page: 3420
  ident: CR21
  article-title: A fast feature selection approach based on extreme learning machine and coefficient of variation
  publication-title: Turk J Electr Eng Comput Sci
  doi: 10.3906/elk-1606-122
– volume: 175
  year: 2021
  ident: CR49
  article-title: A novel multi-objective forest optimization algorithm for wrapper feature selection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114737
– volume: 183
  start-page: 1148
  year: 2006
  ident: 10482_CR7
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2006.05.128
– volume: 7
  start-page: 59
  year: 2015
  ident: 10482_CR47
  publication-title: Memetic Computing
  doi: 10.1007/s12293-015-0153-2
– volume: 7
  start-page: 39496
  year: 2019
  ident: 10482_CR4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906757
– volume: 7
  start-page: 71943
  year: 2019
  ident: 10482_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919991
– volume: 37
  start-page: 3177
  year: 2010
  ident: 10482_CR15
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.09.064
– volume: 7
  start-page: 12
  year: 2019
  ident: 10482_CR52
  publication-title: Computation
  doi: 10.3390/computation7010012
– volume: 172
  start-page: 371
  year: 2016
  ident: 10482_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– ident: 10482_CR27
  doi: 10.1109/AICI.2009.438
– ident: 10482_CR28
  doi: 10.7551/mitpress/1090.001.0001
– year: 2020
  ident: 10482_CR5
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-020-05210-0
– ident: 10482_CR44
  doi: 10.1109/SIBGRAPI.2012.47
– ident: 10482_CR46
  doi: 10.1007/978-3-642-23247-3
– volume: 89
  start-page: 129
  year: 2017
  ident: 10482_CR39
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.07.037
– volume: 213
  start-page: 54
  year: 2016
  ident: 10482_CR19
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.101
– volume: 12
  start-page: 1
  year: 2020
  ident: 10482_CR24
  publication-title: Memetic Comput
  doi: 10.1007/s12293-020-00300-x
– volume: 154
  start-page: 43
  year: 2018
  ident: 10482_CR22
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2018.05.009
– volume: 146
  year: 2020
  ident: 10482_CR18
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113185
– ident: 10482_CR60
– volume: 141
  start-page: 105152
  year: 2022
  ident: 10482_CR11
  publication-title: Computers in Biol Med
  doi: 10.1016/j.compbiomed.2021.105152
– ident: 10482_CR38
  doi: 10.1007/978-3-319-93025-1_4
– year: 2020
  ident: 10482_CR54
  publication-title: Expert Syst with Appl
  doi: 10.1016/j.eswa.2020.113873
– volume: 62
  start-page: 441
  year: 2018
  ident: 10482_CR35
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.11.006
– volume: 37
  start-page: 70
  year: 2007
  ident: 10482_CR57
  publication-title: IEEE Transac Syst, Man, Cybernet Part B (cybernetics)
  doi: 10.1109/TSMCB.2006.883267
– volume: 175
  year: 2021
  ident: 10482_CR49
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114737
– volume: 117
  start-page: 267
  year: 2019
  ident: 10482_CR37
  publication-title: Expert Syst with Appl
  doi: 10.1016/j.eswa.2018.09.015
– volume: 507
  start-page: 67
  year: 2020
  ident: 10482_CR58
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.08.040
– volume: 5
  start-page: 41
  year: 2010
  ident: 10482_CR59
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2010.936311
– volume: 159
  start-page: 113572
  year: 2020
  ident: 10482_CR50
  publication-title: Expert Syst with Applic
  doi: 10.1016/j.eswa.2020.113572
– ident: 10482_CR6
  doi: 10.1007/978-3-540-71629-7_53
– volume: 25
  start-page: 3409
  year: 2017
  ident: 10482_CR21
  publication-title: Turk J Electr Eng Comput Sci
  doi: 10.3906/elk-1606-122
– volume: 116
  start-page: 147
  year: 2019
  ident: 10482_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.08.051
– ident: 10482_CR42
– ident: 10482_CR53
  doi: 10.1007/s13369-020-04486-7
– volume: 43
  start-page: 1656
  year: 2012
  ident: 10482_CR55
  publication-title: IEEE Transac on Cybernet
  doi: 10.1109/TSMCB.2012.2227469
– volume: 42
  start-page: 29
  year: 2018
  ident: 10482_CR56
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2018.02.021
– volume: 8
  start-page: 140936
  year: 2020
  ident: 10482_CR23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3013617
– year: 2019
  ident: 10482_CR25
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04171-3
– ident: 10482_CR26
  doi: 10.1145/3321707.3321753
– volume: 145
  start-page: 25
  year: 2018
  ident: 10482_CR36
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2017.12.037
– volume: 67
  start-page: 94
  year: 2018
  ident: 10482_CR33
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.02.051
– year: 2020
  ident: 10482_CR12
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-020-04871-2
– ident: 10482_CR16
  doi: 10.1109/IDAACS-SWS.2018.8525522
– ident: 10482_CR41
  doi: 10.1007/978-3-540-39930-8_3
– volume: 22
  start-page: 585
  year: 2008
  ident: 10482_CR8
  publication-title: Int J Pattern Recognit Artif Intell
  doi: 10.1142/S0218001408006351
– ident: 10482_CR34
  doi: 10.1109/ICTCS.2017.43
– ident: 10482_CR51
  doi: 10.1109/CEC.2019.8789889
– volume: 6
  start-page: 703
  year: 2019
  ident: 10482_CR32
  publication-title: IEEE/CAA J Automatica Sinica
  doi: 10.1109/JAS.2019.1911447
– volume: 35
  start-page: 156
  year: 2019
  ident: 10482_CR1
  publication-title: Computational Intell
  doi: 10.1111/coin.12196
– ident: 10482_CR10
– volume: 2
  start-page: 1
  year: 2012
  ident: 10482_CR45
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.11.003
– ident: 10482_CR40
  doi: 10.1007/0-306-48056-5_5
– ident: 10482_CR14
  doi: 10.1007/978-3-642-16699-0_2
– year: 2022
  ident: 10482_CR2
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02233-5
– volume: 54
  start-page: 100663
  year: 2020
  ident: 10482_CR48
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100663
– ident: 10482_CR13
  doi: 10.1016/j.compbiomed.2022.105675
– volume: 8
  start-page: 125076
  year: 2020
  ident: 10482_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3007291
– volume: 9
  start-page: 949
  year: 2022
  ident: 10482_CR30
  publication-title: J Comput Design and Eng
  doi: 10.1093/jcde/qwac040
– ident: 10482_CR43
  doi: 10.1007/978-1-4419-1665-5_6
– volume: 32
  start-page: 29
  year: 2008
  ident: 10482_CR17
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2007.09.005
– volume: 293
  start-page: 80
  year: 2015
  ident: 10482_CR31
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.09.020
SSID ssj0005243
Score 2.431167
Snippet Feature selection (FS) determines the beneficial features in data and decreases the disadvantages of the curse of dimensionality. This work proposes a novel...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13463
SubjectTerms Algorithms
Artificial Intelligence
Averages
Candidates
Classification
Computer Science
Datasets
Evolutionary algorithms
Evolutionary computation
Experiments
Exploitation
Feature selection
Function words
Genetic algorithms
Genetics
Heuristic methods
Logic circuits
Mathematical optimization
Novels
Optimization
Optimization algorithms
Particle swarm optimization
Population growth
Rank tests
Statistical significance
Strategies
Tournaments
Transfer functions
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBat20MvcfoIceoUHQI9tIJdrVaPoyk1PZhQaFN8E3ptY7C9xnb8-zOStXH6CqTXlVYrZqSZT6v5ZhC6CIIHR0NFOFOCsMqUxHphiZCNdd6C02tSEteJuLyU06n6mklhmy7avbuSTJb6HtmNcUrAx4DpYIAL5VP0rI7ZZuIZ_duPe4Ed-1g5yhWBA0WZqTJ_H-MXd_S7Uf7jdjQ5nXH__6Z7jI4yyMSj_ap4iZ6E5SvU7wo44LyfX6PJCC_bXZhj480q2j28CIvIasQ20XRxC08XmamJzfxnu55trxcYgC5uQkoJijepkA60v0FX48_fP30hubwCcVUtt8QYQIOKN6ZggRpulZWe0oKZmlljCu5q6ql3zNY1KE0VQQURfB18JXxTMledoN6yXYZThK2xvPDQB-ASE5KpxvJQqrrhplKg-wEqOylrl3OPxxIYc33ImhzFpUFcOolLywH6cPfOap9548He76PydNyWMLIzmV0A84sJrvRIALQqBBcwl2GnX53360ZTySO0qiQboI-dPg_N__7u2eO6v0UvaFoS8R_OEPW265twjp673Xa2Wb9L6_gWPZ3r1g
  priority: 102
  providerName: Springer Nature
Title A novel adaptive memetic binary optimization algorithm for feature selection
URI https://link.springer.com/article/10.1007/s10462-023-10482-8
https://www.proquest.com/docview/2867415384
Volume 56
WOSCitedRecordID wos000969753800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKy4FLSwuILaXyAYlDsUgcP09oW7VCallW5VW4WH4FkPZFd-nv79jrsDzUXriMlNixrXzjmfFjZhB6FqWInsaGCKYlYY2tiQvSEala54MDpdfmIK5ncjBQFxd6WDbc5uVaZScTs6AOU5_2yF9SJZLyaxR7NftBUtaodLpaUmjcQRugqHnKYCA_ff7tisfy1hwVmsDSoi5OM8V1jglKQGOBIGJgZao_FNPf4vmfc9Ksfk62_nfg99FmMTxxf8kp22gtTnbQVpfUAZc5_gCd9fFkehVH2AY7S7IQj-M4eTpil1138RTejov3Jrajr9DX4tsYg_GL25jDhOJ5Tq4D5Q_Rh5Pj90evSUm5QHzD1YJYCxaiFq2tWKRWOO1UoLRiljNnbSU8p4EGzxznAKSuoo4yBh5DI0NbM988QuuT6SQ-RthZJ6oAdQAZJhXTrROx1rwVttHADz1Ud__b-BKPPKXFGJlVJOWEkQGMTMbIqB46-PXNbBmN49bazxOMJk1VaNnb4nEA40tBr0xfgrlVSSFhLHsddqbM4blZAddDLzr0V8U397t7e2tP0D2a-S7t4-yh9cXlz_gU3fVXi-_zy_3Mwfto4_B4MDyHp1NJgL6pjhKt3wId8i9Az999vAaiGfxz
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMsLeADiANYTRzHj0OFVkDVqtuFQ5F6M34FkPZFd2nFn-I3duxNWB6itx64xo5jx59nxvZ8MwBPoxTRs1hRwbWkvLIldUE6KlXjfHCo9JocxHUgh0N1fKzfr8GPjguT3Co7mZgFdZj6dEa-zZRIyq9S_NXsK01Zo9LtapdCYwmLg_j9DLds8539Nzi_zxjbfXv0eo-2WQWor2q1oNaiEaRFYwsemRVOOxUYK7itubO2EL5mgQXPXV1jX3URdZQx1DFUMjQl9xW2ewWuprh6aUUdlu9-cSlZeukxoSluZcqWpNNS9bhgFDUkCj6OVq36TRH-qQ7-upfN6m5343_7UbfgZmtYk_5yJdyGtTi5Axtd0grSyrC7MOiTyfQ0jogNdpZkPRnHcWJyEpepyWSKT8ctO5XY0Scc2-LzmKBxT5qYw6CSeU4ehOX34MOljOk-rE-mk_gAiLNOFAHroInIpeK6cSKWum6ErTTivQdlN7_Gt_HWU9qPkVlFik6YMIgJkzFhVA9e_Hxntow2cmHt5wk2JokibNnbllGB_UtBvUxfojlZSCGxL1sdVkwro-ZmBZQevOzQtir-93cfXtzaE7i-d3Q4MIP94cEm3GAZ8-nMagvWFyff4iO45k8XX-Ynj_PqIfDxslF4Du4xVR0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJcKK-KhQI-gDiA1cRx7PiA0EK7oupqtUIg9Wb8CiDti-62FX-tv67jrMPyEL31wDV2HDv-PDO255sBeBakCI6FggquJOWFyan10lJZ1dZ5i0qvboK4DuRwWB0dqdEGnLdcmOhW2crERlD7mYtn5LusElH5FRXfrZNbxGiv_2b-ncYMUvGmtU2nsYLIYfhxhtu3xeuDPZzr54z19z--e09ThgHqirJaUmPQIFKiNhkPzAirbOUZy7gpuTUmE65knnnHbVliv1UWVJDBl8EX0tc5dwW2ew02ZYGbng5svt0fjj784mCy8tljQlHc2OSJspOIe1wwivoSxSBHG7f6TS3-qRz-uqVtlF9_63_-bbfhVjK5SW-1Ru7ARpjeha02nQVJ0u0eDHpkOjsNY2K8mUctQCZhEjmexDakZTLDp5PEWyVm_AXHtvw6IWj2kzo0AVLJokkrhOX34dOVjGkbOtPZNDwAYo0Vmcc6aDxyWXFVWxFyVdbCFApXQhfydq61S5HYY0KQsV7HkI740IgP3eBDV114-fOd-SoOyaW1X0QI6SiksGVnEtcC-xfDfemeREMzk0JiX3Za3OgkvRZ6DZouvGqRty7-93cfXt7aU7iB4NODg-HhI7jJGvjHw6wd6CyPT8JjuO5Ol98Wx0_SUiLw-apheAFIMl88
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+adaptive+memetic+binary+optimization+algorithm+for+feature+selection&rft.jtitle=The+Artificial+intelligence+review&rft.au=Cinar%2C+Ahmet+Cevahir&rft.date=2023-11-01&rft.pub=Springer&rft.issn=0269-2821&rft.volume=56&rft.issue=11&rft.spage=13463&rft_id=info:doi/10.1007%2Fs10462-023-10482-8&rft.externalDocID=A766307677
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon