Many-objective optimization with corner-based search
The performance of multi-objective evolutionary algorithms can severely deteriorate when applied to problems with 4 or more objectives, called many-objective problems. For Pareto dominance based techniques, available information about some optimal solutions can be used to improve their performance....
Uloženo v:
| Vydáno v: | Memetic computing Ročník 7; číslo 2; s. 105 - 118 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2015
|
| Témata: | |
| ISSN: | 1865-9284, 1865-9292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The performance of multi-objective evolutionary algorithms can severely deteriorate when applied to problems with 4 or more objectives, called many-objective problems. For Pareto dominance based techniques, available information about some optimal solutions can be used to improve their performance. This is the case of corner solutions. This work considers the behaviour of three multi-objective algorithms [Non-dominated sorting genetic algorithm (NSGA-II), Speed-constrained multi-objective particle swarm optimization (SMPSO) and generalized differential evolution (GDE3)] when corner solutions are inserted into the population at different evolutionary stages. The problem of finding corner solutions is addressed by proposing a new algorithm based in multi-objective particle swarm optimization (MOPSO). Results concerning the behaviour of the aforementioned algorithms in five benchmark problems (DTLZ1-5) and respective analysis are presented. |
|---|---|
| ISSN: | 1865-9284 1865-9292 |
| DOI: | 10.1007/s12293-015-0151-4 |