Optimal sampled-data controls with running inequality state constraints: Pontryagin maximum principle and bouncing trajectory phenomenon
In the present paper we derive a Pontryagin maximum principle for general nonlinear optimal sampled-data control problems in the presence of running inequality state constraints. We obtain, in particular, a nonpositive averaged Hamiltonian gradient condition associated with an adjoint vector being a...
Uložené v:
| Vydané v: | Mathematical programming Ročník 191; číslo 2; s. 907 - 951 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2022
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the present paper we derive a Pontryagin maximum principle for general nonlinear optimal sampled-data control problems in the presence of running inequality state constraints. We obtain, in particular, a nonpositive averaged Hamiltonian gradient condition associated with an adjoint vector being a function of bounded variation. As a well known challenge, theoretical and numerical difficulties may arise due to the possible pathological behavior of the adjoint vector (jumps and singular part lying on parts of the optimal trajectory in contact with the boundary of the restricted state space). However, in our case with sampled-data controls, we prove that, under certain general hypotheses, the optimal trajectory activates the running inequality state constraints at most at the sampling times. Due to this so-called bouncing trajectory phenomenon, the adjoint vector experiences jumps at most at the sampling times (and thus in a finite number and at precise instants) and its singular part vanishes. Taking advantage of these informations, we are able to implement an indirect numerical method which we use to solve three simple examples. |
|---|---|
| AbstractList | In the present paper we derive a Pontryagin maximum principle for general nonlinear optimal sampled-data control problems in the presence of running inequality state constraints. We obtain, in particular, a nonpositive averaged Hamiltonian gradient condition associated with an adjoint vector being a function of bounded variation. As a well known challenge, theoretical and numerical difficulties may arise due to the possible pathological behavior of the adjoint vector (jumps and singular part lying on parts of the optimal trajectory in contact with the boundary of the restricted state space). However, in our case with sampled-data controls, we prove that, under certain general hypotheses, the optimal trajectory activates the running inequality state constraints at most at the sampling times. Due to this so-called bouncing trajectory phenomenon, the adjoint vector experiences jumps at most at the sampling times (and thus in a finite number and at precise instants) and its singular part vanishes. Taking advantage of these informations, we are able to implement an indirect numerical method which we use to solve three simple examples. |
| Audience | Academic |
| Author | Bourdin, Loïc Dhar, Gaurav |
| Author_xml | – sequence: 1 givenname: Loïc surname: Bourdin fullname: Bourdin, Loïc organization: Institut de recherche XLIM, UMR CNRS 7252, Université de Limoges – sequence: 2 givenname: Gaurav orcidid: 0000-0002-5849-1127 surname: Dhar fullname: Dhar, Gaurav email: gaurav.dhar@unilim.fr organization: Institut de recherche XLIM, UMR CNRS 7252, Université de Limoges |
| BookMark | eNp9kcFuFSEUhompibfVF3BF4pp6gBlg3DWNVpMmdaFrwjDMLTczMAUmet_Ax5ZxTExcNIQQyP_9h3P-S3QRYnAIvaVwTQHk-0yBgiTAgABtZUPYC3SgDRekEY24QAcA1pJWUHiFLnM-AQDlSh3Qr4el-NlMOJt5mdxABlMMtjGUFKeMf_jyiNMagg9H7IN7Ws3kyxnnYorbZLkk40PJH_DXjTmbow94Nj_9vM54ST5YX22xCQPu41pv1aciJ2dLTGe8PLoQ57rDa_RyNFN2b_6eV-j7p4_fbj-T-4e7L7c398TyVhXSjT21ALztjbEtFR0DIYxSnZSSG2XGjnHRt73qxDiwTWOlk0wNrYO-VyO_Qu923yXFp9Xlok9xTaGW1Exw2gFnUlTV9a46mslpH8ZYP23rGtzsa9tu9PX9RgLvGqmapgJsB2yKOSc36tr8bNJZU9BbRHqPSNeI9J-INKuQ-g-yvg7Wb5M0fnoe5TuatyEfXfrXxjPUb9gMq2Q |
| CitedBy_id | crossref_primary_10_1007_s10957_019_01599_4 crossref_primary_10_1016_j_jde_2024_06_016 |
| Cites_doi | 10.2516/ogst/2014042 10.7135/UPO9781614442097 10.1016/j.automatica.2013.09.039 10.1007/s00498-019-00247-6 10.1007/978-1-4612-4260-4 10.1137/0314044 10.1002/oca.2347 10.1016/0022-247X(74)90025-0 10.1007/s10107-007-0167-8 10.1016/j.ifacol.2015.11.063 10.1137/1.9781611971309 10.1137/130921465 10.1093/imamci/16.4.335 10.1023/A:1023289721398 10.3934/mcrf.2017019 10.1007/0-387-25805-1_17 10.1002/oca.2076 10.1017/CBO9780511814228 10.1137/0304023 10.1016/j.automatica.2017.02.013 10.1007/s10957-019-01599-4 10.1007/s11228-010-0154-8 10.1002/oca.4660140302 10.1137/1037043 10.1016/0022-247X(71)90219-8 10.1007/978-3-319-75169-6_9 10.1051/cocv/2016070 10.1016/j.jpowsour.2011.07.003 10.1007/BF00934790 10.1007/s10107-015-0976-0 10.1016/j.jde.2007.05.005 10.3934/mcrf.2016.6.53 10.1080/0233193021000058940 10.1109/TAC.2013.2279913 10.1137/0310051 10.1007/s10957-013-0299-3 10.1007/978-3-642-80684-1 10.1007/s10598-011-9096-8 10.1007/978-3-642-82554-5 10.1201/9780203745625-3 10.1137/0315023 10.1007/s00245-007-9015-8 10.1007/0-8176-4404-0_3 10.1137/0304009 10.1016/0041-5553(65)90148-5 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020 COPYRIGHT 2022 Springer Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020 – notice: COPYRIGHT 2022 Springer – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10107-020-01574-2 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 951 |
| ExternalDocumentID | A703947844 10_1007_s10107_020_01574_2 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c358t-9fb1c0035baac51692066a8897773a8af9236b5b896fd2aac5c7e728d5e0bb8f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000574306500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Thu Sep 25 00:47:50 EDT 2025 Sat Nov 29 10:25:33 EST 2025 Sat Nov 29 03:34:02 EST 2025 Tue Nov 18 21:08:21 EST 2025 Fri Feb 21 02:47:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Sampled-data control 93C57 Indirect numerical method 93C10 Optimal control State constraints Pontryagin maximum principle Ekeland variational principle 49M05 34H05 Shooting method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-9fb1c0035baac51692066a8897773a8af9236b5b896fd2aac5c7e728d5e0bb8f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5849-1127 |
| PQID | 2631903276 |
| PQPubID | 25307 |
| PageCount | 45 |
| ParticipantIDs | proquest_journals_2631903276 gale_infotracacademiconefile_A703947844 crossref_primary_10_1007_s10107_020_01574_2 crossref_citationtrail_10_1007_s10107_020_01574_2 springer_journals_10_1007_s10107_020_01574_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
| References | HartlRFSethiSPVicksonRGA survey of the maximum principles for optimal control problems with state constraintsSIAM Rev.199537218121813432110832.49013 BourdinLTrélatEOptimal sampled-data control, and generalizations on time scalesMath. Control Relat. Fields201661539434486711335.49031 DubovitskiiAYMilyutinAAExtremum problems in the presence of restrictionsUSSR Comput. Math. Math. Phys.1965531800158.33504 Girsanov, I.V.: Lectures on Mathematical Theory of Extremum Problems. Springer, Berlin (1972). Edited by B. T. Poljak, Translated from the Russian by D. Louvish, Lecture Notes in Economics and Mathematical Systems, vol. 67 LeeEBMarkusLFoundations of Optimal Control Theory19862MelbourneRobert E. Krieger Publishing Co., Inc DmitrukAVOsmolovskiiNPNecessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time intervalMath. Control Relat. Fields20177450753537056561377.49023 ClarkeFHOptimization and Nonsmooth Analysis, volume 5 of Classics in Applied Mathematics19902PhiladelphiaSociety for Industrial and Applied Mathematics (SIAM) Maurer, H., Kim, J.R., Vossen, G.: On a state-constrained control problem in optimal production and maintenance. In: Optimal Control and Dynamic Games, pp. 289–308. Springer (2005) BiniEButtazzoGMThe optimal sampling pattern for linear control systemsIEEE Trans. Automat. Control2014591789031633261360.93405 ChoDIAbadPLParlarMOptimal production and maintenance decisions when a system experience age-dependent deteriorationOptim. Control Appl. Methods19931431531670779.90035 IoffeADTihomirovVMTheory of Extremal Problems, volume 6 of Studies in Mathematics and its Applications1979AmsterdamNorth-Holland Publishing Co.0407.90051(Translated from the Russian by Karol Makowski) PontryaginLSBoltyanskiiVGGamkrelidzeRVMishchenkoEFThe Mathematical Theory of Optimal Processes1962New YorkWiley0102.32001 AronnaMSBonnansJFGohBSSecond order analysis of control-affine problems with scalar state constraintMath. Program.20161601–2, Ser. A11514735553841352.49020 FarautJCalcul intégral (L3M1)2012Les UlisEDP Sciences KimNRousseauALeeDA jump condition of PMP-based control for PHEVsJ. Power Sources2011196231038010386 MordukhovichBSVariational Analysis and Generalized Differentiation. I, volume 330 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]2006BerlinSpringer(Basic theory) van KeulenTGillotJde JagerBSteinbuchMSolution for state constrained optimal control problems applied to power split control for hybrid vehiclesAutomat. J. IFAC201450118719231577401298.49031 BourdinLDharGContinuity/constancy of the hamiltonian function in a pontryagin maximum principle for optimal sampled-data control problems with free sampling timesMath. Control Signals Syst.201931450354440266211429.49024 EkelandIOn the variational principleJ. Math. Anal. Appl.1974473243533466190286.49015 Santina, M.S., Stubberud, A.R.: Basics of sampling and quantization. In: Handbook of Networked and Embedded Control Systems, Control Engineering, pp. 45–69. Birkhauser, Boston (2005) BonnansJFde la VegaCDupuisXFirst- and second-order optimality conditions for optimal control problems of state constrained integral equationsJ. Optim. Theory Appl.2013159114031032841354.49053 Grasse, K.A., Sussmann, H.J.: Global controllability by nice controls. In: Nonlinear Controllability and Optimal Control, volume 133 of Monographs and Textbooks in Pure and Applied Mathematics, pp. 33–79. Dekker, New York (1990) Milyutin, A.A.: Extremum problems in the presence of constraints. Ph.D. thesis, Doctoral Dissertation, Institute of Applied Mathematics, Moscow (1966) ClarkeFHThe generalized problem of BolzaSIAM J. Control Optim.19761446826994129260333.49023 SethiSPThompsonGLOptimal Control Theory20002BostonKluwer Academic Publishers0998.49002(Applications to management science and economics) LimayeBVFunctional Analysis1996secondNew DelhiNew Age International Publishers Limited0876.46001 Bourdin, L., Trélat, E.: Pontryagin maximum principle for optimal sampled-data control problems. In: 16th IFAC Workshop on Control Applications of Optimization CAO’2015 (2015) WheedenRLZygmundAMeasure and Integral. Pure and Applied Mathematics (Boca Raton)20152Boca RatonCRC Press(An introduction to real analysis) RobbinsHJunction phenomena for optimal control with state-variable inequality constraints of third orderJ. Optim. Theory Appl.198031185995963440417.49002 BonnansJFHermantANo-gap second-order optimality conditions for optimal control problems with a single state constraint and controlMath. Program.20091171–2, Ser. B215024212981167.49021 AströmKJWittenmarkBComputer-Controlled Systems1997Upper Saddle RiverPrentice Hall Dmitruk, A.V., Osmolovskii, N.P.: A general Lagrange multipliers theorem and related questions. In: Control Systems and Mathematical Methods in Economics, volume 687 of Lecture Notes in Economics and Mathematical Systems, pp. 165–194. Springer, Cham (2018) Evans, L.C.: An introduction to mathematical optimal control theory. Version 0.2, Lecture notes VinterROptimal Control. Modern Birkhäuser Classics2010BostonBirkhäuser(Paperback reprint of the 2000 edition) BourdinLTrélatEPontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scalesSIAM J. Control Optim.201320452654731154521282.49016 JacobsonDHLeleMMSpeyerJLNew necessary conditions of optimality for control problems with state-variable inequality constraintsJ. Math. Anal. Appl.1971352552842849050188.47203 BonnardBFaubourgLLaunayGTrélatEOptimal control with state constraints and the space shuttle re-entry problemJ. Dyn. Control Syst.20039215519919682771034.49014 DmitrukAVOsmolovskiiNPProof of the maximum principle for a problem with state constraints by the V-change of time variableDiscrete Contin. Dyn. Syst. Ser. B20192452189220439605241419.49021 HoltzmanJMHalkinHDiscretional convexity and the maximum principle for discrete systemsSIAM J. Control1966422632751990080152.09302 BoltyanskiiVGOptimal Control of Discrete Systems1978New YorkWiley BonnansJFde la VegaCOptimal control of state constrained integral equationsSet Valued Var. Anal.2010183–430732627395811221.49039 Dmitruk, A.V., Kaganovich, A.M.: Maximum principle for optimal control problems with intermediate constraints. Comput. Math. Model. 22(2), 180–215 (2011). Translation of Nelineĭnaya Din. Upr. No. 6(2008), 101–136 RockafellarRTState constraints in convex control problems of BolzaSIAM J. Control1972106917153245050224.49003 FadaliMSVisioliADigital Control Engineering: Analysis and Design2013New YorkElsevier DmitrukAVOn the development of Pontryagin’s maximum principle in the works of A. Ya. Dubovitskii and A. A. MilyutinControl Cybern.2009384A92395727684201236.49003 CotsOGergaudJGoubinatDDirect and indirect methods in optimal control with state constraints and the climbing trajectory of an aircraftOptim. Control Appl. Methods201839128130137574071390.49054 DmitrukAVOsmolovskiiNPNecessary conditions for a weak minimum in optimal control problems with integral equations subject to state and mixed constraintsSIAM J. Control Optim.20145263437346232743601311.49057 Aström, K.J.: On the choice of sampling rates in optimal linear systems. IBM Res. Eng. Stud. (1963) CesariLOptimization—Theory and Applications, volume 17 of Applications of Mathematics (New York)1983New YorkSpringer(Problems with ordinary differential equations) Hiriart-Urruty, J.B.: Les mathématiques du mieux faire, vol. 2: La commande optimale pour les débutants. Collection Opuscules (2008) BettiolPFrankowskaHHölder continuity of adjoint states and optimal controls for state constrained problemsAppl. Math. Optim.200857112514723730091140.49027 GamkrelidzeRVOptimal control processes for bounded phase coordinatesIzv. Akad. Nauk SSSR. Ser. Mat.196024315356120438 LiXYongJOptimal Control Theory for Infinite-Dimensional Systems1995BostonBirkhäuser Boston Inc BakirTBonnardBBourdinLRouotJPontryagin-type conditions for optimal muscular force response to functional electrical stimulationsJ. Optim. Theory Appl.2020184258160240542951433.49025 BurkFEA Garden of Integrals, volume 31 of the Dolciani Mathematical Expositions2007WashingtonMathematical Association of America Van ReevenVHofmanTWillemsFHuismanRSteinbuchMOptimal control of engine warmup in hybrid vehiclesOil Gas Sci. Technol.201671114 BachmanGNariciLFunctional Analysis2000MineolaDover Publications Inc.0983.46001(Reprint of the 1966 original) MalanowskiKOn normality of Lagrange multipliers for state constrained optimal control problemsOptimization2003521759119629411057.49004 PuchkovaARehbockVTeoKLClosed-form solutions of a fishery harvesting model with state constraintOptim. Control Appl. Methods201435439541132452091301.49049 AckermannJESampled-Data Control Systems: Analysis and Synthesis, Robust System Design1985BerlinSpringer0639.93001 BettiolPFrankowskaHNormality of the maximum principle for nonconvex constrained Bolza problemsJ. Differ. Equ.2007243225626923717881161.49021 Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Robert E. Krieger Publishing Co., Inc., Huntington (1980). Corrected reprint of the 1966 original HalkinHA maximum principle of the pontryagin type for systems described by nonlinear difference equationsSIAM J. Control196641901111990050152.09301 RampazzoFVinterRBA theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal controlIMA J. Math. Control Inf.199916433535117197771050.49002 VolzRAKazdaLFDesign of a digital controller for a tracking telescopeIEEE Trans. Automat. Control1966AC–124359367 LandauIDZitoGDigital Control Systems: Design: Identification and Implementation2006BerlinSpringer GrüneLPannekJNonlinear Model Predictive Control. Communications and Control Engineering Series20172ChamSpringer1429.93003(Theory and algorithms) BressanAPiccoliBIntroduction to the Mathematical Theory of Control, volume 2 of AIMS Series on Applied Mathematics2007SpringfieldAmerican Institute of Mathematical Sciences (A P Bettiol (1574_CR7) 2007; 243 L Bourdin (1574_CR17) 2013; 20 ID Landau (1574_CR54) 2006 JF Bonnans (1574_CR12) 2013; 159 VG Boltyanskii (1574_CR10) 1978 1574_CR18 RT Rockafellar (1574_CR67) 1972; 10 MS Aronna (1574_CR2) 2016; 160 1574_CR15 NL Carothers (1574_CR23) 2000 RF Hartl (1574_CR47) 1995; 37 EA Coddington (1574_CR28) 1955 DI Cho (1574_CR25) 1993; 14 H Robbins (1574_CR66) 1980; 31 H Halkin (1574_CR46) 1966; 4 1574_CR60 L Cesari (1574_CR24) 1983 L Bourdin (1574_CR20) 2017; 79 H Maurer (1574_CR59) 1977; 15 F Rampazzo (1574_CR65) 1999; 16 L Bourdin (1574_CR19) 2016; 6 BS Mordukhovich (1574_CR62) 2006 1574_CR68 1574_CR61 E Bini (1574_CR9) 2014; 59 LS Pontryagin (1574_CR63) 1962 KJ Aström (1574_CR4) 1997 X Li (1574_CR56) 1995 FH Clarke (1574_CR26) 1976; 14 N Kim (1574_CR53) 2011; 196 AY Dubovitskii (1574_CR37) 1965; 5 L Bourdin (1574_CR16) 2019; 31 RL Wheeden (1574_CR75) 2015 FE Burk (1574_CR22) 2007 1574_CR3 AV Dmitruk (1574_CR33) 2014; 52 V Van Reeven (1574_CR72) 2016; 71 1574_CR32 JM Holtzman (1574_CR50) 1966; 4 K Malanowski (1574_CR58) 2003; 52 R Vinter (1574_CR73) 2010 1574_CR35 AV Dmitruk (1574_CR36) 2019; 24 MS Fadali (1574_CR40) 2013 SP Sethi (1574_CR69) 2000 A Puchkova (1574_CR64) 2014; 35 T van Keulen (1574_CR71) 2014; 50 A Bressan (1574_CR21) 2007 JF Bonnans (1574_CR11) 2010; 18 1574_CR39 FH Clarke (1574_CR27) 1990 O Cots (1574_CR29) 2017; 23 AV Dmitruk (1574_CR31) 2009; 38 AV Dmitruk (1574_CR34) 2017; 7 JE Ackermann (1574_CR1) 1985 BV Limaye (1574_CR57) 1996 RA Volz (1574_CR74) 1966; AC–12 J Faraut (1574_CR41) 2012 RV Gamkrelidze (1574_CR42) 1960; 24 1574_CR43 EB Lee (1574_CR55) 1986 JF Bonnans (1574_CR13) 2009; 117 1574_CR44 DH Jacobson (1574_CR52) 1971; 35 AD Ioffe (1574_CR51) 1979 O Cots (1574_CR30) 2018; 39 I Ekeland (1574_CR38) 1974; 47 E Trélat (1574_CR70) 2005 T Bakir (1574_CR6) 2020; 184 P Bettiol (1574_CR8) 2008; 57 L Grüne (1574_CR45) 2017 1574_CR48 1574_CR49 G Bachman (1574_CR5) 2000 B Bonnard (1574_CR14) 2003; 9 |
| References_xml | – reference: DmitrukAVOsmolovskiiNPNecessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time intervalMath. Control Relat. Fields20177450753537056561377.49023 – reference: WheedenRLZygmundAMeasure and Integral. Pure and Applied Mathematics (Boca Raton)20152Boca RatonCRC Press(An introduction to real analysis) – reference: DmitrukAVOsmolovskiiNPProof of the maximum principle for a problem with state constraints by the V-change of time variableDiscrete Contin. Dyn. Syst. Ser. B20192452189220439605241419.49021 – reference: BoltyanskiiVGOptimal Control of Discrete Systems1978New YorkWiley – reference: BiniEButtazzoGMThe optimal sampling pattern for linear control systemsIEEE Trans. Automat. Control2014591789031633261360.93405 – reference: Bourdin, L., Trélat, E.: Pontryagin maximum principle for optimal sampled-data control problems. In: 16th IFAC Workshop on Control Applications of Optimization CAO’2015 (2015) – reference: BettiolPFrankowskaHNormality of the maximum principle for nonconvex constrained Bolza problemsJ. Differ. Equ.2007243225626923717881161.49021 – reference: VolzRAKazdaLFDesign of a digital controller for a tracking telescopeIEEE Trans. Automat. Control1966AC–124359367 – reference: Girsanov, I.V.: Lectures on Mathematical Theory of Extremum Problems. Springer, Berlin (1972). Edited by B. T. Poljak, Translated from the Russian by D. Louvish, Lecture Notes in Economics and Mathematical Systems, vol. 67 – reference: Bourdin, L.: Note on Pontryagin maximum principle with running state constraints and smooth dynamics: proof based on the Ekeland variational principle. Research notes—available on HAL (2016) – reference: Milyutin, A.A.: Extremum problems in the presence of constraints. Ph.D. thesis, Doctoral Dissertation, Institute of Applied Mathematics, Moscow (1966) – reference: VinterROptimal Control. Modern Birkhäuser Classics2010BostonBirkhäuser(Paperback reprint of the 2000 edition) – reference: Maurer, H., Kim, J.R., Vossen, G.: On a state-constrained control problem in optimal production and maintenance. In: Optimal Control and Dynamic Games, pp. 289–308. Springer (2005) – reference: RampazzoFVinterRBA theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal controlIMA J. Math. Control Inf.199916433535117197771050.49002 – reference: BressanAPiccoliBIntroduction to the Mathematical Theory of Control, volume 2 of AIMS Series on Applied Mathematics2007SpringfieldAmerican Institute of Mathematical Sciences (AIMS)1127.93002 – reference: Hiriart-Urruty, J.B.: Les mathématiques du mieux faire, vol. 2: La commande optimale pour les débutants. Collection Opuscules (2008) – reference: PuchkovaARehbockVTeoKLClosed-form solutions of a fishery harvesting model with state constraintOptim. Control Appl. Methods201435439541132452091301.49049 – reference: ChoDIAbadPLParlarMOptimal production and maintenance decisions when a system experience age-dependent deteriorationOptim. Control Appl. Methods19931431531670779.90035 – reference: RockafellarRTState constraints in convex control problems of BolzaSIAM J. Control1972106917153245050224.49003 – reference: FarautJCalcul intégral (L3M1)2012Les UlisEDP Sciences – reference: BourdinLDharGContinuity/constancy of the hamiltonian function in a pontryagin maximum principle for optimal sampled-data control problems with free sampling timesMath. Control Signals Syst.201931450354440266211429.49024 – reference: BachmanGNariciLFunctional Analysis2000MineolaDover Publications Inc.0983.46001(Reprint of the 1966 original) – reference: BurkFEA Garden of Integrals, volume 31 of the Dolciani Mathematical Expositions2007WashingtonMathematical Association of America – reference: IoffeADTihomirovVMTheory of Extremal Problems, volume 6 of Studies in Mathematics and its Applications1979AmsterdamNorth-Holland Publishing Co.0407.90051(Translated from the Russian by Karol Makowski) – reference: Aström, K.J.: On the choice of sampling rates in optimal linear systems. IBM Res. Eng. Stud. (1963) – reference: Dmitruk, A.V., Kaganovich, A.M.: Maximum principle for optimal control problems with intermediate constraints. Comput. Math. Model. 22(2), 180–215 (2011). Translation of Nelineĭnaya Din. Upr. No. 6(2008), 101–136 – reference: PontryaginLSBoltyanskiiVGGamkrelidzeRVMishchenkoEFThe Mathematical Theory of Optimal Processes1962New YorkWiley0102.32001 – reference: BonnansJFHermantANo-gap second-order optimality conditions for optimal control problems with a single state constraint and controlMath. Program.20091171–2, Ser. B215024212981167.49021 – reference: GamkrelidzeRVOptimal control processes for bounded phase coordinatesIzv. Akad. Nauk SSSR. Ser. Mat.196024315356120438 – reference: MaurerHOn optimal control problems with bounded state variables and control appearing linearlySIAM J. Control Optim.19771533453624640070358.49008 – reference: SethiSPThompsonGLOptimal Control Theory20002BostonKluwer Academic Publishers0998.49002(Applications to management science and economics) – reference: BourdinLTrélatEOptimal sampled-data control, and generalizations on time scalesMath. Control Relat. Fields201661539434486711335.49031 – reference: HalkinHA maximum principle of the pontryagin type for systems described by nonlinear difference equationsSIAM J. Control196641901111990050152.09301 – reference: BonnansJFde la VegaCDupuisXFirst- and second-order optimality conditions for optimal control problems of state constrained integral equationsJ. Optim. Theory Appl.2013159114031032841354.49053 – reference: Dmitruk, A.V., Osmolovskii, N.P.: A general Lagrange multipliers theorem and related questions. In: Control Systems and Mathematical Methods in Economics, volume 687 of Lecture Notes in Economics and Mathematical Systems, pp. 165–194. Springer, Cham (2018) – reference: BonnansJFde la VegaCOptimal control of state constrained integral equationsSet Valued Var. Anal.2010183–430732627395811221.49039 – reference: BakirTBonnardBBourdinLRouotJPontryagin-type conditions for optimal muscular force response to functional electrical stimulationsJ. Optim. Theory Appl.2020184258160240542951433.49025 – reference: LeeEBMarkusLFoundations of Optimal Control Theory19862MelbourneRobert E. Krieger Publishing Co., Inc, – reference: JacobsonDHLeleMMSpeyerJLNew necessary conditions of optimality for control problems with state-variable inequality constraintsJ. Math. Anal. Appl.1971352552842849050188.47203 – reference: BonnardBFaubourgLLaunayGTrélatEOptimal control with state constraints and the space shuttle re-entry problemJ. Dyn. Control Syst.20039215519919682771034.49014 – reference: AronnaMSBonnansJFGohBSSecond order analysis of control-affine problems with scalar state constraintMath. Program.20161601–2, Ser. A11514735553841352.49020 – reference: Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Robert E. Krieger Publishing Co., Inc., Huntington (1980). Corrected reprint of the 1966 original – reference: MordukhovichBSVariational Analysis and Generalized Differentiation. I, volume 330 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]2006BerlinSpringer(Basic theory) – reference: KimNRousseauALeeDA jump condition of PMP-based control for PHEVsJ. Power Sources2011196231038010386 – reference: MalanowskiKOn normality of Lagrange multipliers for state constrained optimal control problemsOptimization2003521759119629411057.49004 – reference: van KeulenTGillotJde JagerBSteinbuchMSolution for state constrained optimal control problems applied to power split control for hybrid vehiclesAutomat. J. IFAC201450118719231577401298.49031 – reference: BettiolPFrankowskaHHölder continuity of adjoint states and optimal controls for state constrained problemsAppl. Math. Optim.200857112514723730091140.49027 – reference: Evans, L.C.: An introduction to mathematical optimal control theory. Version 0.2, Lecture notes – reference: TrélatEContrôle optimal: théorie & applications2005ParisVuibert1112.49001 – reference: Grasse, K.A., Sussmann, H.J.: Global controllability by nice controls. In: Nonlinear Controllability and Optimal Control, volume 133 of Monographs and Textbooks in Pure and Applied Mathematics, pp. 33–79. Dekker, New York (1990) – reference: ClarkeFHOptimization and Nonsmooth Analysis, volume 5 of Classics in Applied Mathematics19902PhiladelphiaSociety for Industrial and Applied Mathematics (SIAM) – reference: GrüneLPannekJNonlinear Model Predictive Control. Communications and Control Engineering Series20172ChamSpringer1429.93003(Theory and algorithms) – reference: AströmKJWittenmarkBComputer-Controlled Systems1997Upper Saddle RiverPrentice Hall – reference: HoltzmanJMHalkinHDiscretional convexity and the maximum principle for discrete systemsSIAM J. Control1966422632751990080152.09302 – reference: DubovitskiiAYMilyutinAAExtremum problems in the presence of restrictionsUSSR Comput. Math. Math. Phys.1965531800158.33504 – reference: HartlRFSethiSPVicksonRGA survey of the maximum principles for optimal control problems with state constraintsSIAM Rev.199537218121813432110832.49013 – reference: Van ReevenVHofmanTWillemsFHuismanRSteinbuchMOptimal control of engine warmup in hybrid vehiclesOil Gas Sci. Technol.201671114 – reference: CesariLOptimization—Theory and Applications, volume 17 of Applications of Mathematics (New York)1983New YorkSpringer(Problems with ordinary differential equations) – reference: ClarkeFHThe generalized problem of BolzaSIAM J. Control Optim.19761446826994129260333.49023 – reference: AckermannJESampled-Data Control Systems: Analysis and Synthesis, Robust System Design1985BerlinSpringer0639.93001 – reference: Santina, M.S., Stubberud, A.R.: Basics of sampling and quantization. In: Handbook of Networked and Embedded Control Systems, Control Engineering, pp. 45–69. Birkhauser, Boston (2005) – reference: DmitrukAVOn the development of Pontryagin’s maximum principle in the works of A. Ya. Dubovitskii and A. A. MilyutinControl Cybern.2009384A92395727684201236.49003 – reference: CarothersNLReal Analysis2000CambridgeCambridge University Press0997.26003 – reference: LimayeBVFunctional Analysis1996secondNew DelhiNew Age International Publishers Limited0876.46001 – reference: RobbinsHJunction phenomena for optimal control with state-variable inequality constraints of third orderJ. Optim. Theory Appl.198031185995963440417.49002 – reference: FadaliMSVisioliADigital Control Engineering: Analysis and Design2013New YorkElsevier – reference: LandauIDZitoGDigital Control Systems: Design: Identification and Implementation2006BerlinSpringer – reference: CotsOGeometric and numerical methods for a state constrained minimum time control problem of an electric vehicleESAIM Control Optim. Calc. Var.20172341715174937169381379.49025 – reference: BourdinLTrélatELinear-quadratic optimal sampled-data control problems: convergence result and Riccati theoryAutom. J. IFAC20177927328136279921371.93123 – reference: LiXYongJOptimal Control Theory for Infinite-Dimensional Systems1995BostonBirkhäuser Boston Inc – reference: DmitrukAVOsmolovskiiNPNecessary conditions for a weak minimum in optimal control problems with integral equations subject to state and mixed constraintsSIAM J. Control Optim.20145263437346232743601311.49057 – reference: EkelandIOn the variational principleJ. Math. Anal. Appl.1974473243533466190286.49015 – reference: CoddingtonEALevinsonNTheory of Ordinary Differential Equations1955New YorkMcGraw-Hill Book Company Inc0064.33002 – reference: BourdinLTrélatEPontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scalesSIAM J. Control Optim.201320452654731154521282.49016 – reference: CotsOGergaudJGoubinatDDirect and indirect methods in optimal control with state constraints and the climbing trajectory of an aircraftOptim. Control Appl. Methods201839128130137574071390.49054 – volume: 71 start-page: 14 issue: 1 year: 2016 ident: 1574_CR72 publication-title: Oil Gas Sci. Technol. doi: 10.2516/ogst/2014042 – volume-title: A Garden of Integrals, volume 31 of the Dolciani Mathematical Expositions year: 2007 ident: 1574_CR22 doi: 10.7135/UPO9781614442097 – volume-title: Digital Control Systems: Design: Identification and Implementation year: 2006 ident: 1574_CR54 – volume: 50 start-page: 187 issue: 1 year: 2014 ident: 1574_CR71 publication-title: Automat. J. IFAC doi: 10.1016/j.automatica.2013.09.039 – volume: 31 start-page: 503 issue: 4 year: 2019 ident: 1574_CR16 publication-title: Math. Control Signals Syst. doi: 10.1007/s00498-019-00247-6 – volume-title: Functional Analysis year: 1996 ident: 1574_CR57 – volume-title: Optimal Control Theory for Infinite-Dimensional Systems year: 1995 ident: 1574_CR56 doi: 10.1007/978-1-4612-4260-4 – volume: 14 start-page: 682 issue: 4 year: 1976 ident: 1574_CR26 publication-title: SIAM J. Control Optim. doi: 10.1137/0314044 – volume: 39 start-page: 281 issue: 1 year: 2018 ident: 1574_CR30 publication-title: Optim. Control Appl. Methods doi: 10.1002/oca.2347 – ident: 1574_CR3 – ident: 1574_CR15 – volume: AC–12 start-page: 359 issue: 4 year: 1966 ident: 1574_CR74 publication-title: IEEE Trans. Automat. Control – volume: 20 start-page: 526 issue: 4 year: 2013 ident: 1574_CR17 publication-title: SIAM J. Control Optim. – volume-title: Optimal Control Theory year: 2000 ident: 1574_CR69 – volume: 47 start-page: 324 year: 1974 ident: 1574_CR38 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(74)90025-0 – volume: 117 start-page: 21 issue: 1–2, Ser. B year: 2009 ident: 1574_CR13 publication-title: Math. Program. doi: 10.1007/s10107-007-0167-8 – ident: 1574_CR18 doi: 10.1016/j.ifacol.2015.11.063 – volume: 38 start-page: 923 issue: 4A year: 2009 ident: 1574_CR31 publication-title: Control Cybern. – volume-title: Optimization and Nonsmooth Analysis, volume 5 of Classics in Applied Mathematics year: 1990 ident: 1574_CR27 doi: 10.1137/1.9781611971309 – volume-title: Variational Analysis and Generalized Differentiation. I, volume 330 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] year: 2006 ident: 1574_CR62 – volume: 52 start-page: 3437 issue: 6 year: 2014 ident: 1574_CR33 publication-title: SIAM J. Control Optim. doi: 10.1137/130921465 – volume-title: Optimal Control. Modern Birkhäuser Classics year: 2010 ident: 1574_CR73 – volume: 24 start-page: 2189 issue: 5 year: 2019 ident: 1574_CR36 publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume-title: Optimal Control of Discrete Systems year: 1978 ident: 1574_CR10 – volume-title: Introduction to the Mathematical Theory of Control, volume 2 of AIMS Series on Applied Mathematics year: 2007 ident: 1574_CR21 – volume: 16 start-page: 335 issue: 4 year: 1999 ident: 1574_CR65 publication-title: IMA J. Math. Control Inf. doi: 10.1093/imamci/16.4.335 – volume: 9 start-page: 155 issue: 2 year: 2003 ident: 1574_CR14 publication-title: J. Dyn. Control Syst. doi: 10.1023/A:1023289721398 – volume: 7 start-page: 507 issue: 4 year: 2017 ident: 1574_CR34 publication-title: Math. Control Relat. Fields doi: 10.3934/mcrf.2017019 – volume-title: Digital Control Engineering: Analysis and Design year: 2013 ident: 1574_CR40 – volume-title: Optimization—Theory and Applications, volume 17 of Applications of Mathematics (New York) year: 1983 ident: 1574_CR24 – ident: 1574_CR60 doi: 10.1007/0-387-25805-1_17 – volume: 35 start-page: 395 issue: 4 year: 2014 ident: 1574_CR64 publication-title: Optim. Control Appl. Methods doi: 10.1002/oca.2076 – volume-title: Real Analysis year: 2000 ident: 1574_CR23 doi: 10.1017/CBO9780511814228 – ident: 1574_CR39 – volume: 4 start-page: 263 issue: 2 year: 1966 ident: 1574_CR50 publication-title: SIAM J. Control doi: 10.1137/0304023 – volume: 79 start-page: 273 year: 2017 ident: 1574_CR20 publication-title: Autom. J. IFAC doi: 10.1016/j.automatica.2017.02.013 – volume: 184 start-page: 581 issue: 2 year: 2020 ident: 1574_CR6 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-019-01599-4 – volume: 18 start-page: 307 issue: 3–4 year: 2010 ident: 1574_CR11 publication-title: Set Valued Var. Anal. doi: 10.1007/s11228-010-0154-8 – volume-title: Theory of Extremal Problems, volume 6 of Studies in Mathematics and its Applications year: 1979 ident: 1574_CR51 – ident: 1574_CR49 – volume-title: Measure and Integral. Pure and Applied Mathematics (Boca Raton) year: 2015 ident: 1574_CR75 – volume: 14 start-page: 153 issue: 3 year: 1993 ident: 1574_CR25 publication-title: Optim. Control Appl. Methods doi: 10.1002/oca.4660140302 – volume: 37 start-page: 181 issue: 2 year: 1995 ident: 1574_CR47 publication-title: SIAM Rev. doi: 10.1137/1037043 – volume: 35 start-page: 255 year: 1971 ident: 1574_CR52 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(71)90219-8 – volume: 24 start-page: 315 year: 1960 ident: 1574_CR42 publication-title: Izv. Akad. Nauk SSSR. Ser. Mat. – ident: 1574_CR35 doi: 10.1007/978-3-319-75169-6_9 – volume: 23 start-page: 1715 issue: 4 year: 2017 ident: 1574_CR29 publication-title: ESAIM Control Optim. Calc. Var. doi: 10.1051/cocv/2016070 – volume: 196 start-page: 10380 issue: 23 year: 2011 ident: 1574_CR53 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.07.003 – volume: 31 start-page: 85 issue: 1 year: 1980 ident: 1574_CR66 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00934790 – volume-title: Contrôle optimal: théorie & applications year: 2005 ident: 1574_CR70 – volume: 160 start-page: 115 issue: 1–2, Ser. A year: 2016 ident: 1574_CR2 publication-title: Math. Program. doi: 10.1007/s10107-015-0976-0 – volume: 243 start-page: 256 issue: 2 year: 2007 ident: 1574_CR7 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2007.05.005 – volume: 6 start-page: 53 issue: 1 year: 2016 ident: 1574_CR19 publication-title: Math. Control Relat. Fields doi: 10.3934/mcrf.2016.6.53 – volume-title: Calcul intégral (L3M1) year: 2012 ident: 1574_CR41 – ident: 1574_CR61 – volume-title: Nonlinear Model Predictive Control. Communications and Control Engineering Series year: 2017 ident: 1574_CR45 – volume: 52 start-page: 75 issue: 1 year: 2003 ident: 1574_CR58 publication-title: Optimization doi: 10.1080/0233193021000058940 – volume: 59 start-page: 78 issue: 1 year: 2014 ident: 1574_CR9 publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2013.2279913 – volume-title: The Mathematical Theory of Optimal Processes year: 1962 ident: 1574_CR63 – ident: 1574_CR48 – volume-title: Computer-Controlled Systems year: 1997 ident: 1574_CR4 – volume: 10 start-page: 691 year: 1972 ident: 1574_CR67 publication-title: SIAM J. Control doi: 10.1137/0310051 – volume: 159 start-page: 1 issue: 1 year: 2013 ident: 1574_CR12 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-013-0299-3 – ident: 1574_CR43 doi: 10.1007/978-3-642-80684-1 – ident: 1574_CR32 doi: 10.1007/s10598-011-9096-8 – volume-title: Foundations of Optimal Control Theory year: 1986 ident: 1574_CR55 – volume-title: Sampled-Data Control Systems: Analysis and Synthesis, Robust System Design year: 1985 ident: 1574_CR1 doi: 10.1007/978-3-642-82554-5 – ident: 1574_CR44 doi: 10.1201/9780203745625-3 – volume: 15 start-page: 345 issue: 3 year: 1977 ident: 1574_CR59 publication-title: SIAM J. Control Optim. doi: 10.1137/0315023 – volume-title: Functional Analysis year: 2000 ident: 1574_CR5 – volume: 57 start-page: 125 issue: 1 year: 2008 ident: 1574_CR8 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-007-9015-8 – ident: 1574_CR68 doi: 10.1007/0-8176-4404-0_3 – volume: 4 start-page: 90 issue: 1 year: 1966 ident: 1574_CR46 publication-title: SIAM J. Control doi: 10.1137/0304009 – volume: 5 start-page: 1 issue: 3 year: 1965 ident: 1574_CR37 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(65)90148-5 – volume-title: Theory of Ordinary Differential Equations year: 1955 ident: 1574_CR28 |
| SSID | ssj0001388 |
| Score | 2.3814566 |
| Snippet | In the present paper we derive a Pontryagin maximum principle for general nonlinear optimal sampled-data control problems in the presence of running inequality... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 907 |
| SubjectTerms | Bouncing Calculus of Variations and Optimal Control; Optimization Combinatorics Equality Full Length Paper Inequality Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Maximum principle Nonlinear control Numerical Analysis Numerical methods Sampling Theoretical Trajectory optimization |
| Title | Optimal sampled-data controls with running inequality state constraints: Pontryagin maximum principle and bouncing trajectory phenomenon |
| URI | https://link.springer.com/article/10.1007/s10107-020-01574-2 https://www.proquest.com/docview/2631903276 |
| Volume | 191 |
| WOSCitedRecordID | wos000574306500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaGdIfusG5rh3rtCh0K7LAZiPWI5d6CokUPbRZ0W5CboJeBFE0axMmw_IP97JGKnWSvAtvRMEnbMkVRIvmRkNPCZzyEDPYmXMlUBFemRnqWFm3PBQvS-lhfMbjOez01HBb9uiisarLdm5BktNRbxW4ZHqsxTKSSuUjB8O7AcqewYcPtp8Ha_mZcqaZRK3oHdanMn2X8tBz9apR_i47GRedy7_9e9wV5XjuZtLvSipfkSZi8Is-2oAfh6maN11rtk-8fwXKMgaUyiBbsU0wcpXUae0XxsJbOFrG7EQUZq0rMJY3VSEhWxU4T8-qM9pFnia2P6Nh8G40XYzptzvOpmXhqwbw4lAMsdzFksKSYZ4ZIEA-TA_Ll8uLz-VVa92hIHZdqnhalzRyGI60xDmNuCA9vlAK3MudGmRIcyI6VVhWd0jOkcXnImfIytK1VJX9NWiA9HBIqsiBLFoJSwQvp2tY58F0FZ1ZY2HaFhGTNr9KuBjDHr7vXG-hlHHMNY67jmGuWkPdrnukKvuNR6neoARrnNkh2pi5RgPdDlCzdBfNYiFwJkZDjRkl0PekrzTpgz9qc5Z2EfGiUYnP7789982_kR2SXYRFGzB0_Jq35bBHekqfu63xUzU7iZPgB9zkFfQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8YMFEfQEXCIeg-mPigTa77cd3yRgwE43ESRcLbZr-aQLiTXO-M9x_wZzOz1x6IHwk-Np2ZttvZ2dmdmd8AvClDLmLMcW8itMpk9FVmVeBZ2Q1C8qhcSPUVJ_1iMNCnp-VRUxRWt9nubUgyWepbxW45HatxSqRShczQ8C5LXLEIMf_L15OF_c2F1m2jVvIOmlKZP8v4ZTm6a5R_i46mRWd_9f9e9ymsNE4m251rxTN4EEfP4ckt6EG8OlzgtdZrcPUZLccQWWpLaMEho8RR1qSx14wOa9l4mrobMZQxr8ScsVSNRGR16jQxqXfYEfHMqPURG9qfZ8PpkF225_nMjgJzaF48yUGW8xQymDHKMyMkiO-jF_Btf-_4w0HW9GjIvFB6kpWVyz2FI521nmJuBA9vtUa3shBW2wodyJ5TTpe9KnCi8UUsuA4qdp3TlViHJZQeN4DJPKqKx6h1DFL5rvMefVcpuJMOt12xA3n7q4xvAMzp6y7MDfQyjbnBMTdpzA3vwLsFz-UcvuOf1G9JAwzNbZTsbVOigO9HKFlmF81jKQstZQe2WiUxzaSvDe-hPesKXvQ68L5Vipvbf3_u5v3IX8Ojg-PDvul_HHx6CY85FWSkPPItWJqMp3EbHvofk7N6_CpNjGs-3whh |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hghAcKK-KQAt7QOIAVuN9xGtuVUsEooRIQNXbal-WikgaxU5F_gE_m5mNnYanhDha3hnb693Z2Z35vgF4WoZcxJjj3kRolcnoq8yqwLOyH4TkUbmQ8BUnx8VopE9Py_EGij9lu3chyRWmgViaps3-LFT7G8C3nI7YOCVVqUJmaISvSkqkp_36h5O1Lc6F1l3RVvIUWtjM73X8sDT9bKB_iZSmBWi4_f-vfhtutc4nO1iNljtwJU7vws0NSkK8erfmca3vwbf3aFEmKFJbYhEOGSWUsja9vWZ0iMvmi1T1iKGOFUJzyRJKiZrVqQJFU79kY5JZUkkkNrFfzyaLCZt15_zMTgNzaHY86UGRzymUsGSUf0YMEefT-_Bp-Orj4eusrd2QeaF0k5WVyz2FKZ21nmJxRBtvtUZ3sxBW2wody4FTTpeDKnBq44tYcB1U7DunK7EDW6g9PgAm86gqHqPWMUjl-8579Gml4E463I7FHuTdbzO-JTanr_tiLimZqc8N9rlJfW54D56vZWYrWo-_tn5Go8HQnEfN3rbQBXw_Ys8yB2g2S1loKXuw2w0Y0xqD2vAB2rm-4MWgBy-6AXJ5-8_PffhvzZ_A9fHR0By_Gb19BDc44TRSevkubDXzRdyDa_6iOavnj9Mc-Q6QWBFF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+sampled-data+controls+with+running+inequality+state+constraints%3A+Pontryagin+maximum+principle+and+bouncing+trajectory+phenomenon&rft.jtitle=Mathematical+programming&rft.au=Bourdin+Lo%C3%AFc&rft.au=Dhar+Gaurav&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=191&rft.issue=2&rft.spage=907&rft.epage=951&rft_id=info:doi/10.1007%2Fs10107-020-01574-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |