Extremal Kähler Metrics Induced by Finite or Infinite-Dimensional Complex Space Forms

In this paper, we address the problem of studying those complex manifolds M equipped with extremal metrics g induced by finite or infinite-dimensional complex space forms. We prove that when g is assumed to be radial and the ambient space is finite-dimensional, then ( M ,  g ) is itself a complex sp...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of geometric analysis Ročník 31; číslo 8; s. 7842 - 7865
Hlavní autori: Loi, Andrea, Salis, Filippo, Zuddas, Fabio
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.08.2021
Springer Nature B.V
Predmet:
ISSN:1050-6926, 1559-002X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we address the problem of studying those complex manifolds M equipped with extremal metrics g induced by finite or infinite-dimensional complex space forms. We prove that when g is assumed to be radial and the ambient space is finite-dimensional, then ( M ,  g ) is itself a complex space form. We extend this result to the infinite-dimensional setting by imposing the strongest assumption that the metric g has constant scalar curvature and is well behaved (see Definition 1 in the Introduction). Finally, we analyze the radial Kähler–Einstein metrics induced by infinite-dimensional elliptic complex space forms and we show that if such a metric is assumed to satisfy a stability condition then it is forced to have constant nonpositive holomorphic sectional curvature.
AbstractList In this paper, we address the problem of studying those complex manifolds M equipped with extremal metrics g induced by finite or infinite-dimensional complex space forms. We prove that when g is assumed to be radial and the ambient space is finite-dimensional, then (M, g) is itself a complex space form. We extend this result to the infinite-dimensional setting by imposing the strongest assumption that the metric g has constant scalar curvature and is well behaved (see Definition 1 in the Introduction). Finally, we analyze the radial Kähler–Einstein metrics induced by infinite-dimensional elliptic complex space forms and we show that if such a metric is assumed to satisfy a stability condition then it is forced to have constant nonpositive holomorphic sectional curvature.
In this paper, we address the problem of studying those complex manifolds M equipped with extremal metrics g induced by finite or infinite-dimensional complex space forms. We prove that when g is assumed to be radial and the ambient space is finite-dimensional, then ( M ,  g ) is itself a complex space form. We extend this result to the infinite-dimensional setting by imposing the strongest assumption that the metric g has constant scalar curvature and is well behaved (see Definition 1 in the Introduction). Finally, we analyze the radial Kähler–Einstein metrics induced by infinite-dimensional elliptic complex space forms and we show that if such a metric is assumed to satisfy a stability condition then it is forced to have constant nonpositive holomorphic sectional curvature.
Author Salis, Filippo
Zuddas, Fabio
Loi, Andrea
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0003-0407-7403
  surname: Loi
  fullname: Loi, Andrea
  email: loi@unica.it
  organization: Dipartimento di Matematica, Università di Cagliari
– sequence: 2
  givenname: Filippo
  surname: Salis
  fullname: Salis, Filippo
  organization: Istituto Nazionale di Alta Matematica, Politecnico di Torino
– sequence: 3
  givenname: Fabio
  surname: Zuddas
  fullname: Zuddas, Fabio
  organization: Dipartimento di Matematica, Università di Cagliari
BookMark eNp9kMtKAzEUhoNUsK2-gKsB16Mnt7kspbZarLjwgruQySQ6ZS41SaF9H9_EFzPjCIILF4dzcvi_k59_gkZt12qETjGcY4D0wmFCCMTQF3DOYnaAxpjzPDzJyyjMwCFOcpIcoYlzawCWUJaO0fN8561uZB3dfn681dpGd9rbSrlo2ZZbpcuo2EeLqq28jjobluZ7jq-qRreu6tpAzrpmU-td9LCRSkeLzjbuGB0aWTt98tOn6Gkxf5zdxKv76-XschUryjMfS9CmNAwKmmSm5JJyTDPQtMAK54XGmKg0NalhRZGbHMss5QAJVpnMpDGM0Sk6G-5ubPe-1c6Ldbe1wZQThPMUEkgSCKpsUCnbOWe1Eary0gf33sqqFhhEn6IYUhTQV5-i6D8gf9CNrRpp9_9DdIBcELev2v66-of6AuXVhv4
CitedBy_id crossref_primary_10_1007_s00009_023_02437_8
crossref_primary_10_1007_s10231_024_01468_6
crossref_primary_10_1007_s12220_024_01590_0
Cites_doi 10.1142/S0129167X04002429
10.1007/s00013-017-1055-y
10.1016/j.geomphys.2018.07.013
10.2969/jmsj/02710076
10.1016/j.crma.2004.11.028
10.1512/iumj.2004.53.2311
10.1016/j.jmaa.2014.09.080
10.1090/gsm/152
10.4099/math1924.4.171
10.1215/00127094-1593308
10.1007/BF01404460
10.24033/bsmf.2281
10.1007/s00222-014-0543-y
10.1007/s00208-002-0349-x
10.1007/BF01430959
10.1007/s10711-015-0085-5
10.1090/S0002-9904-1947-08778-4
10.1007/s00209-017-2033-6
10.2307/1969817
10.4310/AJM.2012.v16.n3.a7
10.2748/tmj/1178228285
10.1215/00127094-2011-001
10.1007/s00208-010-0554-y
10.1007/s10455-019-09680-x
10.1007/BF01457231
10.1007/BF02921947
10.1016/j.jmaa.2019.123715
10.1007/978-3-319-99483-3
ContentType Journal Article
Copyright Mathematica Josephina, Inc. 2020
Mathematica Josephina, Inc. 2020.
Copyright_xml – notice: Mathematica Josephina, Inc. 2020
– notice: Mathematica Josephina, Inc. 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s12220-020-00554-4
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1559-002X
EndPage 7865
ExternalDocumentID 10_1007_s12220_020_00554_4
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
2.D
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
D-I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IAO
IGS
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJN
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WH7
WK8
YLTOR
Z45
ZMTXR
ZWQNP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c358t-a0efdf40b368fd5a351380e3b1c19be112c77f7f4bb9f91a8750061c8a8aff443
IEDL.DBID RSV
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000590335700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1050-6926
IngestDate Thu Sep 25 01:04:18 EDT 2025
Sat Nov 29 04:58:17 EST 2025
Tue Nov 18 21:44:12 EST 2025
Fri Feb 21 02:48:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords extremal metric
32Q15
Complex space forms
53C55
Constant scalar curvature metric
Kählermetric
Calabi’s diastasis function
32T15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-a0efdf40b368fd5a351380e3b1c19be112c77f7f4bb9f91a8750061c8a8aff443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0407-7403
PQID 2557060660
PQPubID 2043891
PageCount 24
ParticipantIDs proquest_journals_2557060660
crossref_citationtrail_10_1007_s12220_020_00554_4
crossref_primary_10_1007_s12220_020_00554_4
springer_journals_10_1007_s12220_020_00554_4
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Journal of geometric analysis
PublicationTitleAbbrev J Geom Anal
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Burns, De Bartolomeis (CR4) 1988; 92
Loi, Zedda (CR24) 2018
Hao, Wang, Zhang (CR14) 2015; 423
Loi, Salis, Zuddas (CR27) 2018; 133
Kobayashi (CR17) 1967; 1
Loi, Mossa, Zuddas (CR28) 2020; 484
Umehara (CR37) 1987; 39
Hulin (CR15) 1996; 124
Abreu (CR1) 2010; 17
Duan (CR12) 2018; 128
Hulin (CR16) 2000; 10
Levine (CR19) 1985; 21
Loi, Salis, Zuddas (CR26) 2018; 290
Mabuchi (CR29) 2004; 15
Székelyhidi (CR33) 2015; 200
Arezzo, Pacard, Singer (CR2) 2011; 157
Loi, Zedda (CR23) 2011; 350
Salis (CR30) 2017; 19
Székelyhidi (CR34) 2020; 114
Chen, Tian (CR9) 2005; 340
Loi, Cannas Aghedu (CR20) 2019; 56
Loi, Mossa (CR22) 2015; 179
Tsukada (CR36) 1986; 274
Hano (CR13) 1975; 216
Kon (CR18) 1975; 27
Calabi (CR6) 1982; 102
Székelyhidi (CR32) 2014
Calabi (CR5) 1953; 58
CR25
Chang (CR7) 2002; 324
CR21
Székelyhidi (CR31) 2012; 161
Chern (CR10) 1967; 1
Chang, Wu (CR8) 2004; 53
Takeuchi (CR35) 1978; 4
Di Scala, Hishi, Loi (CR11) 2012; 16
Bochner (CR3) 1947; 53
F Salis (554_CR30) 2017; 19
X Duan (554_CR12) 2018; 128
Y Hao (554_CR14) 2015; 423
G Székelyhidi (554_CR33) 2015; 200
E Calabi (554_CR5) 1953; 58
M Levine (554_CR19) 1985; 21
A Loi (554_CR24) 2018
D Hulin (554_CR15) 1996; 124
A Loi (554_CR26) 2018; 290
C Arezzo (554_CR2) 2011; 157
M Umehara (554_CR37) 1987; 39
SS Chern (554_CR10) 1967; 1
S-C Chang (554_CR7) 2002; 324
E Calabi (554_CR6) 1982; 102
554_CR25
AJ Di Scala (554_CR11) 2012; 16
A Loi (554_CR28) 2020; 484
G Székelyhidi (554_CR34) 2020; 114
J Hano (554_CR13) 1975; 216
M Abreu (554_CR1) 2010; 17
554_CR21
A Loi (554_CR22) 2015; 179
A Loi (554_CR23) 2011; 350
M Takeuchi (554_CR35) 1978; 4
D Hulin (554_CR16) 2000; 10
G Székelyhidi (554_CR31) 2012; 161
D Burns (554_CR4) 1988; 92
M Kon (554_CR18) 1975; 27
G Székelyhidi (554_CR32) 2014
K Tsukada (554_CR36) 1986; 274
S-C Chang (554_CR8) 2004; 53
A Loi (554_CR20) 2019; 56
T Mabuchi (554_CR29) 2004; 15
S Bochner (554_CR3) 1947; 53
S Kobayashi (554_CR17) 1967; 1
A Loi (554_CR27) 2018; 133
X Chen (554_CR9) 2005; 340
References_xml – volume: 15
  start-page: 531
  year: 2004
  end-page: 546
  ident: CR29
  article-title: Uniqueness of extremal Kähler metrics for an integral Kähler class
  publication-title: Int. J. Math.
  doi: 10.1142/S0129167X04002429
– volume: 19
  start-page: 285
  year: 2017
  end-page: 292
  ident: CR30
  article-title: Projectively induced rotation invariant Kähler metrics
  publication-title: Arch. Math.
  doi: 10.1007/s00013-017-1055-y
– volume: 133
  start-page: 210
  year: 2018
  end-page: 218
  ident: CR27
  article-title: On the third coefficient of TYZ expansion for radial scalar flat metrics
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2018.07.013
– volume: 27
  start-page: 76
  year: 1975
  end-page: 81
  ident: CR18
  article-title: Complex submanifolds with constant scalar curvature in a Kähler manifold
  publication-title: J. Math. Soc. Jpn.
  doi: 10.2969/jmsj/02710076
– volume: 340
  start-page: 287
  issue: 4
  year: 2005
  end-page: 290
  ident: CR9
  article-title: Uniqueness of extremal Kähler metrics
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/j.crma.2004.11.028
– volume: 21
  start-page: 73
  year: 1985
  end-page: 77
  ident: CR19
  article-title: A remark on extremal Kähler metrics
  publication-title: J. Diff. Geom.
– volume: 128
  start-page: 14
  year: 2018
  ident: CR12
  article-title: Rotationally symmetric extremal pseudo-Kähler metrics of non-constant scalar curvatures
  publication-title: Proc. Indian Acad. Sci.
– volume: 53
  start-page: 243
  issue: 1
  year: 2004
  end-page: 268
  ident: CR8
  article-title: On the existence of extremal metrics on complete noncompact 3-manifolds
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.2004.53.2311
– volume: 423
  start-page: 547
  issue: 1
  year: 2015
  end-page: 560
  ident: CR14
  article-title: On holomorphic isometric immersions of nonhomogeneous Kähler–Einstein manifolds into the infinite dimensional complex projective space
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2014.09.080
– year: 2014
  ident: CR32
  publication-title: An Introduction to Extremal Kähler metrics
  doi: 10.1090/gsm/152
– volume: 4
  start-page: 171
  year: 1978
  end-page: 219
  ident: CR35
  article-title: Homogeneous Kähler submanifolds in projective spaces
  publication-title: Jpn. J. Math
  doi: 10.4099/math1924.4.171
– volume: 114
  start-page: 171
  issue: 1
  year: 2020
  end-page: 192
  ident: CR34
  article-title: Extremal metrics on blowups along submanifolds
  publication-title: J. Diff. Geom.
– volume: 102
  start-page: 259
  year: 1982
  end-page: 290
  ident: CR6
  article-title: Extremal Kähler metrics, seminar on differential geometry
  publication-title: Ann. Math. Stud.
– year: 2018
  ident: CR24
  publication-title: Kähler Immersions of Kähler Manifolds into Complex Space Forms
– volume: 17
  start-page: 1
  year: 2010
  end-page: 33
  ident: CR1
  article-title: Toric Kähler metrics: cohomogeneity one examples of constant scalar curvature in action-angle coordinates
  publication-title: J. Geom. Symm. Phys.
– ident: CR25
– volume: 161
  start-page: 1411
  issue: 8
  year: 2012
  end-page: 1453
  ident: CR31
  article-title: On blowing up extremal Kähler manifolds
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-1593308
– volume: 92
  start-page: 403
  year: 1988
  end-page: 407
  ident: CR4
  article-title: Stability of vector bundles and extremal metrics
  publication-title: Inv. Math.
  doi: 10.1007/BF01404460
– volume: 124
  start-page: 277
  year: 1996
  end-page: 298
  ident: CR15
  article-title: Sous-variétés complexes d’Einstein de l’espace projectif
  publication-title: Bull. Soc. Math. France
  doi: 10.24033/bsmf.2281
– ident: CR21
– volume: 1
  start-page: 21
  year: 1967
  end-page: 31
  ident: CR10
  article-title: On Einstein hypersurfaces in a Kähler manifold of constant sectional curvature
  publication-title: J. Diff. Geom.
– volume: 200
  start-page: 925
  issue: 3
  year: 2015
  end-page: 977
  ident: CR33
  article-title: Blowing up extremal Kähler manifolds II
  publication-title: Invent. Math.
  doi: 10.1007/s00222-014-0543-y
– volume: 324
  start-page: 465
  year: 2002
  end-page: 490
  ident: CR7
  article-title: On the existence of nontrivial extremal metrics on complete noncompact surfaces
  publication-title: Math. Ann.
  doi: 10.1007/s00208-002-0349-x
– volume: 1
  start-page: 369
  year: 1967
  end-page: 370
  ident: CR17
  article-title: Hypersurfaces of complex projective space with constant scalar curvature
  publication-title: J. Diff. Geom.
– volume: 216
  start-page: 197
  issue: 3
  year: 1975
  end-page: 208
  ident: CR13
  article-title: Einstein complete intersections in complex projective space
  publication-title: Math. Ann.
  doi: 10.1007/BF01430959
– volume: 179
  start-page: 1
  year: 2015
  end-page: 7
  ident: CR22
  article-title: Some remarks on homogeneous Kähler manifolds
  publication-title: Geom. Dedic.
  doi: 10.1007/s10711-015-0085-5
– volume: 53
  start-page: 179
  year: 1947
  end-page: 195
  ident: CR3
  article-title: Curvature in Hermitian metric
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1947-08778-4
– volume: 290
  start-page: 599
  year: 2018
  end-page: 613
  ident: CR26
  article-title: Two conjectures on Ricci flat metrics
  publication-title: Math. Z.
  doi: 10.1007/s00209-017-2033-6
– volume: 58
  start-page: 1
  year: 1953
  ident: CR5
  article-title: Isometric imbedding of complex manifolds
  publication-title: Ann. Math.
  doi: 10.2307/1969817
– volume: 16
  start-page: 479
  issue: 3
  year: 2012
  end-page: 488
  ident: CR11
  article-title: Kähler immersions of homogeneous Kähler manifolds into complex space forms
  publication-title: Asian J. Math.
  doi: 10.4310/AJM.2012.v16.n3.a7
– volume: 39
  start-page: 385
  year: 1987
  end-page: 389
  ident: CR37
  article-title: Einstein–Kaehler submanifolds of a complex linear or hyperbolic space
  publication-title: Tôhoku Math. J.
  doi: 10.2748/tmj/1178228285
– volume: 157
  start-page: 1
  issue: 1
  year: 2011
  end-page: 51
  ident: CR2
  article-title: Extremal metrics on blowups
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2011-001
– volume: 350
  start-page: 145
  year: 2011
  end-page: 154
  ident: CR23
  article-title: Kähler–Einstein submanifolds of the infinite dimensional projective space
  publication-title: Math. Ann.
  doi: 10.1007/s00208-010-0554-y
– volume: 56
  start-page: 583
  issue: 3
  year: 2019
  end-page: 596
  ident: CR20
  article-title: The Simanca metric admits a regular quantization
  publication-title: Ann. Glob. Anal. Geom.
  doi: 10.1007/s10455-019-09680-x
– volume: 274
  start-page: 503
  year: 1986
  end-page: 516
  ident: CR36
  article-title: Einstein–Kähler submanifolds with codimension two in a complex space form
  publication-title: Math. Ann.
  doi: 10.1007/BF01457231
– volume: 10
  start-page: 525
  year: 2000
  end-page: 528
  ident: CR16
  article-title: Kähler–Einstein metrics and projective embeddings
  publication-title: J. Geom. Anal.
  doi: 10.1007/BF02921947
– volume: 484
  start-page: 123715
  issue: 1
  year: 2020
  ident: CR28
  article-title: Finite TYCZ expansions and cscK metrics
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2019.123715
– ident: 554_CR21
– volume: 128
  start-page: 14
  year: 2018
  ident: 554_CR12
  publication-title: Proc. Indian Acad. Sci.
– volume: 53
  start-page: 243
  issue: 1
  year: 2004
  ident: 554_CR8
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.2004.53.2311
– volume: 10
  start-page: 525
  year: 2000
  ident: 554_CR16
  publication-title: J. Geom. Anal.
  doi: 10.1007/BF02921947
– volume: 324
  start-page: 465
  year: 2002
  ident: 554_CR7
  publication-title: Math. Ann.
  doi: 10.1007/s00208-002-0349-x
– volume: 179
  start-page: 1
  year: 2015
  ident: 554_CR22
  publication-title: Geom. Dedic.
  doi: 10.1007/s10711-015-0085-5
– ident: 554_CR25
– volume: 19
  start-page: 285
  year: 2017
  ident: 554_CR30
  publication-title: Arch. Math.
  doi: 10.1007/s00013-017-1055-y
– volume: 21
  start-page: 73
  year: 1985
  ident: 554_CR19
  publication-title: J. Diff. Geom.
– volume: 58
  start-page: 1
  year: 1953
  ident: 554_CR5
  publication-title: Ann. Math.
  doi: 10.2307/1969817
– volume: 39
  start-page: 385
  year: 1987
  ident: 554_CR37
  publication-title: Tôhoku Math. J.
  doi: 10.2748/tmj/1178228285
– volume: 124
  start-page: 277
  year: 1996
  ident: 554_CR15
  publication-title: Bull. Soc. Math. France
  doi: 10.24033/bsmf.2281
– volume: 274
  start-page: 503
  year: 1986
  ident: 554_CR36
  publication-title: Math. Ann.
  doi: 10.1007/BF01457231
– volume: 27
  start-page: 76
  year: 1975
  ident: 554_CR18
  publication-title: J. Math. Soc. Jpn.
  doi: 10.2969/jmsj/02710076
– volume: 423
  start-page: 547
  issue: 1
  year: 2015
  ident: 554_CR14
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2014.09.080
– volume: 216
  start-page: 197
  issue: 3
  year: 1975
  ident: 554_CR13
  publication-title: Math. Ann.
  doi: 10.1007/BF01430959
– volume: 92
  start-page: 403
  year: 1988
  ident: 554_CR4
  publication-title: Inv. Math.
  doi: 10.1007/BF01404460
– volume: 4
  start-page: 171
  year: 1978
  ident: 554_CR35
  publication-title: Jpn. J. Math
  doi: 10.4099/math1924.4.171
– volume: 17
  start-page: 1
  year: 2010
  ident: 554_CR1
  publication-title: J. Geom. Symm. Phys.
– volume: 290
  start-page: 599
  year: 2018
  ident: 554_CR26
  publication-title: Math. Z.
  doi: 10.1007/s00209-017-2033-6
– volume: 340
  start-page: 287
  issue: 4
  year: 2005
  ident: 554_CR9
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/j.crma.2004.11.028
– volume: 133
  start-page: 210
  year: 2018
  ident: 554_CR27
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2018.07.013
– volume: 56
  start-page: 583
  issue: 3
  year: 2019
  ident: 554_CR20
  publication-title: Ann. Glob. Anal. Geom.
  doi: 10.1007/s10455-019-09680-x
– volume: 114
  start-page: 171
  issue: 1
  year: 2020
  ident: 554_CR34
  publication-title: J. Diff. Geom.
– volume: 1
  start-page: 21
  year: 1967
  ident: 554_CR10
  publication-title: J. Diff. Geom.
– volume: 16
  start-page: 479
  issue: 3
  year: 2012
  ident: 554_CR11
  publication-title: Asian J. Math.
  doi: 10.4310/AJM.2012.v16.n3.a7
– volume: 161
  start-page: 1411
  issue: 8
  year: 2012
  ident: 554_CR31
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-1593308
– volume: 53
  start-page: 179
  year: 1947
  ident: 554_CR3
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1947-08778-4
– volume-title: An Introduction to Extremal Kähler metrics
  year: 2014
  ident: 554_CR32
  doi: 10.1090/gsm/152
– volume: 200
  start-page: 925
  issue: 3
  year: 2015
  ident: 554_CR33
  publication-title: Invent. Math.
  doi: 10.1007/s00222-014-0543-y
– volume: 15
  start-page: 531
  year: 2004
  ident: 554_CR29
  publication-title: Int. J. Math.
  doi: 10.1142/S0129167X04002429
– volume: 484
  start-page: 123715
  issue: 1
  year: 2020
  ident: 554_CR28
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2019.123715
– volume: 157
  start-page: 1
  issue: 1
  year: 2011
  ident: 554_CR2
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2011-001
– volume: 350
  start-page: 145
  year: 2011
  ident: 554_CR23
  publication-title: Math. Ann.
  doi: 10.1007/s00208-010-0554-y
– volume: 1
  start-page: 369
  year: 1967
  ident: 554_CR17
  publication-title: J. Diff. Geom.
– volume-title: Kähler Immersions of Kähler Manifolds into Complex Space Forms
  year: 2018
  ident: 554_CR24
  doi: 10.1007/978-3-319-99483-3
– volume: 102
  start-page: 259
  year: 1982
  ident: 554_CR6
  publication-title: Ann. Math. Stud.
SSID ssj0046347
Score 2.2893605
Snippet In this paper, we address the problem of studying those complex manifolds M equipped with extremal metrics g induced by finite or infinite-dimensional complex...
In this paper, we address the problem of studying those complex manifolds M equipped with extremal metrics g induced by finite or infinite-dimensional complex...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7842
SubjectTerms Abstract Harmonic Analysis
Convex and Discrete Geometry
Curvature
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
Title Extremal Kähler Metrics Induced by Finite or Infinite-Dimensional Complex Space Forms
URI https://link.springer.com/article/10.1007/s12220-020-00554-4
https://www.proquest.com/docview/2557060660
Volume 31
WOSCitedRecordID wos000590335700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1559-002X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046347
  issn: 1050-6926
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46fdAHp1NxOiUPvmmgbdI2eRRdEWRDnI69lSZNQBibrFXm__Gf-MfM6doVRQV9KPSSHEpu5zu5fB9Cp44SxqPCJcb4PsxWccIThxLJQk8zP5ScmkJsIuz3-WgkbstDYVm1271akixG6vqwm3VlDoFwB4ijGGGraM26Ow6CDXeDYTX-soAWsmIWONjASHhBeVTmexuf3VGNMb8sixbeJmr-7z-30VaJLvHFojnsoBU9aaFmiTRx2Y-zFtrsLdlas1007M7zmX0a45v3N1BDxj3Q2VIZBmEPZXPKVxw9AjrF05l9aYp7cgXKAAtWDwzjyljP8cDG4BpHFglne-gh6t5fXpNSb4Eo6vOcJI42qWGOpAE3qZ9Q36Xc0VS6yhVSW2SmwtCEhkkpjHATG-oAAlI84YkxjNF91JhMJ_oAYQ2WlDUiLbxUCbW1lKSBYNIXqQ4ZayO3KvZYlWTkoIkxjmsaZSjG2IELijG2ec6WeZ4WVBy_pu5UtRmX3TKLPSAcg5DNaaPzqvbqzz9bO_xb8iO04cHel2KjYAc18tmzPkbr6iV_zGYnRXP9AGLZ4tc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFNQH5xXv5sE3DaRNuiaPog5FN8TN4VtpsgSEMWWdov_Hf-IfM6drNxQV9KHQS3IouZ3v5PJ9AAfMKBdyFVDnoghnqySVKeNUizi0Ioq15C4Xm4ibTXl3p66LQ2FZudu9XJLMR-rJYTfvyhjFcAeJowQV0zAjvMdCxvybVqccf0WN57JiHjj4wEiFteKozPc2PrujCcb8siyae5t69X__uQSLBbokx6PmsAxTtr8C1QJpkqIfZyuw0BiztWar0Dl7GQ78U49cvr-hGjJpoM6WyQgKexifU7-S-j2iU_Iw8C9dfk9PURlgxOpBcFzp2RfS8jG4JXWPhLM1uK2ftU_OaaG3QA2P5JCmzLquE0zzmnTdKOVRwCWzXAcmUNp6ZGbi2MVOaK2cClIf6iACMjKVqXNC8HWo9B_6dgOIRUvGG9EeXpqUK8nSbk0JHamujYXYhKAs9sQUZOSoidFLJjTKWIwJwwuLMfF5Dsd5HkdUHL-m3ilrMym6ZZaESDiGIRvbhKOy9iaff7a29bfk-zB33m5cJVcXzcttmA9xH0y-aXAHKsPBk92FWfM8vM8Ge3nT_QANReW7
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ZSsQwFL24IfrgLu7mwTcNpk06TR5FLYo6CC74Vpo0AWEYZVpF_8c_8cfM7bSOigriQ6FLcilZmnObe88B2GJGuZCrgDoXRfi3SlKZMU61iEMrolhL7iqxibjdljc36vxDFn8V7d5sSfZzGpClqVvu3udud5D45pc1RtH1QRIpQcUwjAoMpEd__eK6-RaLFq8kxjyI8E6SClt12sz3Nj4vTQO8-WWLtFp5kun_v_MMTNWok-z1h8ksDNnuHEzXCJTU87uYg8mzdxbXYh6uD5_Knr_qkJPXF1RJJmeov2UKgoIfxtfUzyS5RdRK7nr-pqvO6QEqBvTZPgh-bzr2iVx439ySxCPkYgGuksPL_SNa6zBQwyNZ0oxZlzvBNG9Jl0cZjwIumeU6MIHS1iM2E8cudkJr5VSQeRcIkZGRmcycE4Ivwkj3rmuXgFi0ZLwR7WGnybiSLMtbSuhI5TYWYhmCpgtSU5OUo1ZGJx3QK2MzpgwPbMbU19l-r3Pfp-j4tfRa07NpPV2LNEQiMnTl2DLsND05ePyztZW_Fd-E8fODJD09bp-swkSI4TFVLOEajJS9B7sOY-axvC16G9UofgMdRu6f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extremal+K%C3%A4hler+Metrics+Induced+by+Finite+or+Infinite-Dimensional+Complex+Space+Forms&rft.jtitle=The+Journal+of+geometric+analysis&rft.au=Loi%2C+Andrea&rft.au=Salis%2C+Filippo&rft.au=Zuddas%2C+Fabio&rft.date=2021-08-01&rft.issn=1050-6926&rft.eissn=1559-002X&rft.volume=31&rft.issue=8&rft.spage=7842&rft.epage=7865&rft_id=info:doi/10.1007%2Fs12220-020-00554-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12220_020_00554_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-6926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-6926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-6926&client=summon