A validated discretized thermal model for application in bare tube evaporative coolers and condensers

•The paper presents a discretized modelling method for evaporative coolers which is validated against experimental results from a 1.5 m × 1.5 m stainless-steel evaporative cooler with intermediate thermocouples to measure the process fluid temperature profile along the height of the cooler to compar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied thermal engineering Ročník 175; s. 115407
Hlavní autoři: du Plessis, Jacques, Owen, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 05.07.2020
Elsevier BV
Témata:
ISSN:1359-4311, 1873-5606
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The paper presents a discretized modelling method for evaporative coolers which is validated against experimental results from a 1.5 m × 1.5 m stainless-steel evaporative cooler with intermediate thermocouples to measure the process fluid temperature profile along the height of the cooler to compare the temperature profile to the results from the model.•This study aims to validate the modelling method which can then be applied to any bare tube evaporative cooler/condenser and specifically to model the bare tube bundle of a hybrid (dry/wet) dephlegmator (with steam as working fluid), used in direct dry cooling for thermal power plants.•The model discretizes the tube bundle into single tube control volumes to numerically integrate the governing differential energy equations for the three working fluids with the 4th-order Runge-Kutta integration procedure.•The discretized modelling method provides insight into the heat transfer rate in individual tubes, which is of great interest for conducting accurate performance modelling of the hybrid (dry/wet) dephlegmator.•The predicted results are within an acceptable accuracy when compared to the measured temperatures, with an average error of 0.62% in the bulk process fluid outlet temperature and a maximum error of 1.45%.•The average error in the intermediate process fluid temperature is 1.87% with a maximum error of 3.4%. A discretized modelling method for evaporative coolers is presented in this paper. This study aims to validate the modelling method which can then be applied to any bare tube evaporative cooler/condenser and specifically to model the bare tube bundle of a hybrid (dry/wet) dephlegmator (HDWD), used in direct dry cooling for thermal power plants. The model discretizes a bare tube bundle into single tube control volumes to numerically integrate the governing differential energy equations for the three working fluids. The discretized modelling method presented here allows for evaluation of the fluid/vapour flow in individual tubes of an evaporative cooler/condenser or HDWD system and therefore offers an additional and valuable level of detail when compared to existing integral models. The model presented here is validated against experimental results from a stainless-steel evaporative cooler with water as process fluid and also compared to experimental results of two other evaporative coolers from literature. The cooler consists of a bare tube bundle (inlet area 1.5 m × 1.5 m) with 20 rows of do = 19.8 mm tubes in a staggered 2.27 × do arrangement. Nine intermediate process fluid temperature measurements are recorded throughout the height of the tube bundle as well as the mean outlet processes water temperature to critically compare the measured and modelled values. Intermediate deluge water temperature is also measured with five thermocouples located in deluge water traps below selected tubes. A total of 16 test points, over a range of air and deluge water flow rates, are analyzed and the average error between the predicted and bulk measured process fluid outlet temperature is 0.62% while the maximum error is 1.45%. The results demonstrate that the intermediate processes water temperatures per tube, the bulk outlet processes water temperature and the deluge water temperature could be accurately predicted with the discretized analytical model. The valuable insight of each tube row indicates the trend of the heat transfer rate throughout the height of the tube bundle where the first tube row from the top, which is the air outlet side, has the highest heat transfer rate where after the heat transfer rate decreases to a minimum, at tube 13 from the bottom, and then increases again in the lower portion of the bundle. The discretized model can be adapted to model the HDWD or other evaporative condensers by employing appropriate steam side heat transfer correlations which will enable the analytical model to predict the rate of heat transfer and associated pressure drops in each tube.
AbstractList •The paper presents a discretized modelling method for evaporative coolers which is validated against experimental results from a 1.5 m × 1.5 m stainless-steel evaporative cooler with intermediate thermocouples to measure the process fluid temperature profile along the height of the cooler to compare the temperature profile to the results from the model.•This study aims to validate the modelling method which can then be applied to any bare tube evaporative cooler/condenser and specifically to model the bare tube bundle of a hybrid (dry/wet) dephlegmator (with steam as working fluid), used in direct dry cooling for thermal power plants.•The model discretizes the tube bundle into single tube control volumes to numerically integrate the governing differential energy equations for the three working fluids with the 4th-order Runge-Kutta integration procedure.•The discretized modelling method provides insight into the heat transfer rate in individual tubes, which is of great interest for conducting accurate performance modelling of the hybrid (dry/wet) dephlegmator.•The predicted results are within an acceptable accuracy when compared to the measured temperatures, with an average error of 0.62% in the bulk process fluid outlet temperature and a maximum error of 1.45%.•The average error in the intermediate process fluid temperature is 1.87% with a maximum error of 3.4%. A discretized modelling method for evaporative coolers is presented in this paper. This study aims to validate the modelling method which can then be applied to any bare tube evaporative cooler/condenser and specifically to model the bare tube bundle of a hybrid (dry/wet) dephlegmator (HDWD), used in direct dry cooling for thermal power plants. The model discretizes a bare tube bundle into single tube control volumes to numerically integrate the governing differential energy equations for the three working fluids. The discretized modelling method presented here allows for evaluation of the fluid/vapour flow in individual tubes of an evaporative cooler/condenser or HDWD system and therefore offers an additional and valuable level of detail when compared to existing integral models. The model presented here is validated against experimental results from a stainless-steel evaporative cooler with water as process fluid and also compared to experimental results of two other evaporative coolers from literature. The cooler consists of a bare tube bundle (inlet area 1.5 m × 1.5 m) with 20 rows of do = 19.8 mm tubes in a staggered 2.27 × do arrangement. Nine intermediate process fluid temperature measurements are recorded throughout the height of the tube bundle as well as the mean outlet processes water temperature to critically compare the measured and modelled values. Intermediate deluge water temperature is also measured with five thermocouples located in deluge water traps below selected tubes. A total of 16 test points, over a range of air and deluge water flow rates, are analyzed and the average error between the predicted and bulk measured process fluid outlet temperature is 0.62% while the maximum error is 1.45%. The results demonstrate that the intermediate processes water temperatures per tube, the bulk outlet processes water temperature and the deluge water temperature could be accurately predicted with the discretized analytical model. The valuable insight of each tube row indicates the trend of the heat transfer rate throughout the height of the tube bundle where the first tube row from the top, which is the air outlet side, has the highest heat transfer rate where after the heat transfer rate decreases to a minimum, at tube 13 from the bottom, and then increases again in the lower portion of the bundle. The discretized model can be adapted to model the HDWD or other evaporative condensers by employing appropriate steam side heat transfer correlations which will enable the analytical model to predict the rate of heat transfer and associated pressure drops in each tube.
A discretized modelling method for evaporative coolers is presented in this paper. This study aims to validate the modelling method which can then be applied to any bare tube evaporative cooler/condenser and specifically to model the bare tube bundle of a hybrid (dry/wet) dephlegmator (HDWD), used in direct dry cooling for thermal power plants. The model discretizes a bare tube bundle into single tube control volumes to numerically integrate the governing differential energy equations for the three working fluids. The discretized modelling method presented here allows for evaluation of the fluid/vapour flow in individual tubes of an evaporative cooler/condenser or HDWD system and therefore offers an additional and valuable level of detail when compared to existing integral models. The model presented here is validated against experimental results from a stainless-steel evaporative cooler with water as process fluid and also compared to experimental results of two other evaporative coolers from literature. The cooler consists of a bare tube bundle (inlet area 1.5 m × 1.5 m) with 20 rows of do = 19.8 mm tubes in a staggered 2.27 × do arrangement. Nine intermediate process fluid temperature measurements are recorded throughout the height of the tube bundle as well as the mean outlet processes water temperature to critically compare the measured and modelled values. Intermediate deluge water temperature is also measured with five thermocouples located in deluge water traps below selected tubes. A total of 16 test points, over a range of air and deluge water flow rates, are analyzed and the average error between the predicted and bulk measured process fluid outlet temperature is 0.62% while the maximum error is 1.45%. The results demonstrate that the intermediate processes water temperatures per tube, the bulk outlet processes water temperature and the deluge water temperature could be accurately predicted with the discretized analytical model. The valuable insight of each tube row indicates the trend of the heat transfer rate throughout the height of the tube bundle where the first tube row from the top, which is the air outlet side, has the highest heat transfer rate where after the heat transfer rate decreases to a minimum, at tube 13 from the bottom, and then increases again in the lower portion of the bundle. The discretized model can be adapted to model the HDWD or other evaporative condensers by employing appropriate steam side heat transfer correlations which will enable the analytical model to predict the rate of heat transfer and associated pressure drops in each tube.
ArticleNumber 115407
Author du Plessis, Jacques
Owen, Michael
Author_xml – sequence: 1
  givenname: Jacques
  surname: du Plessis
  fullname: du Plessis, Jacques
  email: jacquesduplessis@sun.ac.za
– sequence: 2
  givenname: Michael
  surname: Owen
  fullname: Owen, Michael
  email: mikeowen@sun.ac.za
BookMark eNqNkM1qGzEURkVIoY7bdxC023H0PzPQjWOSJhDIpl0LjXSnkRlLU0k2JE9fufamXXmlT9z7nQvnBl2HGAChr5SsKKHqdrsy8zyVV0g7M0H4tWKE1RGVgrRXaEG7ljdSEXVdM5d9IzilH9FNzltCKOtasUCwxgczeWcKOOx8tgmKf6_5TMW76GDCY0z4eMtbU3wM2Ac8mAS47AfAcDBzTHVwAGxjnCBlbIKrOTgIuX4_oQ-jmTJ8Pr9L9PPh_sfmsXl--f60WT83lsuuNH0nrBUDN6rvWzEq0yspe2h7J4lkrTMjM9wOklLRUeMYV6QdySiHUTEiBsGX6MuJO6f4ew-56G3cp1BPaiYE46wWVN36dtqyKeacYNRz8juT3jQl-ihWb_W_YvVRrD6JrfW7_-rWl79aSjJ-uhTycIJA1XHwkHS2HoIF5xPYol30l4H-AOwOo8s
CitedBy_id crossref_primary_10_1016_j_tsep_2024_102678
crossref_primary_10_1080_10407782_2022_2101802
crossref_primary_10_3390_en15249336
crossref_primary_10_1016_j_energy_2022_124494
crossref_primary_10_1016_j_tsep_2021_101108
Cites_doi 10.1016/S0255-2701(97)00006-8
10.1016/j.applthermaleng.2009.10.010
10.1080/01457632.2016.1217050
10.1016/j.applthermaleng.2016.06.008
10.1016/j.applthermaleng.2011.10.047
10.1007/BF02559682
10.1016/j.ijheatmasstransfer.2012.08.006
10.1080/01457638008939565
10.1016/j.ijheatmasstransfer.2018.12.031
10.1016/S0378-7788(01)00131-1
10.1016/j.ijheatmasstransfer.2017.01.047
10.1016/0017-9310(93)80062-Y
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jul 5, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 5, 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2020.115407
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2020_115407
S1359431119383097
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
HZ~
R2-
SEW
~HD
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c358t-984cc4b3a69974f6a96559e79d50527daf2a3cb511481ad23607f0f5bf6204b43
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000533622700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-4311
IngestDate Sun Nov 09 07:55:33 EST 2025
Sat Nov 29 07:00:19 EST 2025
Tue Nov 18 21:17:04 EST 2025
Fri Feb 23 02:47:21 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-984cc4b3a69974f6a96559e79d50527daf2a3cb511481ad23607f0f5bf6204b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2442326076
PQPubID 2045278
ParticipantIDs proquest_journals_2442326076
crossref_primary_10_1016_j_applthermaleng_2020_115407
crossref_citationtrail_10_1016_j_applthermaleng_2020_115407
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2020_115407
PublicationCentury 2000
PublicationDate 2020-07-05
PublicationDateYYYYMMDD 2020-07-05
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-05
  day: 05
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Balaji, Prakash (b0015) 2016; 3
Zheng, Zhu, Song, Zeng, Zhou (b0135) 2012; 35
Parker, Treybal (b0115) 1961
Kline, McClintock (b0075) 1953; 75
Hasan, Sirén (b0055) 2002; 34
Anderson, Reuter (b0010) 2016; 105
Kröger (b0080) 2004
C. Bourillot, TEFERI: Numerical model for calculating the performance of an evaporative cooling tower, EPRI Report CS-3212-SR. California, 1983.
Heyns, Kröger (b0065) 2010; 30
Holman (b0070) 2001
Zheng, Zhu, Zhou, Wu, Shi (b0140) 2012; 55
Zalewski, Gryglaszewski (b0130) 1997; 36
Gnielinski (b0050) 1975; 41
Erens, Dreyer (b0040) 1993; 36
Owen (b0105) 2013
Owen, Kröger, Reuter (b0110) 2017; 38
Mizushina, Ito, Miyashita (b0095) 1967; 7
Gu, Min, Wub, Yang (b0045) 2017; 108, Part B
Lee, Hong, Dang, Chien, Chang, Yang (b0085) 2019; 132
Dreyer (b0035) 1988
Merkel (b0090) 1925
Poppe, Rögener (b0120) 1984
Berg, Berg (b0020) 1980; 1
Niitsu, Naito, Anzai (b0100) 1967; 41
Chato (b0030) 1962
S. Tezuka, T. Takada, S. Kasai, Performance of evaporative cooler, in: 13th International Congress of Refrigeration, Washington, DC, Aug. 27–Sept. 3, Paper No. 286.
Heyns (b0060) 2008
Anderson (b0005) 2014
Niitsu (10.1016/j.applthermaleng.2020.115407_b0100) 1967; 41
Dreyer (10.1016/j.applthermaleng.2020.115407_b0035) 1988
Anderson (10.1016/j.applthermaleng.2020.115407_b0005) 2014
Heyns (10.1016/j.applthermaleng.2020.115407_b0065) 2010; 30
Zheng (10.1016/j.applthermaleng.2020.115407_b0140) 2012; 55
Owen (10.1016/j.applthermaleng.2020.115407_b0105) 2013
Kline (10.1016/j.applthermaleng.2020.115407_b0075) 1953; 75
Anderson (10.1016/j.applthermaleng.2020.115407_b0010) 2016; 105
Erens (10.1016/j.applthermaleng.2020.115407_b0040) 1993; 36
Heyns (10.1016/j.applthermaleng.2020.115407_b0060) 2008
Holman (10.1016/j.applthermaleng.2020.115407_b0070) 2001
Lee (10.1016/j.applthermaleng.2020.115407_b0085) 2019; 132
Gu (10.1016/j.applthermaleng.2020.115407_b0045) 2017; 108, Part B
Mizushina (10.1016/j.applthermaleng.2020.115407_b0095) 1967; 7
Chato (10.1016/j.applthermaleng.2020.115407_b0030) 1962
Poppe (10.1016/j.applthermaleng.2020.115407_b0120) 1984
Zalewski (10.1016/j.applthermaleng.2020.115407_b0130) 1997; 36
Merkel (10.1016/j.applthermaleng.2020.115407_b0090) 1925
Kröger (10.1016/j.applthermaleng.2020.115407_b0080) 2004
Zheng (10.1016/j.applthermaleng.2020.115407_b0135) 2012; 35
Owen (10.1016/j.applthermaleng.2020.115407_b0110) 2017; 38
Gnielinski (10.1016/j.applthermaleng.2020.115407_b0050) 1975; 41
Balaji (10.1016/j.applthermaleng.2020.115407_b0015) 2016; 3
Berg (10.1016/j.applthermaleng.2020.115407_b0020) 1980; 1
Hasan (10.1016/j.applthermaleng.2020.115407_b0055) 2002; 34
10.1016/j.applthermaleng.2020.115407_b0025
10.1016/j.applthermaleng.2020.115407_b0125
Parker (10.1016/j.applthermaleng.2020.115407_b0115) 1961
References_xml – volume: 34
  start-page: 477
  year: 2002
  end-page: 486
  ident: b0055
  article-title: Theoretical and computational analysis of closed wet cooling towers and its applications in cooling of buildings
  publication-title: Energy Build.
– volume: 1
  start-page: 21
  year: 1980
  end-page: 31
  ident: b0020
  article-title: Flow patterns for isothermal condensation in one- pass air-cooled heat exchangers
  publication-title: Heat Transfer Eng.
– volume: 38
  start-page: 1089
  year: 2017
  end-page: 1100
  ident: b0110
  article-title: Enhancing turbine output at dry-cooled power plants using a hybrid (dry/wet) dephlegmator
  publication-title: Heat Transfer Eng.
– volume: 132
  start-page: 238
  year: 2019
  end-page: 248
  ident: b0085
  article-title: Heat transfer characteristics of obliquely dispensed evaporating falling films on an elliptic tube
  publication-title: Int. J. Heat Mass Transfer
– volume: 3
  start-page: 35
  year: 2016
  end-page: 40
  ident: b0015
  article-title: CFD analysis of a pressure drop in astaggered tube bundle for a turbulent cross flow
  publication-title: Int. Adv. Res. J. Sci., Eng. Technol.
– year: 1984
  ident: b0120
  article-title: Evaporative cooling systems
– reference: S. Tezuka, T. Takada, S. Kasai, Performance of evaporative cooler, in: 13th International Congress of Refrigeration, Washington, DC, Aug. 27–Sept. 3, Paper No. 286.
– volume: 105
  start-page: 1030
  year: 2016
  end-page: 1040
  ident: b0010
  article-title: Performance evaluation of a bare tube air-cooled heat exchanger bundle in wet and dry mode
  publication-title: Appl. Therm. Eng.
– year: 2008
  ident: b0060
  article-title: Performance characteristics of an air-cooled steam condenser incorporating a hybrid (dry/wet) dephlegmator
– volume: 108, Part B
  start-page: 1839
  year: 2017
  end-page: 1849
  ident: b0045
  article-title: Airside heat transfer and pressure loss characteristics of bare and finned tube heat exchangers used for aero engine cooling considering variable air properties
  publication-title: Int. J. Heat Mass Transfer
– volume: 30
  start-page: 492
  year: 2010
  end-page: 498
  ident: b0065
  article-title: Experimental investigation into the thermal- flow performance characteristics of an evaporative cooler
  publication-title: Appl. Therm. Eng.
– volume: 36
  start-page: 271
  year: 1997
  end-page: 280
  ident: b0130
  article-title: Mathematical model of heat and mass transfer processes in evaporative fluid coolers
  publication-title: Chem. Eng. Process.
– start-page: 138
  year: 1961
  end-page: 149
  ident: b0115
  article-title: The heat, mass transfer characteristics of evaporative coolers
  publication-title: AIChE Chem. Eng. Prog. Symp. Ser.
– year: 2014
  ident: b0005
  article-title: Evaluation of the performance characteristics of a hybrid (dry/wet) induced draft dephlegmator
– volume: 41
  start-page: 8
  year: 1975
  end-page: 16
  ident: b0050
  article-title: Neue Gleichungen für den Wärmeund den Stoffübergang in turbulent durchströmten
  publication-title: Rohren und Kanälen. Forsch. Ingenieurwes. (Engineering Research)
– start-page: 123
  year: 1925
  end-page: 128
  ident: b0090
  article-title: Verdunstungskühling
  publication-title: VDI-Zeitschrift.
– volume: 55
  start-page: 7803
  year: 2012
  end-page: 7811
  ident: b0140
  article-title: Thermal performance analysis of closed wet cooling towers under both unsaturated and supersaturated conditions
  publication-title: Int. J. Heat Mass Transfer Elsevier Ltd
– volume: 36
  start-page: 17
  year: 1993
  end-page: 26
  ident: b0040
  article-title: Modeling of indirect evaporative air coolers
  publication-title: Int. J. Heat Mass Transf.
– year: 1988
  ident: b0035
  article-title: Analysis of evaporative coolers and condensers
– volume: 75
  start-page: 3
  year: 1953
  end-page: 8
  ident: b0075
  article-title: Describing uncertainties in single-sample experiments
  publication-title: Mech. Eng.
– year: 2004
  ident: b0080
  article-title: Air-cooled Heat Exchangers and Cooling Towers: Thermal Flow Performance Evaluation and Design
– start-page: 52
  year: 1962
  end-page: 60
  ident: b0030
  article-title: Laminar condensation inside horizontal and inclined tubes
  publication-title: J. ASHRAE
– year: 2001
  ident: b0070
  article-title: Experimental Methods for Engineers
– reference: C. Bourillot, TEFERI: Numerical model for calculating the performance of an evaporative cooling tower, EPRI Report CS-3212-SR. California, 1983.
– volume: 41
  year: 1967
  ident: b0100
  article-title: Studies on characteristics and design procedure of evaporative coolers
  publication-title: J. SHASE, Japan
– year: 2013
  ident: b0105
  article-title: Air-cooled condenser steam flow distribution and related dephlegmator design considerations
– volume: 35
  start-page: 233
  year: 2012
  end-page: 239
  ident: b0135
  article-title: Experimental and computational analysis of thermal performance of the oval tube closed wet cooling tower
  publication-title: Appl. Therm. Eng.
– volume: 7
  start-page: 727
  year: 1967
  end-page: 732
  ident: b0095
  article-title: Experimental study of an evaporative cooler
  publication-title: Int. Chem. Eng.
– year: 2004
  ident: 10.1016/j.applthermaleng.2020.115407_b0080
– volume: 36
  start-page: 271
  year: 1997
  ident: 10.1016/j.applthermaleng.2020.115407_b0130
  article-title: Mathematical model of heat and mass transfer processes in evaporative fluid coolers
  publication-title: Chem. Eng. Process.
  doi: 10.1016/S0255-2701(97)00006-8
– year: 2014
  ident: 10.1016/j.applthermaleng.2020.115407_b0005
– volume: 30
  start-page: 492
  year: 2010
  ident: 10.1016/j.applthermaleng.2020.115407_b0065
  article-title: Experimental investigation into the thermal- flow performance characteristics of an evaporative cooler
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2009.10.010
– volume: 75
  start-page: 3
  issue: 1
  year: 1953
  ident: 10.1016/j.applthermaleng.2020.115407_b0075
  article-title: Describing uncertainties in single-sample experiments
  publication-title: Mech. Eng.
– year: 2013
  ident: 10.1016/j.applthermaleng.2020.115407_b0105
– ident: 10.1016/j.applthermaleng.2020.115407_b0025
– volume: 7
  start-page: 727
  issue: 4
  year: 1967
  ident: 10.1016/j.applthermaleng.2020.115407_b0095
  article-title: Experimental study of an evaporative cooler
  publication-title: Int. Chem. Eng.
– start-page: 52
  year: 1962
  ident: 10.1016/j.applthermaleng.2020.115407_b0030
  article-title: Laminar condensation inside horizontal and inclined tubes
  publication-title: J. ASHRAE
– volume: 38
  start-page: 1089
  issue: 11–12
  year: 2017
  ident: 10.1016/j.applthermaleng.2020.115407_b0110
  article-title: Enhancing turbine output at dry-cooled power plants using a hybrid (dry/wet) dephlegmator
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457632.2016.1217050
– volume: 105
  start-page: 1030
  year: 2016
  ident: 10.1016/j.applthermaleng.2020.115407_b0010
  article-title: Performance evaluation of a bare tube air-cooled heat exchanger bundle in wet and dry mode
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.06.008
– start-page: 123
  year: 1925
  ident: 10.1016/j.applthermaleng.2020.115407_b0090
  article-title: Verdunstungskühling
  publication-title: VDI-Zeitschrift.
– year: 2001
  ident: 10.1016/j.applthermaleng.2020.115407_b0070
– volume: 35
  start-page: 233
  year: 2012
  ident: 10.1016/j.applthermaleng.2020.115407_b0135
  article-title: Experimental and computational analysis of thermal performance of the oval tube closed wet cooling tower
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.10.047
– volume: 41
  start-page: 8
  year: 1975
  ident: 10.1016/j.applthermaleng.2020.115407_b0050
  article-title: Neue Gleichungen für den Wärmeund den Stoffübergang in turbulent durchströmten
  publication-title: Rohren und Kanälen. Forsch. Ingenieurwes. (Engineering Research)
  doi: 10.1007/BF02559682
– volume: 55
  start-page: 7803
  issue: 25–26
  year: 2012
  ident: 10.1016/j.applthermaleng.2020.115407_b0140
  article-title: Thermal performance analysis of closed wet cooling towers under both unsaturated and supersaturated conditions
  publication-title: Int. J. Heat Mass Transfer Elsevier Ltd
  doi: 10.1016/j.ijheatmasstransfer.2012.08.006
– volume: 1
  start-page: 21
  issue: 4
  year: 1980
  ident: 10.1016/j.applthermaleng.2020.115407_b0020
  article-title: Flow patterns for isothermal condensation in one- pass air-cooled heat exchangers
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457638008939565
– year: 1988
  ident: 10.1016/j.applthermaleng.2020.115407_b0035
– volume: 132
  start-page: 238
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.115407_b0085
  article-title: Heat transfer characteristics of obliquely dispensed evaporating falling films on an elliptic tube
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2018.12.031
– volume: 34
  start-page: 477
  issue: 5
  year: 2002
  ident: 10.1016/j.applthermaleng.2020.115407_b0055
  article-title: Theoretical and computational analysis of closed wet cooling towers and its applications in cooling of buildings
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(01)00131-1
– year: 2008
  ident: 10.1016/j.applthermaleng.2020.115407_b0060
– volume: 108, Part B
  start-page: 1839
  year: 2017
  ident: 10.1016/j.applthermaleng.2020.115407_b0045
  article-title: Airside heat transfer and pressure loss characteristics of bare and finned tube heat exchangers used for aero engine cooling considering variable air properties
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2017.01.047
– volume: 41
  issue: 12
  year: 1967
  ident: 10.1016/j.applthermaleng.2020.115407_b0100
  article-title: Studies on characteristics and design procedure of evaporative coolers
  publication-title: J. SHASE, Japan
– volume: 3
  start-page: 35
  issue: 2
  year: 2016
  ident: 10.1016/j.applthermaleng.2020.115407_b0015
  article-title: CFD analysis of a pressure drop in astaggered tube bundle for a turbulent cross flow
  publication-title: Int. Adv. Res. J. Sci., Eng. Technol.
– ident: 10.1016/j.applthermaleng.2020.115407_b0125
– start-page: 138
  year: 1961
  ident: 10.1016/j.applthermaleng.2020.115407_b0115
  article-title: The heat, mass transfer characteristics of evaporative coolers
  publication-title: AIChE Chem. Eng. Prog. Symp. Ser.
– year: 1984
  ident: 10.1016/j.applthermaleng.2020.115407_b0120
– volume: 36
  start-page: 17
  issue: 1
  year: 1993
  ident: 10.1016/j.applthermaleng.2020.115407_b0040
  article-title: Modeling of indirect evaporative air coolers
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(93)80062-Y
SSID ssj0012874
Score 2.3491457
Snippet •The paper presents a discretized modelling method for evaporative coolers which is validated against experimental results from a 1.5 m × 1.5 m stainless-steel...
A discretized modelling method for evaporative coolers is presented in this paper. This study aims to validate the modelling method which can then be applied...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115407
SubjectTerms Bundling
Computational fluid dynamics
Condenser tubes
Condensers
Condensers (liquefiers)
Coolers
Cooling
Correlation analysis
Differential equations
Discretization
Error analysis
Evaporation
Evaporative cooling
Flow velocity
Fluid dynamics
Heat transfer
Mathematical models
Modelling
Stainless steels
Thermal analysis
Thermal power plants
Thermocouples
Water flow
Water temperature
Working fluids
Title A validated discretized thermal model for application in bare tube evaporative coolers and condensers
URI https://dx.doi.org/10.1016/j.applthermaleng.2020.115407
https://www.proquest.com/docview/2442326076
Volume 175
WOSCitedRecordID wos000533622700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fS-QwEA57Ksf5cNydyvnryMO9SZdtkyYNPshyKJ4cIpwH-xbaNIWV0hV3V8W_3pkmbVdFWJF7KUuhmWzmSzoznfmGkJ9hohLOIhNE3PCASxkHGYvygIepYCK0Ii1qEtc_8vw8GY3URa931tTC3JayqpL7e3X9X1UN90DZWDr7BnW3g8IN-A1KhyuoHa5LKX54AKON0ZHP8fOLwTLFB1unScIhXLreNy55svt4jWGPDJPAZvPMIgV4TW-MWUVmMimxyNfVv2G_3KlPmm_Ja70h2wiwHcVho858fnBRYsKtQ01q8G3Uxnfv7IsMfh-HAKcTY5xxFxxrCmS6bCQ8T1msArBRwicHruuV8uLwdnGEqz7-ez9lmHEfhfWRNci1x31Gj_0XRaAEsEQTNlDyA1mNZKzghFsd_j4enbXflJDZv3a__ZQ-AlLbbL_XZb5msDx7ddf2yOUX8tk7EnToAPCV9Gz1jawv0EtuEDukLRToAhSonwKtoUABCnQBCnRcUYQCRSjQBShQDwUKUKAdFDbJv5Pjy1-ngW-rERgWJ7MANqcxPGOpUOBMFiJVAtxKK1WOTQ1lDrszZSaL0VMO0zxiYiCLQRFnBfYuyDjbIivVpLLfCbUGTLzQgNspYMQoV6ECj5cr8FlZzrNkmxw2a6eN55zH1ielbpILr_TTlde48tqt_DaJ26evHffKks8dNWrS3o509qEGpC05wl6jXe239lSDIQzuByyG2Hm3gF3yqdtDe2RldjO3-2TN3M7G05sfHrmPt2yu5g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+validated+discretized+thermal+model+for+application+in+bare+tube+evaporative+coolers+and+condensers&rft.jtitle=Applied+thermal+engineering&rft.au=du+Plessis%2C+Jacques&rft.au=Owen%2C+Michael&rft.date=2020-07-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=175&rft_id=info:doi/10.1016%2Fj.applthermaleng.2020.115407&rft.externalDocID=S1359431119383097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon