Numerical comparison of methods for solving second-order ordinary initial value problems

In this paper, we apply Adomian decomposition method (shortly, ADM) to develop a fast and accurate algorithm of a special second-order ordinary initial value problems. The ADM does not require discretization and consequently of massive computations. This paper is particularly concerned with the ADM...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematical modelling Ročník 31; číslo 2; s. 292 - 301
Hlavní autoři: Al-Khaled, Kamel, Anwar, M. Naim
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 01.02.2007
Elsevier Science
Témata:
ISSN:0307-904X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we apply Adomian decomposition method (shortly, ADM) to develop a fast and accurate algorithm of a special second-order ordinary initial value problems. The ADM does not require discretization and consequently of massive computations. This paper is particularly concerned with the ADM and the results obtained are compared with previously known results using the Quintic C 2-spline integration methods. The numerical results demonstrate that the ADM is relatively accurate and easily implemented.
AbstractList In this paper, we apply Adomian decomposition method (shortly, ADM) to develop a fast and accurate algorithm of a special second-order ordinary initial value problems. The ADM does not require discretization and consequently of massive computations. This paper is particularly concerned with the ADM and the results obtained are compared with previously known results using the Quintic C 2-spline integration methods. The numerical results demonstrate that the ADM is relatively accurate and easily implemented.
In this paper, we apply Adomian decomposition method (shortly, ADM) to develop a fast and accurate algorithm of a special second-order ordinary initial value problems. The ADM does not require discretization and consequently of massive computations. This paper is particularly concerned with the ADM and the results obtained are compared with previously known results using the Quintic C2-spline integration methods. The numerical results demonstrate that the ADM is relatively accurate and easily implemented.
Author Al-Khaled, Kamel
Anwar, M. Naim
Author_xml – sequence: 1
  givenname: Kamel
  surname: Al-Khaled
  fullname: Al-Khaled, Kamel
  email: kamel.alkhaled@uaeu.ac.ae
  organization: Department of Mathematics, Jordan University of Science and Technology, IRBID 22110, Jordan
– sequence: 2
  givenname: M. Naim
  surname: Anwar
  fullname: Anwar, M. Naim
  email: M.Anwar@uaeu.ac.ae
  organization: Department of Mathematical Sciences, United Arab Emirates University, P.O. Box 17551 Al-Ain, United Arab Emirates
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18357701$$DView record in Pascal Francis
BookMark eNp9kE1LAzEQhnOoYKv-AG-56G3XZLNpWjxJ8QuKXhS8hTSZ6JTdpCbbgv_eSAuCBy8ZwjzPDPNOyCjEAIScc1ZzxqdX69ps-rphTNac14y1IzJmgqlqztq3YzLJec1Ks_zG5O1p20NCazpqY78xCXMMNHraw_ARXaY-Jppjt8PwTjPYGFwVk4NEy4vBpC-KAQcs_s50W6CbFFcd9PmUHHnTZTg71BPyenf7sniols_3j4ubZWWFnA2VmXKrnBNi1Uq7Ug2bq9lUeCealsNKegmWgXfSTt1MGTb3beMVSBBtC4IzI07I5X5uWfy5hTzoHrOFrjMB4jbrZt7KMlEW8OIAmlzO9ckEi1lvEvblCs1nQirFeOH4nrMp5pzA_yJM_-Sr17rkq3_y1Zzrkm9x1B_H4mAGjGFIBrt_zeu9CSWjHULS2SIECw4T2EG7iP_Y3-Xqms0
CODEN AMMODL
CitedBy_id crossref_primary_10_1155_2021_6650413
crossref_primary_10_1016_j_jmaa_2008_03_022
crossref_primary_10_1051_matecconf_201815902007
crossref_primary_10_1080_00207160802385818
crossref_primary_10_1080_00207160701363031
crossref_primary_10_1155_2013_673829
Cites_doi 10.1016/S0377-0427(99)00174-0
10.1108/eb005812
10.1016/S0096-3003(99)00063-6
10.1006/jsvi.1996.0445
10.1016/S0898-1221(01)00321-2
10.1016/S0377-0427(03)00473-4
10.1007/BF01933194
10.1016/0895-7177(93)90233-O
10.1016/S0096-3003(01)00021-2
10.1016/0022-247X(88)90170-9
10.1080/00207160211928
10.1016/0898-1221(95)00008-M
ContentType Journal Article
Copyright 2005 Elsevier Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier Inc.
– notice: 2007 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2005.11.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EndPage 301
ExternalDocumentID 18357701
10_1016_j_apm_2005_11_004
S0307904X05002337
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-a61c7dd33b45cb72097863fd3241eb5f5ec0efd5c6d87a09f42f7e5e344e310a3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000242761700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0307-904X
IngestDate Sun Sep 28 04:47:04 EDT 2025
Mon Jul 21 09:16:57 EDT 2025
Sat Nov 29 03:21:27 EST 2025
Tue Nov 18 22:26:58 EST 2025
Fri Feb 23 02:30:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Quintic spline
Adomian decomposition method
Approximate solutions
Second-order initial value problem
Adomian polynomial
Modelling
Initial value problems
Fast algorithm
Spline approximation
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-a61c7dd33b45cb72097863fd3241eb5f5ec0efd5c6d87a09f42f7e5e344e310a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.apm.2005.11.004
PQID 29458635
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_29458635
pascalfrancis_primary_18357701
crossref_primary_10_1016_j_apm_2005_11_004
crossref_citationtrail_10_1016_j_apm_2005_11_004
elsevier_sciencedirect_doi_10_1016_j_apm_2005_11_004
PublicationCentury 2000
PublicationDate 2007-02-01
PublicationDateYYYYMMDD 2007-02-01
PublicationDate_xml – month: 02
  year: 2007
  text: 2007-02-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematical modelling
PublicationYear 2007
Publisher Elsevier Inc
Elsevier Science
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science
References Sallam, Naim Anwar (bib3) 2000; 115
Wazwaz (bib9) 2002; 79
Vigo-Aguiar, Ramos (bib7) 2003; 158
Cherrualt, Adomian (bib11) 1993; 18
Jiao, Yamamoto, Dang, Hao (bib15) 2002; 43
Venkatarangan, Rajalakshmi (bib13) 1995; 29
Baker (bib14) 1975
Adomian (bib1) 1988; 135
Cherrualt (bib10) 1989; 18
Nagle, Saff (bib16) 1994
Semler, Gentleman, Paidoussis (bib6) 1996; 195
Micala (bib4) 1998; 33
Wazwaz (bib8) 2002; 128
Kramarz (bib5) 1980; 20
Wazwaz (bib12) 2000; 111
Adomian (bib2) 1994
Venkatarangan (10.1016/j.apm.2005.11.004_bib13) 1995; 29
Cherrualt (10.1016/j.apm.2005.11.004_bib11) 1993; 18
Nagle (10.1016/j.apm.2005.11.004_bib16) 1994
Cherrualt (10.1016/j.apm.2005.11.004_bib10) 1989; 18
Adomian (10.1016/j.apm.2005.11.004_bib1) 1988; 135
Jiao (10.1016/j.apm.2005.11.004_bib15) 2002; 43
Sallam (10.1016/j.apm.2005.11.004_bib3) 2000; 115
Semler (10.1016/j.apm.2005.11.004_bib6) 1996; 195
Micala (10.1016/j.apm.2005.11.004_bib4) 1998; 33
Adomian (10.1016/j.apm.2005.11.004_bib2) 1994
Kramarz (10.1016/j.apm.2005.11.004_bib5) 1980; 20
Wazwaz (10.1016/j.apm.2005.11.004_bib9) 2002; 79
Wazwaz (10.1016/j.apm.2005.11.004_bib12) 2000; 111
Vigo-Aguiar (10.1016/j.apm.2005.11.004_bib7) 2003; 158
Baker (10.1016/j.apm.2005.11.004_bib14) 1975
Wazwaz (10.1016/j.apm.2005.11.004_bib8) 2002; 128
References_xml – volume: 158
  start-page: 187
  year: 2003
  end-page: 211
  ident: bib7
  article-title: Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations
  publication-title: Appl. Math. Comput.
– volume: 195
  start-page: 553
  year: 1996
  end-page: 574
  ident: bib6
  article-title: Numerical solutions of second order implicit non-linear ordinary differential equations
  publication-title: Sound Vibr.
– volume: 43
  start-page: 783
  year: 2002
  end-page: 798
  ident: bib15
  article-title: An after treatment technique for improving the accuracy of Adomian’s decomposition method
  publication-title: Comput. Math. Appl.
– volume: 79
  start-page: 345
  year: 2002
  end-page: 356
  ident: bib9
  article-title: The numerical solution of special fourth-order boundary value problems by the modified decomposition method
  publication-title: Int. J. Comput. Math.
– volume: 29
  start-page: 67
  year: 1995
  end-page: 73
  ident: bib13
  article-title: A modification of Adomian’s solution for nonlinear oscillatory systems
  publication-title: Comput. Math. Appl.
– year: 1994
  ident: bib2
  article-title: Solving Frontier Problems of Physics: The Decomposition Method
– volume: 135
  start-page: 501
  year: 1988
  end-page: 544
  ident: bib1
  article-title: A review of the decomposition method in applied mathematics
  publication-title: J. Math. Anal. Appl.
– volume: 18
  start-page: 103
  year: 1993
  end-page: 106
  ident: bib11
  article-title: Decomposition methods: a new proof of convergence
  publication-title: Math. Comput. Model.
– volume: 115
  start-page: 495
  year: 2000
  end-page: 502
  ident: bib3
  article-title: Quintic
  publication-title: J. Comput. Appl. Math.
– volume: 18
  start-page: 31
  year: 1989
  end-page: 38
  ident: bib10
  article-title: Convergence of Adomian’s method
  publication-title: Kybernetes
– volume: 20
  start-page: 215
  year: 1980
  end-page: 222
  ident: bib5
  article-title: Stability of collocation methods for the numerical solution of
  publication-title: BIT
– volume: 128
  start-page: 45
  year: 2002
  end-page: 57
  ident: bib8
  article-title: A new method for solving singular initial value problems in the second-order ordinary differential equations
  publication-title: Appl. Math. Comput.
– year: 1975
  ident: bib14
  article-title: Essentials of Pade Approximants
– volume: 111
  start-page: 53
  year: 2000
  end-page: 69
  ident: bib12
  article-title: A new algorithm for calculating Adomian polynomials for nonlinear operators
  publication-title: Appl. Math. Comput.
– year: 1994
  ident: bib16
  article-title: Fundamentals of Differential Equations
– volume: 33
  start-page: 699
  year: 1998
  end-page: 714
  ident: bib4
  article-title: Approximate solution of differential equation
  publication-title: Nonlinear Anal.
– volume: 115
  start-page: 495
  issue: 1–2
  year: 2000
  ident: 10.1016/j.apm.2005.11.004_bib3
  article-title: Quintic C2-spline integration methods for solving second-order ordinary initial value problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(99)00174-0
– volume: 18
  start-page: 31
  year: 1989
  ident: 10.1016/j.apm.2005.11.004_bib10
  article-title: Convergence of Adomian’s method
  publication-title: Kybernetes
  doi: 10.1108/eb005812
– volume: 111
  start-page: 53
  year: 2000
  ident: 10.1016/j.apm.2005.11.004_bib12
  article-title: A new algorithm for calculating Adomian polynomials for nonlinear operators
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(99)00063-6
– volume: 195
  start-page: 553
  issue: 4
  year: 1996
  ident: 10.1016/j.apm.2005.11.004_bib6
  article-title: Numerical solutions of second order implicit non-linear ordinary differential equations
  publication-title: Sound Vibr.
  doi: 10.1006/jsvi.1996.0445
– year: 1994
  ident: 10.1016/j.apm.2005.11.004_bib16
– volume: 43
  start-page: 783
  issue: 6–7
  year: 2002
  ident: 10.1016/j.apm.2005.11.004_bib15
  article-title: An after treatment technique for improving the accuracy of Adomian’s decomposition method
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(01)00321-2
– volume: 158
  start-page: 187
  issue: 1
  year: 2003
  ident: 10.1016/j.apm.2005.11.004_bib7
  article-title: Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0377-0427(03)00473-4
– volume: 20
  start-page: 215
  year: 1980
  ident: 10.1016/j.apm.2005.11.004_bib5
  article-title: Stability of collocation methods for the numerical solution of y″=f(x,y)
  publication-title: BIT
  doi: 10.1007/BF01933194
– volume: 18
  start-page: 103
  year: 1993
  ident: 10.1016/j.apm.2005.11.004_bib11
  article-title: Decomposition methods: a new proof of convergence
  publication-title: Math. Comput. Model.
  doi: 10.1016/0895-7177(93)90233-O
– volume: 128
  start-page: 45
  issue: 1
  year: 2002
  ident: 10.1016/j.apm.2005.11.004_bib8
  article-title: A new method for solving singular initial value problems in the second-order ordinary differential equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(01)00021-2
– year: 1994
  ident: 10.1016/j.apm.2005.11.004_bib2
– year: 1975
  ident: 10.1016/j.apm.2005.11.004_bib14
– volume: 33
  start-page: 699
  year: 1998
  ident: 10.1016/j.apm.2005.11.004_bib4
  article-title: Approximate solution of differential equation y(2)=f(x,y)
  publication-title: Nonlinear Anal.
– volume: 135
  start-page: 501
  year: 1988
  ident: 10.1016/j.apm.2005.11.004_bib1
  article-title: A review of the decomposition method in applied mathematics
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(88)90170-9
– volume: 79
  start-page: 345
  issue: 3
  year: 2002
  ident: 10.1016/j.apm.2005.11.004_bib9
  article-title: The numerical solution of special fourth-order boundary value problems by the modified decomposition method
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160211928
– volume: 29
  start-page: 67
  issue: 6
  year: 1995
  ident: 10.1016/j.apm.2005.11.004_bib13
  article-title: A modification of Adomian’s solution for nonlinear oscillatory systems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(95)00008-M
SSID ssj0005904
Score 1.8335743
Snippet In this paper, we apply Adomian decomposition method (shortly, ADM) to develop a fast and accurate algorithm of a special second-order ordinary initial value...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 292
SubjectTerms Adomian decomposition method
Approximate solutions
Exact sciences and technology
Mathematical methods in physics
Numerical approximation and analysis
Ordinary and partial differential equations, boundary value problems
Physics
Quintic spline
Second-order initial value problem
Title Numerical comparison of methods for solving second-order ordinary initial value problems
URI https://dx.doi.org/10.1016/j.apm.2005.11.004
https://www.proquest.com/docview/29458635
Volume 31
WOSCitedRecordID wos000242761700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0307-904X
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 20180131
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005904
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdQxwGEEONDlI_NB05MmZLYjuNjhYYYaBWHIfUWxV-iU5tWSwv783mO7bTdtGk7cImqKHadvF-e33Oefz-EPhW5toUoZALvDiQoJtOJzKh0RJCEl0xooWUnNsHH43IyET9D2VjbyQnwpimvrsTyv5oazoGx3dbZB5i77xROwG8wOhzB7HC8l-HHa_8RZhbqy4PGYNCK7ugXjmAEfiHBpcM66fg3j-DoN-dOXUERtHdE4G4fVSc5026HsTF2nfekr24TihPVmcWp0IFolvz4DROQX06t56av5hg1f31h99kx-PfpfGftgcdy5d5FOYpJkfoay-hPSbaFm3zbOXrVuzDPEt_RDRfuVxMujuvl3C95OZJVL1G8S5d9bRrriwtj3dpFBV04mU0GaU7Vkcbu5ZyJcoD2Rqcnk--bUiCR0kiY6e4mfv3u6gCvjeO2-OXZsm7hWVsvh3JjZu_ClfMX6HnIM_DI42MfPTLNS_T0rLdX-wpNeqTgDVLwwuKAFAxIwQEpeBspOCIFB6TgDik4IuU1-vX15PzLtyQIbSSKsHKV1EWmuNaESMqU5Lnb21MQqyHYzoxklhmVGquZKnTJ61RYmltumCGUGkgPavIGDZpFY94izDPOJc3BA0BsauHqQhmIWBWkCWmmCjlEaXx8lQos9E4MZVbdarYh-tw3WXoKlrsuptEmVYghfWxYAb7uanawY7_NH0GGwnmaDdFhNGgFDth9Vasbs1i3VS4og6fF3j1kmO_Rk8379AENVpdr8xE9Vn9W0_byIODzH79oqyI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+comparison+of+methods+for+solving+second-order+ordinary+initial+value+problems&rft.jtitle=Applied+mathematical+modelling&rft.au=Al-Khaled%2C+Kamel&rft.au=Anwar%2C+M.+Naim&rft.date=2007-02-01&rft.issn=0307-904X&rft.volume=31&rft.issue=2&rft.spage=292&rft.epage=301&rft_id=info:doi/10.1016%2Fj.apm.2005.11.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2005_11_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon