Optimal sampled-data controls with running inequality state constraints: Pontryagin maximum principle and bouncing trajectory phenomenon

In the present paper we derive a Pontryagin maximum principle for general nonlinear optimal sampled-data control problems in the presence of running inequality state constraints. We obtain, in particular, a nonpositive averaged Hamiltonian gradient condition associated with an adjoint vector being a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 191; číslo 2; s. 907 - 951
Hlavní autori: Bourdin, Loïc, Dhar, Gaurav
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2022
Springer
Springer Nature B.V
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the present paper we derive a Pontryagin maximum principle for general nonlinear optimal sampled-data control problems in the presence of running inequality state constraints. We obtain, in particular, a nonpositive averaged Hamiltonian gradient condition associated with an adjoint vector being a function of bounded variation. As a well known challenge, theoretical and numerical difficulties may arise due to the possible pathological behavior of the adjoint vector (jumps and singular part lying on parts of the optimal trajectory in contact with the boundary of the restricted state space). However, in our case with sampled-data controls, we prove that, under certain general hypotheses, the optimal trajectory activates the running inequality state constraints at most at the sampling times. Due to this so-called bouncing trajectory phenomenon, the adjoint vector experiences jumps at most at the sampling times (and thus in a finite number and at precise instants) and its singular part vanishes. Taking advantage of these informations, we are able to implement an indirect numerical method which we use to solve three simple examples.
AbstractList In the present paper we derive a Pontryagin maximum principle for general nonlinear optimal sampled-data control problems in the presence of running inequality state constraints. We obtain, in particular, a nonpositive averaged Hamiltonian gradient condition associated with an adjoint vector being a function of bounded variation. As a well known challenge, theoretical and numerical difficulties may arise due to the possible pathological behavior of the adjoint vector (jumps and singular part lying on parts of the optimal trajectory in contact with the boundary of the restricted state space). However, in our case with sampled-data controls, we prove that, under certain general hypotheses, the optimal trajectory activates the running inequality state constraints at most at the sampling times. Due to this so-called bouncing trajectory phenomenon, the adjoint vector experiences jumps at most at the sampling times (and thus in a finite number and at precise instants) and its singular part vanishes. Taking advantage of these informations, we are able to implement an indirect numerical method which we use to solve three simple examples.
Audience Academic
Author Bourdin, Loïc
Dhar, Gaurav
Author_xml – sequence: 1
  givenname: Loïc
  surname: Bourdin
  fullname: Bourdin, Loïc
  organization: Institut de recherche XLIM, UMR CNRS 7252, Université de Limoges
– sequence: 2
  givenname: Gaurav
  orcidid: 0000-0002-5849-1127
  surname: Dhar
  fullname: Dhar, Gaurav
  email: gaurav.dhar@unilim.fr
  organization: Institut de recherche XLIM, UMR CNRS 7252, Université de Limoges
BookMark eNp9kcFuFSEUhompibfVF3BF4pp6gBlg3DWNVpMmdaFrwjDMLTczMAUmet_Ax5ZxTExcNIQQyP_9h3P-S3QRYnAIvaVwTQHk-0yBgiTAgABtZUPYC3SgDRekEY24QAcA1pJWUHiFLnM-AQDlSh3Qr4el-NlMOJt5mdxABlMMtjGUFKeMf_jyiNMagg9H7IN7Ws3kyxnnYorbZLkk40PJH_DXjTmbow94Nj_9vM54ST5YX22xCQPu41pv1aciJ2dLTGe8PLoQ57rDa_RyNFN2b_6eV-j7p4_fbj-T-4e7L7c398TyVhXSjT21ALztjbEtFR0DIYxSnZSSG2XGjnHRt73qxDiwTWOlk0wNrYO-VyO_Qu923yXFp9Xlok9xTaGW1Exw2gFnUlTV9a46mslpH8ZYP23rGtzsa9tu9PX9RgLvGqmapgJsB2yKOSc36tr8bNJZU9BbRHqPSNeI9J-INKuQ-g-yvg7Wb5M0fnoe5TuatyEfXfrXxjPUb9gMq2Q
CitedBy_id crossref_primary_10_1007_s10957_019_01599_4
crossref_primary_10_1016_j_jde_2024_06_016
Cites_doi 10.2516/ogst/2014042
10.7135/UPO9781614442097
10.1016/j.automatica.2013.09.039
10.1007/s00498-019-00247-6
10.1007/978-1-4612-4260-4
10.1137/0314044
10.1002/oca.2347
10.1016/0022-247X(74)90025-0
10.1007/s10107-007-0167-8
10.1016/j.ifacol.2015.11.063
10.1137/1.9781611971309
10.1137/130921465
10.1093/imamci/16.4.335
10.1023/A:1023289721398
10.3934/mcrf.2017019
10.1007/0-387-25805-1_17
10.1002/oca.2076
10.1017/CBO9780511814228
10.1137/0304023
10.1016/j.automatica.2017.02.013
10.1007/s10957-019-01599-4
10.1007/s11228-010-0154-8
10.1002/oca.4660140302
10.1137/1037043
10.1016/0022-247X(71)90219-8
10.1007/978-3-319-75169-6_9
10.1051/cocv/2016070
10.1016/j.jpowsour.2011.07.003
10.1007/BF00934790
10.1007/s10107-015-0976-0
10.1016/j.jde.2007.05.005
10.3934/mcrf.2016.6.53
10.1080/0233193021000058940
10.1109/TAC.2013.2279913
10.1137/0310051
10.1007/s10957-013-0299-3
10.1007/978-3-642-80684-1
10.1007/s10598-011-9096-8
10.1007/978-3-642-82554-5
10.1201/9780203745625-3
10.1137/0315023
10.1007/s00245-007-9015-8
10.1007/0-8176-4404-0_3
10.1137/0304009
10.1016/0041-5553(65)90148-5
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020
COPYRIGHT 2022 Springer
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020
– notice: COPYRIGHT 2022 Springer
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-020-01574-2
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 951
ExternalDocumentID A703947844
10_1007_s10107_020_01574_2
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-9fb1c0035baac51692066a8897773a8af9236b5b896fd2aac5c7e728d5e0bb8f3
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000574306500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:47:50 EDT 2025
Sat Nov 29 10:25:33 EST 2025
Sat Nov 29 03:34:02 EST 2025
Tue Nov 18 21:08:21 EST 2025
Fri Feb 21 02:47:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Sampled-data control
93C57
Indirect numerical method
93C10
Optimal control
State constraints
Pontryagin maximum principle
Ekeland variational principle
49M05
34H05
Shooting method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-9fb1c0035baac51692066a8897773a8af9236b5b896fd2aac5c7e728d5e0bb8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5849-1127
PQID 2631903276
PQPubID 25307
PageCount 45
ParticipantIDs proquest_journals_2631903276
gale_infotracacademiconefile_A703947844
crossref_primary_10_1007_s10107_020_01574_2
crossref_citationtrail_10_1007_s10107_020_01574_2
springer_journals_10_1007_s10107_020_01574_2
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References HartlRFSethiSPVicksonRGA survey of the maximum principles for optimal control problems with state constraintsSIAM Rev.199537218121813432110832.49013
BourdinLTrélatEOptimal sampled-data control, and generalizations on time scalesMath. Control Relat. Fields201661539434486711335.49031
DubovitskiiAYMilyutinAAExtremum problems in the presence of restrictionsUSSR Comput. Math. Math. Phys.1965531800158.33504
Girsanov, I.V.: Lectures on Mathematical Theory of Extremum Problems. Springer, Berlin (1972). Edited by B. T. Poljak, Translated from the Russian by D. Louvish, Lecture Notes in Economics and Mathematical Systems, vol. 67
LeeEBMarkusLFoundations of Optimal Control Theory19862MelbourneRobert E. Krieger Publishing Co., Inc
DmitrukAVOsmolovskiiNPNecessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time intervalMath. Control Relat. Fields20177450753537056561377.49023
ClarkeFHOptimization and Nonsmooth Analysis, volume 5 of Classics in Applied Mathematics19902PhiladelphiaSociety for Industrial and Applied Mathematics (SIAM)
Maurer, H., Kim, J.R., Vossen, G.: On a state-constrained control problem in optimal production and maintenance. In: Optimal Control and Dynamic Games, pp. 289–308. Springer (2005)
BiniEButtazzoGMThe optimal sampling pattern for linear control systemsIEEE Trans. Automat. Control2014591789031633261360.93405
ChoDIAbadPLParlarMOptimal production and maintenance decisions when a system experience age-dependent deteriorationOptim. Control Appl. Methods19931431531670779.90035
IoffeADTihomirovVMTheory of Extremal Problems, volume 6 of Studies in Mathematics and its Applications1979AmsterdamNorth-Holland Publishing Co.0407.90051(Translated from the Russian by Karol Makowski)
PontryaginLSBoltyanskiiVGGamkrelidzeRVMishchenkoEFThe Mathematical Theory of Optimal Processes1962New YorkWiley0102.32001
AronnaMSBonnansJFGohBSSecond order analysis of control-affine problems with scalar state constraintMath. Program.20161601–2, Ser. A11514735553841352.49020
FarautJCalcul intégral (L3M1)2012Les UlisEDP Sciences
KimNRousseauALeeDA jump condition of PMP-based control for PHEVsJ. Power Sources2011196231038010386
MordukhovichBSVariational Analysis and Generalized Differentiation. I, volume 330 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]2006BerlinSpringer(Basic theory)
van KeulenTGillotJde JagerBSteinbuchMSolution for state constrained optimal control problems applied to power split control for hybrid vehiclesAutomat. J. IFAC201450118719231577401298.49031
BourdinLDharGContinuity/constancy of the hamiltonian function in a pontryagin maximum principle for optimal sampled-data control problems with free sampling timesMath. Control Signals Syst.201931450354440266211429.49024
EkelandIOn the variational principleJ. Math. Anal. Appl.1974473243533466190286.49015
Santina, M.S., Stubberud, A.R.: Basics of sampling and quantization. In: Handbook of Networked and Embedded Control Systems, Control Engineering, pp. 45–69. Birkhauser, Boston (2005)
BonnansJFde la VegaCDupuisXFirst- and second-order optimality conditions for optimal control problems of state constrained integral equationsJ. Optim. Theory Appl.2013159114031032841354.49053
Grasse, K.A., Sussmann, H.J.: Global controllability by nice controls. In: Nonlinear Controllability and Optimal Control, volume 133 of Monographs and Textbooks in Pure and Applied Mathematics, pp. 33–79. Dekker, New York (1990)
Milyutin, A.A.: Extremum problems in the presence of constraints. Ph.D. thesis, Doctoral Dissertation, Institute of Applied Mathematics, Moscow (1966)
ClarkeFHThe generalized problem of BolzaSIAM J. Control Optim.19761446826994129260333.49023
SethiSPThompsonGLOptimal Control Theory20002BostonKluwer Academic Publishers0998.49002(Applications to management science and economics)
LimayeBVFunctional Analysis1996secondNew DelhiNew Age International Publishers Limited0876.46001
Bourdin, L., Trélat, E.: Pontryagin maximum principle for optimal sampled-data control problems. In: 16th IFAC Workshop on Control Applications of Optimization CAO’2015 (2015)
WheedenRLZygmundAMeasure and Integral. Pure and Applied Mathematics (Boca Raton)20152Boca RatonCRC Press(An introduction to real analysis)
RobbinsHJunction phenomena for optimal control with state-variable inequality constraints of third orderJ. Optim. Theory Appl.198031185995963440417.49002
BonnansJFHermantANo-gap second-order optimality conditions for optimal control problems with a single state constraint and controlMath. Program.20091171–2, Ser. B215024212981167.49021
AströmKJWittenmarkBComputer-Controlled Systems1997Upper Saddle RiverPrentice Hall
Dmitruk, A.V., Osmolovskii, N.P.: A general Lagrange multipliers theorem and related questions. In: Control Systems and Mathematical Methods in Economics, volume 687 of Lecture Notes in Economics and Mathematical Systems, pp. 165–194. Springer, Cham (2018)
Evans, L.C.: An introduction to mathematical optimal control theory. Version 0.2, Lecture notes
VinterROptimal Control. Modern Birkhäuser Classics2010BostonBirkhäuser(Paperback reprint of the 2000 edition)
BourdinLTrélatEPontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scalesSIAM J. Control Optim.201320452654731154521282.49016
JacobsonDHLeleMMSpeyerJLNew necessary conditions of optimality for control problems with state-variable inequality constraintsJ. Math. Anal. Appl.1971352552842849050188.47203
BonnardBFaubourgLLaunayGTrélatEOptimal control with state constraints and the space shuttle re-entry problemJ. Dyn. Control Syst.20039215519919682771034.49014
DmitrukAVOsmolovskiiNPProof of the maximum principle for a problem with state constraints by the V-change of time variableDiscrete Contin. Dyn. Syst. Ser. B20192452189220439605241419.49021
HoltzmanJMHalkinHDiscretional convexity and the maximum principle for discrete systemsSIAM J. Control1966422632751990080152.09302
BoltyanskiiVGOptimal Control of Discrete Systems1978New YorkWiley
BonnansJFde la VegaCOptimal control of state constrained integral equationsSet Valued Var. Anal.2010183–430732627395811221.49039
Dmitruk, A.V., Kaganovich, A.M.: Maximum principle for optimal control problems with intermediate constraints. Comput. Math. Model. 22(2), 180–215 (2011). Translation of Nelineĭnaya Din. Upr. No. 6(2008), 101–136
RockafellarRTState constraints in convex control problems of BolzaSIAM J. Control1972106917153245050224.49003
FadaliMSVisioliADigital Control Engineering: Analysis and Design2013New YorkElsevier
DmitrukAVOn the development of Pontryagin’s maximum principle in the works of A. Ya. Dubovitskii and A. A. MilyutinControl Cybern.2009384A92395727684201236.49003
CotsOGergaudJGoubinatDDirect and indirect methods in optimal control with state constraints and the climbing trajectory of an aircraftOptim. Control Appl. Methods201839128130137574071390.49054
DmitrukAVOsmolovskiiNPNecessary conditions for a weak minimum in optimal control problems with integral equations subject to state and mixed constraintsSIAM J. Control Optim.20145263437346232743601311.49057
Aström, K.J.: On the choice of sampling rates in optimal linear systems. IBM Res. Eng. Stud. (1963)
CesariLOptimization—Theory and Applications, volume 17 of Applications of Mathematics (New York)1983New YorkSpringer(Problems with ordinary differential equations)
Hiriart-Urruty, J.B.: Les mathématiques du mieux faire, vol. 2: La commande optimale pour les débutants. Collection Opuscules (2008)
BettiolPFrankowskaHHölder continuity of adjoint states and optimal controls for state constrained problemsAppl. Math. Optim.200857112514723730091140.49027
GamkrelidzeRVOptimal control processes for bounded phase coordinatesIzv. Akad. Nauk SSSR. Ser. Mat.196024315356120438
LiXYongJOptimal Control Theory for Infinite-Dimensional Systems1995BostonBirkhäuser Boston Inc
BakirTBonnardBBourdinLRouotJPontryagin-type conditions for optimal muscular force response to functional electrical stimulationsJ. Optim. Theory Appl.2020184258160240542951433.49025
BurkFEA Garden of Integrals, volume 31 of the Dolciani Mathematical Expositions2007WashingtonMathematical Association of America
Van ReevenVHofmanTWillemsFHuismanRSteinbuchMOptimal control of engine warmup in hybrid vehiclesOil Gas Sci. Technol.201671114
BachmanGNariciLFunctional Analysis2000MineolaDover Publications Inc.0983.46001(Reprint of the 1966 original)
MalanowskiKOn normality of Lagrange multipliers for state constrained optimal control problemsOptimization2003521759119629411057.49004
PuchkovaARehbockVTeoKLClosed-form solutions of a fishery harvesting model with state constraintOptim. Control Appl. Methods201435439541132452091301.49049
AckermannJESampled-Data Control Systems: Analysis and Synthesis, Robust System Design1985BerlinSpringer0639.93001
BettiolPFrankowskaHNormality of the maximum principle for nonconvex constrained Bolza problemsJ. Differ. Equ.2007243225626923717881161.49021
Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Robert E. Krieger Publishing Co., Inc., Huntington (1980). Corrected reprint of the 1966 original
HalkinHA maximum principle of the pontryagin type for systems described by nonlinear difference equationsSIAM J. Control196641901111990050152.09301
RampazzoFVinterRBA theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal controlIMA J. Math. Control Inf.199916433535117197771050.49002
VolzRAKazdaLFDesign of a digital controller for a tracking telescopeIEEE Trans. Automat. Control1966AC–124359367
LandauIDZitoGDigital Control Systems: Design: Identification and Implementation2006BerlinSpringer
GrüneLPannekJNonlinear Model Predictive Control. Communications and Control Engineering Series20172ChamSpringer1429.93003(Theory and algorithms)
BressanAPiccoliBIntroduction to the Mathematical Theory of Control, volume 2 of AIMS Series on Applied Mathematics2007SpringfieldAmerican Institute of Mathematical Sciences (A
P Bettiol (1574_CR7) 2007; 243
L Bourdin (1574_CR17) 2013; 20
ID Landau (1574_CR54) 2006
JF Bonnans (1574_CR12) 2013; 159
VG Boltyanskii (1574_CR10) 1978
1574_CR18
RT Rockafellar (1574_CR67) 1972; 10
MS Aronna (1574_CR2) 2016; 160
1574_CR15
NL Carothers (1574_CR23) 2000
RF Hartl (1574_CR47) 1995; 37
EA Coddington (1574_CR28) 1955
DI Cho (1574_CR25) 1993; 14
H Robbins (1574_CR66) 1980; 31
H Halkin (1574_CR46) 1966; 4
1574_CR60
L Cesari (1574_CR24) 1983
L Bourdin (1574_CR20) 2017; 79
H Maurer (1574_CR59) 1977; 15
F Rampazzo (1574_CR65) 1999; 16
L Bourdin (1574_CR19) 2016; 6
BS Mordukhovich (1574_CR62) 2006
1574_CR68
1574_CR61
E Bini (1574_CR9) 2014; 59
LS Pontryagin (1574_CR63) 1962
KJ Aström (1574_CR4) 1997
X Li (1574_CR56) 1995
FH Clarke (1574_CR26) 1976; 14
N Kim (1574_CR53) 2011; 196
AY Dubovitskii (1574_CR37) 1965; 5
L Bourdin (1574_CR16) 2019; 31
RL Wheeden (1574_CR75) 2015
FE Burk (1574_CR22) 2007
1574_CR3
AV Dmitruk (1574_CR33) 2014; 52
V Van Reeven (1574_CR72) 2016; 71
1574_CR32
JM Holtzman (1574_CR50) 1966; 4
K Malanowski (1574_CR58) 2003; 52
R Vinter (1574_CR73) 2010
1574_CR35
AV Dmitruk (1574_CR36) 2019; 24
MS Fadali (1574_CR40) 2013
SP Sethi (1574_CR69) 2000
A Puchkova (1574_CR64) 2014; 35
T van Keulen (1574_CR71) 2014; 50
A Bressan (1574_CR21) 2007
JF Bonnans (1574_CR11) 2010; 18
1574_CR39
FH Clarke (1574_CR27) 1990
O Cots (1574_CR29) 2017; 23
AV Dmitruk (1574_CR31) 2009; 38
AV Dmitruk (1574_CR34) 2017; 7
JE Ackermann (1574_CR1) 1985
BV Limaye (1574_CR57) 1996
RA Volz (1574_CR74) 1966; AC–12
J Faraut (1574_CR41) 2012
RV Gamkrelidze (1574_CR42) 1960; 24
1574_CR43
EB Lee (1574_CR55) 1986
JF Bonnans (1574_CR13) 2009; 117
1574_CR44
DH Jacobson (1574_CR52) 1971; 35
AD Ioffe (1574_CR51) 1979
O Cots (1574_CR30) 2018; 39
I Ekeland (1574_CR38) 1974; 47
E Trélat (1574_CR70) 2005
T Bakir (1574_CR6) 2020; 184
P Bettiol (1574_CR8) 2008; 57
L Grüne (1574_CR45) 2017
1574_CR48
1574_CR49
G Bachman (1574_CR5) 2000
B Bonnard (1574_CR14) 2003; 9
References_xml – reference: DmitrukAVOsmolovskiiNPNecessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time intervalMath. Control Relat. Fields20177450753537056561377.49023
– reference: WheedenRLZygmundAMeasure and Integral. Pure and Applied Mathematics (Boca Raton)20152Boca RatonCRC Press(An introduction to real analysis)
– reference: DmitrukAVOsmolovskiiNPProof of the maximum principle for a problem with state constraints by the V-change of time variableDiscrete Contin. Dyn. Syst. Ser. B20192452189220439605241419.49021
– reference: BoltyanskiiVGOptimal Control of Discrete Systems1978New YorkWiley
– reference: BiniEButtazzoGMThe optimal sampling pattern for linear control systemsIEEE Trans. Automat. Control2014591789031633261360.93405
– reference: Bourdin, L., Trélat, E.: Pontryagin maximum principle for optimal sampled-data control problems. In: 16th IFAC Workshop on Control Applications of Optimization CAO’2015 (2015)
– reference: BettiolPFrankowskaHNormality of the maximum principle for nonconvex constrained Bolza problemsJ. Differ. Equ.2007243225626923717881161.49021
– reference: VolzRAKazdaLFDesign of a digital controller for a tracking telescopeIEEE Trans. Automat. Control1966AC–124359367
– reference: Girsanov, I.V.: Lectures on Mathematical Theory of Extremum Problems. Springer, Berlin (1972). Edited by B. T. Poljak, Translated from the Russian by D. Louvish, Lecture Notes in Economics and Mathematical Systems, vol. 67
– reference: Bourdin, L.: Note on Pontryagin maximum principle with running state constraints and smooth dynamics: proof based on the Ekeland variational principle. Research notes—available on HAL (2016)
– reference: Milyutin, A.A.: Extremum problems in the presence of constraints. Ph.D. thesis, Doctoral Dissertation, Institute of Applied Mathematics, Moscow (1966)
– reference: VinterROptimal Control. Modern Birkhäuser Classics2010BostonBirkhäuser(Paperback reprint of the 2000 edition)
– reference: Maurer, H., Kim, J.R., Vossen, G.: On a state-constrained control problem in optimal production and maintenance. In: Optimal Control and Dynamic Games, pp. 289–308. Springer (2005)
– reference: RampazzoFVinterRBA theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal controlIMA J. Math. Control Inf.199916433535117197771050.49002
– reference: BressanAPiccoliBIntroduction to the Mathematical Theory of Control, volume 2 of AIMS Series on Applied Mathematics2007SpringfieldAmerican Institute of Mathematical Sciences (AIMS)1127.93002
– reference: Hiriart-Urruty, J.B.: Les mathématiques du mieux faire, vol. 2: La commande optimale pour les débutants. Collection Opuscules (2008)
– reference: PuchkovaARehbockVTeoKLClosed-form solutions of a fishery harvesting model with state constraintOptim. Control Appl. Methods201435439541132452091301.49049
– reference: ChoDIAbadPLParlarMOptimal production and maintenance decisions when a system experience age-dependent deteriorationOptim. Control Appl. Methods19931431531670779.90035
– reference: RockafellarRTState constraints in convex control problems of BolzaSIAM J. Control1972106917153245050224.49003
– reference: FarautJCalcul intégral (L3M1)2012Les UlisEDP Sciences
– reference: BourdinLDharGContinuity/constancy of the hamiltonian function in a pontryagin maximum principle for optimal sampled-data control problems with free sampling timesMath. Control Signals Syst.201931450354440266211429.49024
– reference: BachmanGNariciLFunctional Analysis2000MineolaDover Publications Inc.0983.46001(Reprint of the 1966 original)
– reference: BurkFEA Garden of Integrals, volume 31 of the Dolciani Mathematical Expositions2007WashingtonMathematical Association of America
– reference: IoffeADTihomirovVMTheory of Extremal Problems, volume 6 of Studies in Mathematics and its Applications1979AmsterdamNorth-Holland Publishing Co.0407.90051(Translated from the Russian by Karol Makowski)
– reference: Aström, K.J.: On the choice of sampling rates in optimal linear systems. IBM Res. Eng. Stud. (1963)
– reference: Dmitruk, A.V., Kaganovich, A.M.: Maximum principle for optimal control problems with intermediate constraints. Comput. Math. Model. 22(2), 180–215 (2011). Translation of Nelineĭnaya Din. Upr. No. 6(2008), 101–136
– reference: PontryaginLSBoltyanskiiVGGamkrelidzeRVMishchenkoEFThe Mathematical Theory of Optimal Processes1962New YorkWiley0102.32001
– reference: BonnansJFHermantANo-gap second-order optimality conditions for optimal control problems with a single state constraint and controlMath. Program.20091171–2, Ser. B215024212981167.49021
– reference: GamkrelidzeRVOptimal control processes for bounded phase coordinatesIzv. Akad. Nauk SSSR. Ser. Mat.196024315356120438
– reference: MaurerHOn optimal control problems with bounded state variables and control appearing linearlySIAM J. Control Optim.19771533453624640070358.49008
– reference: SethiSPThompsonGLOptimal Control Theory20002BostonKluwer Academic Publishers0998.49002(Applications to management science and economics)
– reference: BourdinLTrélatEOptimal sampled-data control, and generalizations on time scalesMath. Control Relat. Fields201661539434486711335.49031
– reference: HalkinHA maximum principle of the pontryagin type for systems described by nonlinear difference equationsSIAM J. Control196641901111990050152.09301
– reference: BonnansJFde la VegaCDupuisXFirst- and second-order optimality conditions for optimal control problems of state constrained integral equationsJ. Optim. Theory Appl.2013159114031032841354.49053
– reference: Dmitruk, A.V., Osmolovskii, N.P.: A general Lagrange multipliers theorem and related questions. In: Control Systems and Mathematical Methods in Economics, volume 687 of Lecture Notes in Economics and Mathematical Systems, pp. 165–194. Springer, Cham (2018)
– reference: BonnansJFde la VegaCOptimal control of state constrained integral equationsSet Valued Var. Anal.2010183–430732627395811221.49039
– reference: BakirTBonnardBBourdinLRouotJPontryagin-type conditions for optimal muscular force response to functional electrical stimulationsJ. Optim. Theory Appl.2020184258160240542951433.49025
– reference: LeeEBMarkusLFoundations of Optimal Control Theory19862MelbourneRobert E. Krieger Publishing Co., Inc,
– reference: JacobsonDHLeleMMSpeyerJLNew necessary conditions of optimality for control problems with state-variable inequality constraintsJ. Math. Anal. Appl.1971352552842849050188.47203
– reference: BonnardBFaubourgLLaunayGTrélatEOptimal control with state constraints and the space shuttle re-entry problemJ. Dyn. Control Syst.20039215519919682771034.49014
– reference: AronnaMSBonnansJFGohBSSecond order analysis of control-affine problems with scalar state constraintMath. Program.20161601–2, Ser. A11514735553841352.49020
– reference: Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Robert E. Krieger Publishing Co., Inc., Huntington (1980). Corrected reprint of the 1966 original
– reference: MordukhovichBSVariational Analysis and Generalized Differentiation. I, volume 330 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]2006BerlinSpringer(Basic theory)
– reference: KimNRousseauALeeDA jump condition of PMP-based control for PHEVsJ. Power Sources2011196231038010386
– reference: MalanowskiKOn normality of Lagrange multipliers for state constrained optimal control problemsOptimization2003521759119629411057.49004
– reference: van KeulenTGillotJde JagerBSteinbuchMSolution for state constrained optimal control problems applied to power split control for hybrid vehiclesAutomat. J. IFAC201450118719231577401298.49031
– reference: BettiolPFrankowskaHHölder continuity of adjoint states and optimal controls for state constrained problemsAppl. Math. Optim.200857112514723730091140.49027
– reference: Evans, L.C.: An introduction to mathematical optimal control theory. Version 0.2, Lecture notes
– reference: TrélatEContrôle optimal: théorie & applications2005ParisVuibert1112.49001
– reference: Grasse, K.A., Sussmann, H.J.: Global controllability by nice controls. In: Nonlinear Controllability and Optimal Control, volume 133 of Monographs and Textbooks in Pure and Applied Mathematics, pp. 33–79. Dekker, New York (1990)
– reference: ClarkeFHOptimization and Nonsmooth Analysis, volume 5 of Classics in Applied Mathematics19902PhiladelphiaSociety for Industrial and Applied Mathematics (SIAM)
– reference: GrüneLPannekJNonlinear Model Predictive Control. Communications and Control Engineering Series20172ChamSpringer1429.93003(Theory and algorithms)
– reference: AströmKJWittenmarkBComputer-Controlled Systems1997Upper Saddle RiverPrentice Hall
– reference: HoltzmanJMHalkinHDiscretional convexity and the maximum principle for discrete systemsSIAM J. Control1966422632751990080152.09302
– reference: DubovitskiiAYMilyutinAAExtremum problems in the presence of restrictionsUSSR Comput. Math. Math. Phys.1965531800158.33504
– reference: HartlRFSethiSPVicksonRGA survey of the maximum principles for optimal control problems with state constraintsSIAM Rev.199537218121813432110832.49013
– reference: Van ReevenVHofmanTWillemsFHuismanRSteinbuchMOptimal control of engine warmup in hybrid vehiclesOil Gas Sci. Technol.201671114
– reference: CesariLOptimization—Theory and Applications, volume 17 of Applications of Mathematics (New York)1983New YorkSpringer(Problems with ordinary differential equations)
– reference: ClarkeFHThe generalized problem of BolzaSIAM J. Control Optim.19761446826994129260333.49023
– reference: AckermannJESampled-Data Control Systems: Analysis and Synthesis, Robust System Design1985BerlinSpringer0639.93001
– reference: Santina, M.S., Stubberud, A.R.: Basics of sampling and quantization. In: Handbook of Networked and Embedded Control Systems, Control Engineering, pp. 45–69. Birkhauser, Boston (2005)
– reference: DmitrukAVOn the development of Pontryagin’s maximum principle in the works of A. Ya. Dubovitskii and A. A. MilyutinControl Cybern.2009384A92395727684201236.49003
– reference: CarothersNLReal Analysis2000CambridgeCambridge University Press0997.26003
– reference: LimayeBVFunctional Analysis1996secondNew DelhiNew Age International Publishers Limited0876.46001
– reference: RobbinsHJunction phenomena for optimal control with state-variable inequality constraints of third orderJ. Optim. Theory Appl.198031185995963440417.49002
– reference: FadaliMSVisioliADigital Control Engineering: Analysis and Design2013New YorkElsevier
– reference: LandauIDZitoGDigital Control Systems: Design: Identification and Implementation2006BerlinSpringer
– reference: CotsOGeometric and numerical methods for a state constrained minimum time control problem of an electric vehicleESAIM Control Optim. Calc. Var.20172341715174937169381379.49025
– reference: BourdinLTrélatELinear-quadratic optimal sampled-data control problems: convergence result and Riccati theoryAutom. J. IFAC20177927328136279921371.93123
– reference: LiXYongJOptimal Control Theory for Infinite-Dimensional Systems1995BostonBirkhäuser Boston Inc
– reference: DmitrukAVOsmolovskiiNPNecessary conditions for a weak minimum in optimal control problems with integral equations subject to state and mixed constraintsSIAM J. Control Optim.20145263437346232743601311.49057
– reference: EkelandIOn the variational principleJ. Math. Anal. Appl.1974473243533466190286.49015
– reference: CoddingtonEALevinsonNTheory of Ordinary Differential Equations1955New YorkMcGraw-Hill Book Company Inc0064.33002
– reference: BourdinLTrélatEPontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scalesSIAM J. Control Optim.201320452654731154521282.49016
– reference: CotsOGergaudJGoubinatDDirect and indirect methods in optimal control with state constraints and the climbing trajectory of an aircraftOptim. Control Appl. Methods201839128130137574071390.49054
– volume: 71
  start-page: 14
  issue: 1
  year: 2016
  ident: 1574_CR72
  publication-title: Oil Gas Sci. Technol.
  doi: 10.2516/ogst/2014042
– volume-title: A Garden of Integrals, volume 31 of the Dolciani Mathematical Expositions
  year: 2007
  ident: 1574_CR22
  doi: 10.7135/UPO9781614442097
– volume-title: Digital Control Systems: Design: Identification and Implementation
  year: 2006
  ident: 1574_CR54
– volume: 50
  start-page: 187
  issue: 1
  year: 2014
  ident: 1574_CR71
  publication-title: Automat. J. IFAC
  doi: 10.1016/j.automatica.2013.09.039
– volume: 31
  start-page: 503
  issue: 4
  year: 2019
  ident: 1574_CR16
  publication-title: Math. Control Signals Syst.
  doi: 10.1007/s00498-019-00247-6
– volume-title: Functional Analysis
  year: 1996
  ident: 1574_CR57
– volume-title: Optimal Control Theory for Infinite-Dimensional Systems
  year: 1995
  ident: 1574_CR56
  doi: 10.1007/978-1-4612-4260-4
– volume: 14
  start-page: 682
  issue: 4
  year: 1976
  ident: 1574_CR26
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0314044
– volume: 39
  start-page: 281
  issue: 1
  year: 2018
  ident: 1574_CR30
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.2347
– ident: 1574_CR3
– ident: 1574_CR15
– volume: AC–12
  start-page: 359
  issue: 4
  year: 1966
  ident: 1574_CR74
  publication-title: IEEE Trans. Automat. Control
– volume: 20
  start-page: 526
  issue: 4
  year: 2013
  ident: 1574_CR17
  publication-title: SIAM J. Control Optim.
– volume-title: Optimal Control Theory
  year: 2000
  ident: 1574_CR69
– volume: 47
  start-page: 324
  year: 1974
  ident: 1574_CR38
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(74)90025-0
– volume: 117
  start-page: 21
  issue: 1–2, Ser. B
  year: 2009
  ident: 1574_CR13
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0167-8
– ident: 1574_CR18
  doi: 10.1016/j.ifacol.2015.11.063
– volume: 38
  start-page: 923
  issue: 4A
  year: 2009
  ident: 1574_CR31
  publication-title: Control Cybern.
– volume-title: Optimization and Nonsmooth Analysis, volume 5 of Classics in Applied Mathematics
  year: 1990
  ident: 1574_CR27
  doi: 10.1137/1.9781611971309
– volume-title: Variational Analysis and Generalized Differentiation. I, volume 330 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
  year: 2006
  ident: 1574_CR62
– volume: 52
  start-page: 3437
  issue: 6
  year: 2014
  ident: 1574_CR33
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/130921465
– volume-title: Optimal Control. Modern Birkhäuser Classics
  year: 2010
  ident: 1574_CR73
– volume: 24
  start-page: 2189
  issue: 5
  year: 2019
  ident: 1574_CR36
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume-title: Optimal Control of Discrete Systems
  year: 1978
  ident: 1574_CR10
– volume-title: Introduction to the Mathematical Theory of Control, volume 2 of AIMS Series on Applied Mathematics
  year: 2007
  ident: 1574_CR21
– volume: 16
  start-page: 335
  issue: 4
  year: 1999
  ident: 1574_CR65
  publication-title: IMA J. Math. Control Inf.
  doi: 10.1093/imamci/16.4.335
– volume: 9
  start-page: 155
  issue: 2
  year: 2003
  ident: 1574_CR14
  publication-title: J. Dyn. Control Syst.
  doi: 10.1023/A:1023289721398
– volume: 7
  start-page: 507
  issue: 4
  year: 2017
  ident: 1574_CR34
  publication-title: Math. Control Relat. Fields
  doi: 10.3934/mcrf.2017019
– volume-title: Digital Control Engineering: Analysis and Design
  year: 2013
  ident: 1574_CR40
– volume-title: Optimization—Theory and Applications, volume 17 of Applications of Mathematics (New York)
  year: 1983
  ident: 1574_CR24
– ident: 1574_CR60
  doi: 10.1007/0-387-25805-1_17
– volume: 35
  start-page: 395
  issue: 4
  year: 2014
  ident: 1574_CR64
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.2076
– volume-title: Real Analysis
  year: 2000
  ident: 1574_CR23
  doi: 10.1017/CBO9780511814228
– ident: 1574_CR39
– volume: 4
  start-page: 263
  issue: 2
  year: 1966
  ident: 1574_CR50
  publication-title: SIAM J. Control
  doi: 10.1137/0304023
– volume: 79
  start-page: 273
  year: 2017
  ident: 1574_CR20
  publication-title: Autom. J. IFAC
  doi: 10.1016/j.automatica.2017.02.013
– volume: 184
  start-page: 581
  issue: 2
  year: 2020
  ident: 1574_CR6
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01599-4
– volume: 18
  start-page: 307
  issue: 3–4
  year: 2010
  ident: 1574_CR11
  publication-title: Set Valued Var. Anal.
  doi: 10.1007/s11228-010-0154-8
– volume-title: Theory of Extremal Problems, volume 6 of Studies in Mathematics and its Applications
  year: 1979
  ident: 1574_CR51
– ident: 1574_CR49
– volume-title: Measure and Integral. Pure and Applied Mathematics (Boca Raton)
  year: 2015
  ident: 1574_CR75
– volume: 14
  start-page: 153
  issue: 3
  year: 1993
  ident: 1574_CR25
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.4660140302
– volume: 37
  start-page: 181
  issue: 2
  year: 1995
  ident: 1574_CR47
  publication-title: SIAM Rev.
  doi: 10.1137/1037043
– volume: 35
  start-page: 255
  year: 1971
  ident: 1574_CR52
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(71)90219-8
– volume: 24
  start-page: 315
  year: 1960
  ident: 1574_CR42
  publication-title: Izv. Akad. Nauk SSSR. Ser. Mat.
– ident: 1574_CR35
  doi: 10.1007/978-3-319-75169-6_9
– volume: 23
  start-page: 1715
  issue: 4
  year: 2017
  ident: 1574_CR29
  publication-title: ESAIM Control Optim. Calc. Var.
  doi: 10.1051/cocv/2016070
– volume: 196
  start-page: 10380
  issue: 23
  year: 2011
  ident: 1574_CR53
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.07.003
– volume: 31
  start-page: 85
  issue: 1
  year: 1980
  ident: 1574_CR66
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00934790
– volume-title: Contrôle optimal: théorie & applications
  year: 2005
  ident: 1574_CR70
– volume: 160
  start-page: 115
  issue: 1–2, Ser. A
  year: 2016
  ident: 1574_CR2
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0976-0
– volume: 243
  start-page: 256
  issue: 2
  year: 2007
  ident: 1574_CR7
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2007.05.005
– volume: 6
  start-page: 53
  issue: 1
  year: 2016
  ident: 1574_CR19
  publication-title: Math. Control Relat. Fields
  doi: 10.3934/mcrf.2016.6.53
– volume-title: Calcul intégral (L3M1)
  year: 2012
  ident: 1574_CR41
– ident: 1574_CR61
– volume-title: Nonlinear Model Predictive Control. Communications and Control Engineering Series
  year: 2017
  ident: 1574_CR45
– volume: 52
  start-page: 75
  issue: 1
  year: 2003
  ident: 1574_CR58
  publication-title: Optimization
  doi: 10.1080/0233193021000058940
– volume: 59
  start-page: 78
  issue: 1
  year: 2014
  ident: 1574_CR9
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2013.2279913
– volume-title: The Mathematical Theory of Optimal Processes
  year: 1962
  ident: 1574_CR63
– ident: 1574_CR48
– volume-title: Computer-Controlled Systems
  year: 1997
  ident: 1574_CR4
– volume: 10
  start-page: 691
  year: 1972
  ident: 1574_CR67
  publication-title: SIAM J. Control
  doi: 10.1137/0310051
– volume: 159
  start-page: 1
  issue: 1
  year: 2013
  ident: 1574_CR12
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0299-3
– ident: 1574_CR43
  doi: 10.1007/978-3-642-80684-1
– ident: 1574_CR32
  doi: 10.1007/s10598-011-9096-8
– volume-title: Foundations of Optimal Control Theory
  year: 1986
  ident: 1574_CR55
– volume-title: Sampled-Data Control Systems: Analysis and Synthesis, Robust System Design
  year: 1985
  ident: 1574_CR1
  doi: 10.1007/978-3-642-82554-5
– ident: 1574_CR44
  doi: 10.1201/9780203745625-3
– volume: 15
  start-page: 345
  issue: 3
  year: 1977
  ident: 1574_CR59
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0315023
– volume-title: Functional Analysis
  year: 2000
  ident: 1574_CR5
– volume: 57
  start-page: 125
  issue: 1
  year: 2008
  ident: 1574_CR8
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-007-9015-8
– ident: 1574_CR68
  doi: 10.1007/0-8176-4404-0_3
– volume: 4
  start-page: 90
  issue: 1
  year: 1966
  ident: 1574_CR46
  publication-title: SIAM J. Control
  doi: 10.1137/0304009
– volume: 5
  start-page: 1
  issue: 3
  year: 1965
  ident: 1574_CR37
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(65)90148-5
– volume-title: Theory of Ordinary Differential Equations
  year: 1955
  ident: 1574_CR28
SSID ssj0001388
Score 2.3814566
Snippet In the present paper we derive a Pontryagin maximum principle for general nonlinear optimal sampled-data control problems in the presence of running inequality...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 907
SubjectTerms Bouncing
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Equality
Full Length Paper
Inequality
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Maximum principle
Nonlinear control
Numerical Analysis
Numerical methods
Sampling
Theoretical
Trajectory optimization
Title Optimal sampled-data controls with running inequality state constraints: Pontryagin maximum principle and bouncing trajectory phenomenon
URI https://link.springer.com/article/10.1007/s10107-020-01574-2
https://www.proquest.com/docview/2631903276
Volume 191
WOSCitedRecordID wos000574306500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaGdIfusG5rh3rtCh0K7LAZiPWI5d6CokUPbRZ0W5CboJeBFE0axMmw_IP97JGKnWSvAtvRMEnbMkVRIvmRkNPCZzyEDPYmXMlUBFemRnqWFm3PBQvS-lhfMbjOez01HBb9uiisarLdm5BktNRbxW4ZHqsxTKSSuUjB8O7AcqewYcPtp8Ha_mZcqaZRK3oHdanMn2X8tBz9apR_i47GRedy7_9e9wV5XjuZtLvSipfkSZi8Is-2oAfh6maN11rtk-8fwXKMgaUyiBbsU0wcpXUae0XxsJbOFrG7EQUZq0rMJY3VSEhWxU4T8-qM9pFnia2P6Nh8G40XYzptzvOpmXhqwbw4lAMsdzFksKSYZ4ZIEA-TA_Ll8uLz-VVa92hIHZdqnhalzRyGI60xDmNuCA9vlAK3MudGmRIcyI6VVhWd0jOkcXnImfIytK1VJX9NWiA9HBIqsiBLFoJSwQvp2tY58F0FZ1ZY2HaFhGTNr9KuBjDHr7vXG-hlHHMNY67jmGuWkPdrnukKvuNR6neoARrnNkh2pi5RgPdDlCzdBfNYiFwJkZDjRkl0PekrzTpgz9qc5Z2EfGiUYnP7789982_kR2SXYRFGzB0_Jq35bBHekqfu63xUzU7iZPgB9zkFfQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8YMFEfQEXCIeg-mPigTa77cd3yRgwE43ESRcLbZr-aQLiTXO-M9x_wZzOz1x6IHwk-Np2ZttvZ2dmdmd8AvClDLmLMcW8itMpk9FVmVeBZ2Q1C8qhcSPUVJ_1iMNCnp-VRUxRWt9nubUgyWepbxW45HatxSqRShczQ8C5LXLEIMf_L15OF_c2F1m2jVvIOmlKZP8v4ZTm6a5R_i46mRWd_9f9e9ymsNE4m251rxTN4EEfP4ckt6EG8OlzgtdZrcPUZLccQWWpLaMEho8RR1qSx14wOa9l4mrobMZQxr8ScsVSNRGR16jQxqXfYEfHMqPURG9qfZ8PpkF225_nMjgJzaF48yUGW8xQymDHKMyMkiO-jF_Btf-_4w0HW9GjIvFB6kpWVyz2FI521nmJuBA9vtUa3shBW2wodyJ5TTpe9KnCi8UUsuA4qdp3TlViHJZQeN4DJPKqKx6h1DFL5rvMefVcpuJMOt12xA3n7q4xvAMzp6y7MDfQyjbnBMTdpzA3vwLsFz-UcvuOf1G9JAwzNbZTsbVOigO9HKFlmF81jKQstZQe2WiUxzaSvDe-hPesKXvQ68L5Vipvbf3_u5v3IX8Ojg-PDvul_HHx6CY85FWSkPPItWJqMp3EbHvofk7N6_CpNjGs-3whh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hghAcKK-KQAt7QOIAVuN9xGtuVUsEooRIQNXbal-WikgaxU5F_gE_m5mNnYanhDha3hnb693Z2Z35vgF4WoZcxJjj3kRolcnoq8yqwLOyH4TkUbmQ8BUnx8VopE9Py_EGij9lu3chyRWmgViaps3-LFT7G8C3nI7YOCVVqUJmaISvSkqkp_36h5O1Lc6F1l3RVvIUWtjM73X8sDT9bKB_iZSmBWi4_f-vfhtutc4nO1iNljtwJU7vws0NSkK8erfmca3vwbf3aFEmKFJbYhEOGSWUsja9vWZ0iMvmi1T1iKGOFUJzyRJKiZrVqQJFU79kY5JZUkkkNrFfzyaLCZt15_zMTgNzaHY86UGRzymUsGSUf0YMEefT-_Bp-Orj4eusrd2QeaF0k5WVyz2FKZ21nmJxRBtvtUZ3sxBW2wody4FTTpeDKnBq44tYcB1U7DunK7EDW6g9PgAm86gqHqPWMUjl-8579Gml4E463I7FHuTdbzO-JTanr_tiLimZqc8N9rlJfW54D56vZWYrWo-_tn5Go8HQnEfN3rbQBXw_Ys8yB2g2S1loKXuw2w0Y0xqD2vAB2rm-4MWgBy-6AXJ5-8_PffhvzZ_A9fHR0By_Gb19BDc44TRSevkubDXzRdyDa_6iOavnj9Mc-Q6QWBFF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+sampled-data+controls+with+running+inequality+state+constraints%3A+Pontryagin+maximum+principle+and+bouncing+trajectory+phenomenon&rft.jtitle=Mathematical+programming&rft.au=Bourdin+Lo%C3%AFc&rft.au=Dhar+Gaurav&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=191&rft.issue=2&rft.spage=907&rft.epage=951&rft_id=info:doi/10.1007%2Fs10107-020-01574-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon