Reconfigurable fault-tolerant attitude control for over-actuated hypersonic flight vehicle with actuator failures
This paper proposes a novel fast attitude fault-tolerant control (FTC) scheme for over-actuated hypersonic flight vehicles experiencing actuator failures, such as stuck faults and loss of effectiveness faults. The FTC scheme comprises two main components: a systematic algorithm in the control layer...
Uloženo v:
| Vydáno v: | Alexandria engineering journal Ročník 114; s. 463 - 475 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.02.2025
Elsevier |
| Témata: | |
| ISSN: | 1110-0168 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes a novel fast attitude fault-tolerant control (FTC) scheme for over-actuated hypersonic flight vehicles experiencing actuator failures, such as stuck faults and loss of effectiveness faults. The FTC scheme comprises two main components: a systematic algorithm in the control layer and a control allocation method in the reconfiguration layer, working together to achieve fault tolerance. Drawing inspiration from model predictive static programming, a step-by-step algorithm is developed to quickly resolve control torque under fault conditions, ensuring prescribed tracking performance. The vehicle system's coupling and uncertain disturbances are treated as total disturbance and estimated in real-time using an extended state observer. In the reconfiguration layer, a pseudo-inverse-based control allocation method is utilized to distribute the desired control torque across redundant rudder actuators. The proposed FTC scheme is applied to a hypersonic flight vehicle system subject to stuck faults, loss of effectiveness faults, modeling errors, and external disturbances. Simulation results are presented to demonstrate the superiority and effectiveness of the proposed FTC scheme. Owing to its fast computational speed, the scheme holds potential for online implementation, enabling rapid reconstruction of aerodynamic rudder actuators during failures. |
|---|---|
| AbstractList | This paper proposes a novel fast attitude fault-tolerant control (FTC) scheme for over-actuated hypersonic flight vehicles experiencing actuator failures, such as stuck faults and loss of effectiveness faults. The FTC scheme comprises two main components: a systematic algorithm in the control layer and a control allocation method in the reconfiguration layer, working together to achieve fault tolerance. Drawing inspiration from model predictive static programming, a step-by-step algorithm is developed to quickly resolve control torque under fault conditions, ensuring prescribed tracking performance. The vehicle system's coupling and uncertain disturbances are treated as total disturbance and estimated in real-time using an extended state observer. In the reconfiguration layer, a pseudo-inverse-based control allocation method is utilized to distribute the desired control torque across redundant rudder actuators. The proposed FTC scheme is applied to a hypersonic flight vehicle system subject to stuck faults, loss of effectiveness faults, modeling errors, and external disturbances. Simulation results are presented to demonstrate the superiority and effectiveness of the proposed FTC scheme. Owing to its fast computational speed, the scheme holds potential for online implementation, enabling rapid reconstruction of aerodynamic rudder actuators during failures. |
| Author | Hu, Xiaoxiang Li, Ao Dong, Kejun Li, Hongzeng Xiao, Bing |
| Author_xml | – sequence: 1 givenname: Ao surname: Li fullname: Li, Ao organization: School of Automation, Northwestern Polytechnical University, Xi’an 710072, PR China – sequence: 2 givenname: Xiaoxiang orcidid: 0000-0001-7047-1949 surname: Hu fullname: Hu, Xiaoxiang email: huxiaoxiang2008@gmail.com organization: School of Automation, Northwestern Polytechnical University, Xi’an 710072, PR China – sequence: 3 givenname: Kejun surname: Dong fullname: Dong, Kejun organization: School of Automation, Northwestern Polytechnical University, Xi’an 710072, PR China – sequence: 4 givenname: Hongzeng surname: Li fullname: Li, Hongzeng organization: 204 Unit, Xi’an Research Institute of High-tech, Xi’an 710025, PR China – sequence: 5 givenname: Bing surname: Xiao fullname: Xiao, Bing organization: School of Automation, Northwestern Polytechnical University, Xi’an 710072, PR China |
| BookMark | eNp9kM9qGzEQh3VwoY7jB-hNL7BbaVfeP_RUQtIGDIWSnsVoNLK1bFeOVuvit68chx6rywjN_D5G3x1bTWEixj5JUUohm89DCTSUlahUKWUperFiaymlKHKz-8i28zyIfHZtr_pmzV5_EobJ-cMSwYzEHSxjKlIYKcKUOKTk02KJ56EUw8hdiDycKRaAaYFElh8vJ4pzmDxyN_rDMfEzHT1m1h-fjvw2l1MO_LhEmu_ZBwfjTNv3umG_nh5fHr4X-x_fnh--7gusd10qQGGnZNcYSwat7ahxZGvI11apTlHfVlg5ZS20O7SCoKqbvsbKKqo7AXW9Yc83rg0w6FP0vyFedACv3x5CPGiI6bqo7ioENG0jWoNKWGnQ1KbfWWFam01CZskbC2OY50juH08KfdWuB52166t2LaXO2nPmyy1D-ZNnT1HP6GlCsj4SpryF_0_6Ly2xkuA |
| Cites_doi | 10.1016/j.cja.2019.05.015 10.1109/TAES.2023.3318883 10.2514/1.G007475 10.1007/s40747-021-00364-3 10.1016/j.jprocont.2023.103067 10.31763/ijrcs.v4i2.1433 10.1016/j.isatra.2019.08.049 10.1016/j.ast.2023.108732 10.2514/1.50821 10.1016/j.jprocont.2014.10.007 10.3390/app12052485 10.2514/1.61615 10.1177/0142331220904570 10.1109/ACCESS.2024.3405534 10.1016/j.aej.2022.07.040 10.1016/j.automatica.2019.02.014 10.1049/cth2.12042 10.1109/MCS.2024.3358624 10.1016/j.cja.2021.10.037 10.1016/j.ast.2017.07.019 10.1109/TSMC.2023.3344292 10.1016/j.ast.2021.107134 10.2514/1.53647 10.1016/j.jfranklin.2020.02.002 10.1109/TAES.2022.3185576 10.1177/10775463221097763 10.1016/j.aej.2022.06.006 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.aej.2024.11.090 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 475 |
| ExternalDocumentID | oai_doaj_org_article_82cacb7607bc40d1bcb3b95d0b7d202a 10_1016_j_aej_2024_11_090 S1110016824015606 |
| GroupedDBID | --K 0R~ 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 O-L O9- OK1 P2P RIG ROL SES SSZ XH2 AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
| ID | FETCH-LOGICAL-c358t-a4c84186bdebcdd8e6fed3acdd74484e972c2f4dda75cd0ea23693c2d4e380a33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001375091500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1110-0168 |
| IngestDate | Fri Oct 03 12:52:20 EDT 2025 Sat Nov 29 08:19:24 EST 2025 Sat Mar 01 15:46:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ESO TD MPC LOE FTC MPSP Fault-tolerant control HFV Hypersonic flight vehicles CA Model predictive static programming Control allocation |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-a4c84186bdebcdd8e6fed3acdd74484e972c2f4dda75cd0ea23693c2d4e380a33 |
| ORCID | 0000-0001-7047-1949 |
| OpenAccessLink | https://doaj.org/article/82cacb7607bc40d1bcb3b95d0b7d202a |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_82cacb7607bc40d1bcb3b95d0b7d202a crossref_primary_10_1016_j_aej_2024_11_090 elsevier_sciencedirect_doi_10_1016_j_aej_2024_11_090 |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Alexandria engineering journal |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Li, Yuan, Zhao (bib12) 2022 Airlangga, Sihombing, Bata (bib17) 2024; 12 Ajagbe, Adegun, Olanrewaju (bib19) 2023; 12 Halbe, Raja, Padhi (bib24) 2014; 37 Jia, Cao, He (bib6) 2024; 54 Padhi, Banerjee, Mathavaraj (bib27) 2024; 44 Rabaoui, Hamdi, Braiek (bib9) 2020; 98 Hameed, Bindu, Vutukuri (bib26) 2024; 144 Huang, Rong, Liu (bib3) 2021 Xia, Guo (bib7) 2022; 8 Abualigah, Ekinci, Izci (bib18) 2024; 4 Elmahdi, Xu, Khalil (bib20) 2022; 61 Wang, Qi, Wen (bib1) 2022; 59 Vile, Alwi, Edwards (bib13) 2021; 15 Noome, le Roux, Padhi (bib25) 2023; 129 Ijaz, Ijaz, Hamayun (bib4) 2023; 29 Wu, Wang, Yu (bib16) 2021; 119 Hong, Wang, Holzapfel (bib30) 2017; 69 Yibo, Xiaokui, Guangshan (bib2) 2022; 35 Beyer, Steen, Hecker (bib5) 2023; 46 Bessa, Puig, Palhares (bib10) 2020; 357 Kumar, Anoohya, Padhi (bib31) 2019 Gui, Jia, Li (bib8) 2022; 12 Dwivedi, Bhattacharya, Padhi (bib22) 2011; 34 Argha, Su, Celler (bib14) 2019; 103 Tong, Jiang, Huabo (bib11) 2020; 33 Wang, He, Zhang (bib32) 2023; 62 Zhou, Yan, Ban (bib28) 2023; 59 Padhi, Kothari (bib21) 2009; 5 Oza, Padhi (bib23) 2012; 35 Le Roux, Padhi, Craig (bib29) 2014; 24 Ma, Liu, Yao (bib15) 2020; 42 Hameed (10.1016/j.aej.2024.11.090_bib26) 2024; 144 Gui (10.1016/j.aej.2024.11.090_bib8) 2022; 12 Bessa (10.1016/j.aej.2024.11.090_bib10) 2020; 357 Vile (10.1016/j.aej.2024.11.090_bib13) 2021; 15 Argha (10.1016/j.aej.2024.11.090_bib14) 2019; 103 Elmahdi (10.1016/j.aej.2024.11.090_bib20) 2022; 61 Li (10.1016/j.aej.2024.11.090_bib12) 2022 Halbe (10.1016/j.aej.2024.11.090_bib24) 2014; 37 Kumar (10.1016/j.aej.2024.11.090_bib31) 2019 Dwivedi (10.1016/j.aej.2024.11.090_bib22) 2011; 34 Wang (10.1016/j.aej.2024.11.090_bib1) 2022; 59 Jia (10.1016/j.aej.2024.11.090_bib6) 2024; 54 Beyer (10.1016/j.aej.2024.11.090_bib5) 2023; 46 Abualigah (10.1016/j.aej.2024.11.090_bib18) 2024; 4 Wang (10.1016/j.aej.2024.11.090_bib32) 2023; 62 Padhi (10.1016/j.aej.2024.11.090_bib21) 2009; 5 Yibo (10.1016/j.aej.2024.11.090_bib2) 2022; 35 Ijaz (10.1016/j.aej.2024.11.090_bib4) 2023; 29 Rabaoui (10.1016/j.aej.2024.11.090_bib9) 2020; 98 Zhou (10.1016/j.aej.2024.11.090_bib28) 2023; 59 Huang (10.1016/j.aej.2024.11.090_bib3) 2021 Le Roux (10.1016/j.aej.2024.11.090_bib29) 2014; 24 Xia (10.1016/j.aej.2024.11.090_bib7) 2022; 8 Tong (10.1016/j.aej.2024.11.090_bib11) 2020; 33 Oza (10.1016/j.aej.2024.11.090_bib23) 2012; 35 Ma (10.1016/j.aej.2024.11.090_bib15) 2020; 42 Wu (10.1016/j.aej.2024.11.090_bib16) 2021; 119 Padhi (10.1016/j.aej.2024.11.090_bib27) 2024; 44 Ajagbe (10.1016/j.aej.2024.11.090_bib19) 2023; 12 Hong (10.1016/j.aej.2024.11.090_bib30) 2017; 69 Noome (10.1016/j.aej.2024.11.090_bib25) 2023; 129 Airlangga (10.1016/j.aej.2024.11.090_bib17) 2024; 12 |
| References_xml | – start-page: 2 year: 2021 ident: bib3 article-title: Design and realization of recovery system of chang’e-5 reentry spacecraft[J]. publication-title: Space.: Sci. Technol. – volume: 35 start-page: 153 year: 2012 end-page: 164 ident: bib23 article-title: Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles[J] publication-title: J. Guid. Control Dyn. – volume: 24 start-page: 29 year: 2014 end-page: 40 ident: bib29 article-title: Optimal control of grinding mill circuit using model predictive static programming: A new nonlinear MPC paradigm[J] publication-title: J. Process Control – volume: 61 start-page: 12247 year: 2022 end-page: 12257 ident: bib20 article-title: An application of adaptive normalization evolutionary optimization ANMOGA for missile fin design based on trajectory parameters[J] publication-title: Alex. Eng. J. – year: 2019 ident: bib31 article-title: Model predictive static programming for optimal command tracking: a fast model predictive control paradigm[J] publication-title: Am. Soc. Mech. Eng. – volume: 8 start-page: 1963 year: 2022 end-page: 1973 ident: bib7 article-title: Sliding mode-based online fault compensation control for modular reconfigurable robots through adaptive dynamic programming[J] publication-title: Complex Intell. Syst. – volume: 29 start-page: 3492 year: 2023 end-page: 3515 ident: bib4 article-title: Active and passive fault tolerant control allocation strategy for nonlinear systems[J] publication-title: J. Vib. Control – year: 2022 ident: bib12 article-title: Study on effect of aerodynamic configuration on aerodynamic performance of mars ascent vehicles[J] publication-title: Space.: Sci. Technol. – volume: 357 start-page: 4592 year: 2020 end-page: 4623 ident: bib10 article-title: TS fuzzy reconfiguration blocks for fault tolerant control of nonlinear systems[J] publication-title: J. Frankl. Inst. – volume: 42 start-page: 2011 year: 2020 end-page: 2019 ident: bib15 article-title: Fault tolerant control using integral sliding modes with control allocation along the null-space:[J] publication-title: Trans. Inst. Meas. Control – volume: 59 start-page: 519 year: 2022 end-page: 540 ident: bib1 article-title: Adaptive multiple-model-based fault-tolerant control for non-minimum phase hypersonic vehicles with input saturations and error constraints[J] publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 144 year: 2024 ident: bib26 article-title: Approach and landing guidance using constrained model predictive static programming[J] publication-title: Aerosp. Sci. Technol. – volume: 15 start-page: 307 year: 2021 end-page: 322 ident: bib13 article-title: Robust fault tolerant control allocation for a modernover-actuated commercial aircraft publication-title: IET Control Theory Appl. – volume: 4 start-page: 746 year: 2024 end-page: 757 ident: bib18 article-title: Aircraft pitch control via filtered proportional-integral-derivative controller design using sinh cosh optimizer[J] publication-title: Int. J. Robot. Control Syst. – volume: 59 start-page: 9438 year: 2023 end-page: 9450 ident: bib28 article-title: Generalized-newton-iteration-based MPSP method for terminal constrained guidance[J] publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 12 start-page: 1909 year: 2023 end-page: 1919 ident: bib19 article-title: Performance investigation of two-stage detection techniques using traffic light detection dataset[J] publication-title: IAES Int. J. Artif. Intell. (IJ-AI) – volume: 44 start-page: 55 year: 2024 end-page: 80 ident: bib27 article-title: Computational guidance using model predictive static programming for challenging space missions: an introductory tutorial with example scenarios[J] publication-title: IEEE Control Syst. Mag. – volume: 54 start-page: 2389 year: 2024 ident: bib6 article-title: Active fault-tolerant control against intermittent faults for state-constrained nonlinear systems[J] publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. – volume: 62 start-page: 431 year: 2023 end-page: 443 ident: bib32 article-title: Damage analysis of typical structures of aircraft under high-velocity fragments impact[J] publication-title: Alex. Eng. J. – volume: 46 start-page: 2033 year: 2023 end-page: 2042 ident: bib5 article-title: Incremental passive fault-tolerant control for quadrotors subjected to complete rotor failures[J] publication-title: J. Guid., Control, Dyn. – volume: 35 start-page: 1 year: 2022 end-page: 18 ident: bib2 article-title: Review of control and guidance technology on hypersonic vehicle[J] publication-title: Chin. J. Aeronaut. – volume: 12 start-page: 2485 year: 2022 ident: bib8 article-title: Reconfigurable fault-tolerant control for spacecraft formation flying based on iterative learning algorithms[J] publication-title: Appl. Sci. – volume: 98 start-page: 173 year: 2020 end-page: 185 ident: bib9 article-title: A reconfigurable PID fault tolerant tracking controller design for LPV systems[J] publication-title: ISA Trans. – volume: 5 year: 2009 ident: bib21 article-title: Model predictive static programming: a computationally efficient technique for suboptimal control design[J] publication-title: Int. J. Innov. Comput. Inf. Control – volume: 119 year: 2021 ident: bib16 article-title: Hierarchical fault-tolerant control for over-actuated hypersonic reentry vehicles[J] publication-title: Aerosp. Sci. Technol. – volume: 12 start-page: 74444 year: 2024 end-page: 74455 ident: bib17 article-title: Optimizing femtocell networks: a novel game theory based power management model for enhanced SINR and energy efficiency[J] publication-title: IEEE Access – volume: 103 start-page: 408 year: 2019 end-page: 417 ident: bib14 article-title: Control allocation-based fault tolerant control[J] publication-title: Automatica – volume: 129 year: 2023 ident: bib25 article-title: Optimal control of mineral processing plants using constrained model predictive static programming[J] publication-title: J. Process Control – volume: 69 year: 2017 ident: bib30 article-title: Fast real-time three-dimensional wind estimation for fixed-wing aircraft[J] publication-title: Aerosp. Sci. Technol. – volume: 33 start-page: 324 year: 2020 end-page: 338 ident: bib11 article-title: Reconfigurable fault-tolerant control for supersonic missiles with actuator failures under actuation redundancy[J] publication-title: Chin. J. Aeronaut. – volume: 34 start-page: 860 year: 2011 end-page: 877 ident: bib22 article-title: Suboptimal midcourse guidance of interceptors for high-speed targets with alignment angle constraint publication-title: J. ]. J. Guid. Control Dyn. – volume: 37 start-page: 134 year: 2014 end-page: 148 ident: bib24 article-title: Robust reentry guidance of a reusable launch vehicle using model predictive static programming publication-title: J. ]. J. Guid. Control Dyn. – volume: 33 start-page: 324 issue: 1 year: 2020 ident: 10.1016/j.aej.2024.11.090_bib11 article-title: Reconfigurable fault-tolerant control for supersonic missiles with actuator failures under actuation redundancy[J] publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2019.05.015 – volume: 59 start-page: 9438 issue: 6 year: 2023 ident: 10.1016/j.aej.2024.11.090_bib28 article-title: Generalized-newton-iteration-based MPSP method for terminal constrained guidance[J] publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2023.3318883 – volume: 46 start-page: 2033 issue: 10 year: 2023 ident: 10.1016/j.aej.2024.11.090_bib5 article-title: Incremental passive fault-tolerant control for quadrotors subjected to complete rotor failures[J] publication-title: J. Guid., Control, Dyn. doi: 10.2514/1.G007475 – volume: 8 start-page: 1963 issue: 3 year: 2022 ident: 10.1016/j.aej.2024.11.090_bib7 article-title: Sliding mode-based online fault compensation control for modular reconfigurable robots through adaptive dynamic programming[J] publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00364-3 – volume: 129 year: 2023 ident: 10.1016/j.aej.2024.11.090_bib25 article-title: Optimal control of mineral processing plants using constrained model predictive static programming[J] publication-title: J. Process Control doi: 10.1016/j.jprocont.2023.103067 – volume: 4 start-page: 746 issue: 2 year: 2024 ident: 10.1016/j.aej.2024.11.090_bib18 article-title: Aircraft pitch control via filtered proportional-integral-derivative controller design using sinh cosh optimizer[J] publication-title: Int. J. Robot. Control Syst. doi: 10.31763/ijrcs.v4i2.1433 – start-page: 2 issue: 1 year: 2021 ident: 10.1016/j.aej.2024.11.090_bib3 article-title: Design and realization of recovery system of chang’e-5 reentry spacecraft[J]. publication-title: Space.: Sci. Technol. – volume: 98 start-page: 173 year: 2020 ident: 10.1016/j.aej.2024.11.090_bib9 article-title: A reconfigurable PID fault tolerant tracking controller design for LPV systems[J] publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.08.049 – volume: 144 year: 2024 ident: 10.1016/j.aej.2024.11.090_bib26 article-title: Approach and landing guidance using constrained model predictive static programming[J] publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108732 – volume: 5 issue: 2 year: 2009 ident: 10.1016/j.aej.2024.11.090_bib21 article-title: Model predictive static programming: a computationally efficient technique for suboptimal control design[J] publication-title: Int. J. Innov. Comput. Inf. Control – volume: 34 start-page: 860 issue: 3 year: 2011 ident: 10.1016/j.aej.2024.11.090_bib22 article-title: Suboptimal midcourse guidance of interceptors for high-speed targets with alignment angle constraint publication-title: J. ]. J. Guid. Control Dyn. doi: 10.2514/1.50821 – volume: 24 start-page: 29 issue: 12 year: 2014 ident: 10.1016/j.aej.2024.11.090_bib29 article-title: Optimal control of grinding mill circuit using model predictive static programming: A new nonlinear MPC paradigm[J] publication-title: J. Process Control doi: 10.1016/j.jprocont.2014.10.007 – volume: 12 start-page: 2485 issue: 5 year: 2022 ident: 10.1016/j.aej.2024.11.090_bib8 article-title: Reconfigurable fault-tolerant control for spacecraft formation flying based on iterative learning algorithms[J] publication-title: Appl. Sci. doi: 10.3390/app12052485 – volume: 37 start-page: 134 issue: 1 year: 2014 ident: 10.1016/j.aej.2024.11.090_bib24 article-title: Robust reentry guidance of a reusable launch vehicle using model predictive static programming publication-title: J. ]. J. Guid. Control Dyn. doi: 10.2514/1.61615 – volume: 42 start-page: 2011 issue: 11 year: 2020 ident: 10.1016/j.aej.2024.11.090_bib15 article-title: Fault tolerant control using integral sliding modes with control allocation along the null-space:[J] publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331220904570 – volume: 12 start-page: 74444 year: 2024 ident: 10.1016/j.aej.2024.11.090_bib17 article-title: Optimizing femtocell networks: a novel game theory based power management model for enhanced SINR and energy efficiency[J] publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3405534 – issue: 1 year: 2022 ident: 10.1016/j.aej.2024.11.090_bib12 article-title: Study on effect of aerodynamic configuration on aerodynamic performance of mars ascent vehicles[J] publication-title: Space.: Sci. Technol. – volume: 62 start-page: 431 year: 2023 ident: 10.1016/j.aej.2024.11.090_bib32 article-title: Damage analysis of typical structures of aircraft under high-velocity fragments impact[J] publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.07.040 – volume: 103 start-page: 408 year: 2019 ident: 10.1016/j.aej.2024.11.090_bib14 article-title: Control allocation-based fault tolerant control[J] publication-title: Automatica doi: 10.1016/j.automatica.2019.02.014 – volume: 15 start-page: 307 year: 2021 ident: 10.1016/j.aej.2024.11.090_bib13 article-title: Robust fault tolerant control allocation for a modernover-actuated commercial aircraft publication-title: IET Control Theory Appl. doi: 10.1049/cth2.12042 – volume: 44 start-page: 55 issue: 2 year: 2024 ident: 10.1016/j.aej.2024.11.090_bib27 article-title: Computational guidance using model predictive static programming for challenging space missions: an introductory tutorial with example scenarios[J] publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.2024.3358624 – volume: 35 start-page: 1 issue: 7 year: 2022 ident: 10.1016/j.aej.2024.11.090_bib2 article-title: Review of control and guidance technology on hypersonic vehicle[J] publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2021.10.037 – volume: 69 year: 2017 ident: 10.1016/j.aej.2024.11.090_bib30 article-title: Fast real-time three-dimensional wind estimation for fixed-wing aircraft[J] publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2017.07.019 – volume: 54 start-page: 2389 issue: 4 year: 2024 ident: 10.1016/j.aej.2024.11.090_bib6 article-title: Active fault-tolerant control against intermittent faults for state-constrained nonlinear systems[J] publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. doi: 10.1109/TSMC.2023.3344292 – volume: 119 year: 2021 ident: 10.1016/j.aej.2024.11.090_bib16 article-title: Hierarchical fault-tolerant control for over-actuated hypersonic reentry vehicles[J] publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.107134 – volume: 35 start-page: 153 issue: 1 year: 2012 ident: 10.1016/j.aej.2024.11.090_bib23 article-title: Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles[J] publication-title: J. Guid. Control Dyn. doi: 10.2514/1.53647 – volume: 357 start-page: 4592 issue: 8 year: 2020 ident: 10.1016/j.aej.2024.11.090_bib10 article-title: TS fuzzy reconfiguration blocks for fault tolerant control of nonlinear systems[J] publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2020.02.002 – volume: 59 start-page: 519 issue: 1 year: 2022 ident: 10.1016/j.aej.2024.11.090_bib1 article-title: Adaptive multiple-model-based fault-tolerant control for non-minimum phase hypersonic vehicles with input saturations and error constraints[J] publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2022.3185576 – issue: 2 year: 2019 ident: 10.1016/j.aej.2024.11.090_bib31 article-title: Model predictive static programming for optimal command tracking: a fast model predictive control paradigm[J] publication-title: Am. Soc. Mech. Eng. – volume: 29 start-page: 3492 issue: 15-16 year: 2023 ident: 10.1016/j.aej.2024.11.090_bib4 article-title: Active and passive fault tolerant control allocation strategy for nonlinear systems[J] publication-title: J. Vib. Control doi: 10.1177/10775463221097763 – volume: 61 start-page: 12247 issue: 12 year: 2022 ident: 10.1016/j.aej.2024.11.090_bib20 article-title: An application of adaptive normalization evolutionary optimization ANMOGA for missile fin design based on trajectory parameters[J] publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.06.006 – volume: 12 start-page: 1909 issue: 4 year: 2023 ident: 10.1016/j.aej.2024.11.090_bib19 article-title: Performance investigation of two-stage detection techniques using traffic light detection dataset[J] publication-title: IAES Int. J. Artif. Intell. (IJ-AI) |
| SSID | ssj0000579496 |
| Score | 2.3371828 |
| Snippet | This paper proposes a novel fast attitude fault-tolerant control (FTC) scheme for over-actuated hypersonic flight vehicles experiencing actuator failures, such... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Index Database Publisher |
| StartPage | 463 |
| SubjectTerms | Control allocation Fault-tolerant control Hypersonic flight vehicles Model predictive static programming |
| Title | Reconfigurable fault-tolerant attitude control for over-actuated hypersonic flight vehicle with actuator failures |
| URI | https://dx.doi.org/10.1016/j.aej.2024.11.090 https://doaj.org/article/82cacb7607bc40d1bcb3b95d0b7d202a |
| Volume | 114 |
| WOSCitedRecordID | wos001375091500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals issn: 1110-0168 databaseCode: DOA dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0000579496 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQ6gEOqOVDLLSVD5yQAontxM6xrYo4oR6KxC2yx2MIWi2wZPn9zCRZlAviwi2KnEw0Y2fmJc9vhDgpbOFLVdJCSh4yUwTMaqVCVgX02jsHsUx9swl7deVubup_k1ZfzAkb5IEHx507BR6CrXIbwOSxCBB0qMuYBxsJuPelUW7rCZgaVL1pnvXNuWgtM_Oqcutfmj25y-M9YUNlzljBk9_Hk6TUa_dPctMk31x8FTtjoSh_DQ_4TWzgYldsT-QD98QTY8dFam9XS94AJZNfzbuse5gjJaBO-o5pABHlSEeXVJ9KZmxmnneNUKkp7wiFcsXdgkxzhunyBe_YnuTvs3IYR1cl3zJ9_XlfXF_8_f_nMhtbKGSgS9dl3oAzhatCxAAxOqwSRu3p0BIuM1hbBSqZGL0tIebola5qDSoa1C73Wh-IzcXDAg-FjA4gFolbXaFh1ZxQmVBgnVSsCghqJk7XPmweB6WMZk0hu2_I4Q07nBBHQw6fid_s5beBLHLdn6DQN2Pom49CPxNmHaNmrBeGOoBu1b5v--gzbB-LLcWdgHv-9nex2S1X-EN8gZeufV7-7CfjKw8K56I |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconfigurable+fault-tolerant+attitude+control+for+over-actuated+hypersonic+flight+vehicle+with+actuator+failures&rft.jtitle=Alexandria+engineering+journal&rft.au=Li%2C+Ao&rft.au=Hu%2C+Xiaoxiang&rft.au=Dong%2C+Kejun&rft.au=Li%2C+Hongzeng&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=1110-0168&rft.volume=114&rft.spage=463&rft.epage=475&rft_id=info:doi/10.1016%2Fj.aej.2024.11.090&rft.externalDocID=S1110016824015606 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon |