Holonomic equations and efficient random generation of binary trees
Holonomic equations are recursive equations which allow computing efficiently numbers of combinatoric objects. Rémy showed that the holonomic equation associated with binary trees yields an efficient linear random generator of binary trees. I extend this paradigm to Motzkin trees and Schröder trees...
Gespeichert in:
| Veröffentlicht in: | Discrete mathematics and theoretical computer science Jg. 25:2; H. 2; S. 1 - 27 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Nancy
DMTCS
01.01.2023
Discrete Mathematics & Theoretical Computer Science |
| Schlagworte: | |
| ISSN: | 1365-8050, 1462-7264, 1365-8050 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Holonomic equations are recursive equations which allow computing efficiently numbers of combinatoric objects. Rémy showed that the holonomic equation associated with binary trees yields an efficient linear random generator of binary trees. I extend this paradigm to Motzkin trees and Schröder trees and show that despite slight differences my algorithm that generates random Schröder trees has linear expected complexity and my algorithm that generates Motzkin trees is in O(n) expected complexity, only if we can implement a specific oracle with a O(1) complexity. For Motzkin trees, I propose a solution which works well for realistic values (up to size ten millions) and yields an efficient algorithm. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 1365-8050 1462-7264 1365-8050 |
| DOI: | 10.46298/dmtcs.10952 |