An Optimal-Time Algorithm for Shortest Paths on Realistic Polyhedra

We generalize our optimal-time algorithm for computing (an implicit representation of) the shortest-path map from a fixed source s on the surface of a convex polytope P to three realistic scenarios where P is a possibly nonconvex polyhedron. In the first scenario, ∂ P is a terrain whose maximum face...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete & computational geometry Ročník 43; číslo 1; s. 21 - 53
Hlavný autor: Schreiber, Yevgeny
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer-Verlag 01.01.2010
Springer Nature B.V
Predmet:
ISSN:0179-5376, 1432-0444
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We generalize our optimal-time algorithm for computing (an implicit representation of) the shortest-path map from a fixed source s on the surface of a convex polytope P to three realistic scenarios where P is a possibly nonconvex polyhedron. In the first scenario, ∂ P is a terrain whose maximum facet slope is bounded by any fixed constant. In the second scenario, P is an uncrowded polyhedron—each axis-parallel square h of side length l ( h ) whose smallest Euclidean distance to a vertex of P is at least l ( h ) is intersected by at most O (1) facets of ∂ P —an input model which, as we show, is a generalization of the well-known low-density model. In the third scenario, P is self-conforming —here, for each edge e of P , there is a connected region R ( e ) of O (1) facets whose union contains e , so that the shortest path distance from e to any edge e ′ of ∂ R ( e ) is at least c ⋅max {| e |,| e ′|}, where c is some positive constant. In particular, it includes the case where each facet of ∂ P is fat and each vertex is incident to at most O (1) facets of ∂ P . In all the above cases the algorithm runs in O ( n log  n ) time and space, where n is the number of edges of P , and produces an implicit representation of the shortest-path map, so that the shortest path from s to any query point q can be determined in O (log  n ) time. The constants of proportionality depend on the various parameters (maximum facet slope, crowdedness, etc.). We also note that the self-conforming model allows for a major simplification of the algorithm.
AbstractList We generalize our optimal-time algorithm for computing (an implicit representation of) the shortest-path map from a fixed source s on the surface of a convex polytope P to three realistic scenarios where P is a possibly nonconvex polyhedron. In the first scenario, ∂ P is a terrain whose maximum facet slope is bounded by any fixed constant. In the second scenario, P is an uncrowded polyhedron—each axis-parallel square h of side length l ( h ) whose smallest Euclidean distance to a vertex of P is at least l ( h ) is intersected by at most O (1) facets of ∂ P —an input model which, as we show, is a generalization of the well-known low-density model. In the third scenario, P is self-conforming —here, for each edge e of P , there is a connected region R ( e ) of O (1) facets whose union contains e , so that the shortest path distance from e to any edge e ′ of ∂ R ( e ) is at least c ⋅max {| e |,| e ′|}, where c is some positive constant. In particular, it includes the case where each facet of ∂ P is fat and each vertex is incident to at most O (1) facets of ∂ P . In all the above cases the algorithm runs in O ( n log  n ) time and space, where n is the number of edges of P , and produces an implicit representation of the shortest-path map, so that the shortest path from s to any query point q can be determined in O (log  n ) time. The constants of proportionality depend on the various parameters (maximum facet slope, crowdedness, etc.). We also note that the self-conforming model allows for a major simplification of the algorithm.
We generalize our optimal-time algorithm for computing (an implicit representation of) the shortest-path map from a fixed source s on the surface of a convex polytope P to three realistic scenarios where P is a possibly nonconvex polyhedron. In the first scenario, [partial differential] P is a terrain whose maximum facet slope is bounded by any fixed constant. In the second scenario, P is an uncrowded polyhedron--each axis-parallel square h of side length l(h) whose smallest Euclidean distance to a vertex of P is at least l(h) is intersected by at most O(1) facets of [partial differential] P--an input model which, as we show, is a generalization of the well-known low-density model. In the third scenario, P is self-conforming--here, for each edge e of P, there is a connected region R(e) of O(1) facets whose union contains e, so that the shortest path distance from e to any edge e' of [partial differential] R(e) is at least cmax{|e|,|e'|}, where c is some positive constant. In particular, it includes the case where each facet of [partial differential] P is fat and each vertex is incident to at most O(1) facets of [partial differential] P. In all the above cases the algorithm runs in O(nlogn) time and space, where n is the number of edges of P, and produces an implicit representation of the shortest-path map, so that the shortest path from s to any query point q can be determined in O(logn) time. The constants of proportionality depend on the various parameters (maximum facet slope, crowdedness, etc.). We also note that the self-conforming model allows for a major simplification of the algorithm. [PUBLICATION ABSTRACT]
Author Schreiber, Yevgeny
Author_xml – sequence: 1
  givenname: Yevgeny
  surname: Schreiber
  fullname: Schreiber, Yevgeny
  email: yevgeny.schreiber@cs.tau.ac.il
  organization: School of Computer Science, Tel Aviv University
BookMark eNp9kEtOwzAQQC1UJNrCAdhF7A127MT2sipfqRIVlLXlOE7jKo2L7S56G87CyXAVFggJVrN5b2b0JmDUu94AcInRNUaI3QSEaEEhQgIKTErIT8AYU5JDRCkdgTHCTMCCsPIMTELYoIQLxMfgdtZnz7tot6qDK7s12axbO29ju80a57PX1vloQsyWKrYhc_3nx4tRnQ3R6mzpukNraq_OwWmjumAuvucUvN3freaPcPH88DSfLaAmBY9Q5IwSppHmhOXCsLrCglfE1GXFCdGFppRoXGFUVw0htBB1XgpclUwUpFF1Rabgati78-59n96SG7f3fTopsSgZ5ZiRBLEB0t6F4E0jtY0qWtdHr2wnMZLHYnIoJlMxeSwmeTLxL3PnUxh_-NfJBycktl8b_-OlP6UvQSh_Sw
CODEN DCGEER
CitedBy_id crossref_primary_10_1016_j_comgeo_2012_05_001
crossref_primary_10_1007_s00454_013_9515_z
crossref_primary_10_1016_j_jda_2012_12_001
crossref_primary_10_1016_j_cagd_2017_03_010
Cites_doi 10.1016/S0020-0190(96)00154-8
10.1142/S0218195996000095
10.1137/S0097539797325223
10.1007/s00453-001-0027-5
10.1137/0216038
10.1007/s00454-007-9031-0
10.1137/S0097539795289604
10.1137/S0097539799352759
10.1137/0215014
10.1137/0216045
10.1007/s004530010047
10.1007/PL00009402
10.1007/s00453-002-0961-x
10.1007/BF02187877
10.1007/BF01758853
10.1145/263867.263869
10.1007/978-3-540-45077-1_23
10.1145/262839.262983
10.1145/301250.301449
10.1007/BFb0024013
10.1145/177424.177453
10.1145/1137856.1137885
10.1016/0925-7721(95)00005-8
10.21236/ADA166246
10.1016/S0925-7721(96)00016-8
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2009
Springer Science+Business Media, LLC 2010
Copyright_xml – notice: Springer Science+Business Media, LLC 2009
– notice: Springer Science+Business Media, LLC 2010
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00454-009-9136-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Databases
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1432-0444
EndPage 53
ExternalDocumentID 1924668561
10_1007_s00454_009_9136_8
Genre Feature
GroupedDBID -52
-5D
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.4S
.86
.DC
06D
0R~
0VY
199
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
88I
8AO
8FE
8FG
8FW
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C1A
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KQ8
L6V
LAS
LLZTM
LO0
M0N
M2O
M2P
M4Y
M7S
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P62
P9R
PADUT
PF0
PKN
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YIN
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-927437c0c83729e7db198b3ed6b833c5c443c1b10dbf33459d2691b67953fadb3
IEDL.DBID M2P
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272902500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0179-5376
IngestDate Thu Nov 27 13:41:56 EST 2025
Tue Nov 18 20:56:21 EST 2025
Sat Nov 29 02:58:45 EST 2025
Fri Feb 21 02:43:15 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Shortest path map
Continuous Dijkstra
Terrain
Conforming subdivision
Realistic polyhedral surface
Wavefront
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-927437c0c83729e7db198b3ed6b833c5c443c1b10dbf33459d2691b67953fadb3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s00454-009-9136-8.pdf
PQID 196748173
PQPubID 31658
PageCount 33
ParticipantIDs proquest_journals_196748173
crossref_citationtrail_10_1007_s00454_009_9136_8
crossref_primary_10_1007_s00454_009_9136_8
springer_journals_10_1007_s00454_009_9136_8
PublicationCentury 2000
PublicationDate 2010-01-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Discrete & computational geometry
PublicationTitleAbbrev Discrete Comput Geom
PublicationYear 2010
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References Mitchell, Mount, Papadimitriou (CR13) 1987; 16
CR18
de Berg (CR6) 2000; 28
CR15
CR14
O’Rourke, Suri, Booth (CR17) 1985
CR12
CR10
van der Stappen, Overmars, de Berg, Vleugels (CR24) 1998; 20
Agarwal, Har-Peled, Sharir, Varadarajan (CR2) 1997; 44
Alt, Fleischer, Kaufmann, Mehlhorn, Näher, Schirra, Uhrig (CR4) 1992; 8
Agarwal, Katz, Sharir (CR1) 1995; 5
Sharir, Schorr (CR22) 1986; 15
van Kreveld (CR25) 1998; 9
Schreiber, Sharir (CR19) 2008; 39
Hershberger, Suri (CR9) 1999; 28
Aleksandrov, Maheshwari, Sack (CR3) 2003
Mount (CR16) 1987; 2
Sharir (CR21) 1987; 16
Schwarzkopf, Vleugels (CR20) 1996; 60
CR23
Lanthier, Maheshwari, Sack (CR11) 2001; 30
Har-Peled (CR8) 1999; 28
Chen, Han (CR5) 1996; 6
de Berg, Katz, van der Stappen, Vleugels (CR7) 2002; 34
Varadarajan, Agarwal (CR26) 2000; 30
9136_CR23
O. Schwarzkopf (9136_CR20) 1996; 60
J. Hershberger (9136_CR9) 1999; 28
D.M. Mount (9136_CR16) 1987; 2
M. Sharir (9136_CR21) 1987; 16
M. Kreveld van (9136_CR25) 1998; 9
L. Aleksandrov (9136_CR3) 2003
J. Chen (9136_CR5) 1996; 6
M. Berg de (9136_CR7) 2002; 34
K.R. Varadarajan (9136_CR26) 2000; 30
P.K. Agarwal (9136_CR1) 1995; 5
9136_CR12
9136_CR14
9136_CR15
M. Sharir (9136_CR22) 1986; 15
9136_CR10
S. Har-Peled (9136_CR8) 1999; 28
H. Alt (9136_CR4) 1992; 8
J. O’Rourke (9136_CR17) 1985
A.F. Stappen van der (9136_CR24) 1998; 20
9136_CR18
Y. Schreiber (9136_CR19) 2008; 39
M. Lanthier (9136_CR11) 2001; 30
J.S.B. Mitchell (9136_CR13) 1987; 16
P.K. Agarwal (9136_CR2) 1997; 44
M. Berg de (9136_CR6) 2000; 28
References_xml – ident: CR18
– volume: 60
  start-page: 121
  year: 1996
  end-page: 127
  ident: CR20
  article-title: Range searching in low-density environments
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(96)00154-8
– volume: 6
  start-page: 127
  year: 1996
  end-page: 144
  ident: CR5
  article-title: Shortest paths on a polyhedron, Part I: Computing shortest paths
  publication-title: Int. J. Comput. Geom. Appl.
  doi: 10.1142/S0218195996000095
– ident: CR14
– ident: CR12
– volume: 28
  start-page: 1182
  issue: 4
  year: 1999
  end-page: 1197
  ident: CR8
  article-title: Constructing approximate shortest path maps in three dimensions
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539797325223
– ident: CR10
– volume: 30
  start-page: 527
  issue: 4
  year: 2001
  end-page: 562
  ident: CR11
  article-title: Approximating shortest paths on weighted polyhedral surfaces
  publication-title: Algorithmica
  doi: 10.1007/s00453-001-0027-5
– start-page: 246
  year: 2003
  end-page: 257
  ident: CR3
  article-title: An improved approximation algorithm for computing geometric shortest paths
  publication-title: Proc. of the 14th Internat. Sympos. Fundam. Comput. Theory (FCT’03)
– volume: 16
  start-page: 561
  year: 1987
  end-page: 572
  ident: CR21
  article-title: On shortest paths amidst convex polyhedra
  publication-title: SIAM J. Comput.
  doi: 10.1137/0216038
– volume: 9
  start-page: 197
  year: 1998
  end-page: 210
  ident: CR25
  article-title: On fat partitioning, fat covering, and the union size of polygons
  publication-title: Comput. Geom. Theory Appl.
– volume: 39
  start-page: 500
  year: 2008
  end-page: 579
  ident: CR19
  article-title: An optimal-time algorithm for shortest paths on a convex polytope in three dimensions
  publication-title: Discrete Comput. Geom. (20th anniversary special issue)
  doi: 10.1007/s00454-007-9031-0
– ident: CR23
– volume: 28
  start-page: 2215
  issue: 6
  year: 1999
  end-page: 2256
  ident: CR9
  article-title: An optimal algorithm for Euclidean shortest paths in the plane
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539795289604
– volume: 30
  start-page: 1321
  issue: 4
  year: 2000
  end-page: 1340
  ident: CR26
  article-title: Approximating shortest paths on a nonconvex polyhedron
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539799352759
– volume: 15
  start-page: 193
  year: 1986
  end-page: 215
  ident: CR22
  article-title: On shortest paths in polyhedral spaces
  publication-title: SIAM J. Comput.
  doi: 10.1137/0215014
– volume: 16
  start-page: 647
  year: 1987
  end-page: 668
  ident: CR13
  article-title: The discrete geodesic problem
  publication-title: SIAM J. Comput.
  doi: 10.1137/0216045
– start-page: 243
  year: 1985
  end-page: 254
  ident: CR17
  article-title: Shortest paths on polyhedral surfaces
  publication-title: Proc. of the 2nd Sympos. Theoretical Aspects of Computer Science
– ident: CR15
– volume: 28
  start-page: 353
  year: 2000
  end-page: 366
  ident: CR6
  article-title: Linear size binary space partitions for uncluttered scenes
  publication-title: Algorithmica
  doi: 10.1007/s004530010047
– volume: 20
  start-page: 561
  issue: 4
  year: 1998
  end-page: 587
  ident: CR24
  article-title: Motion planning in environments with low obstacle density
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/PL00009402
– volume: 34
  start-page: 81
  year: 2002
  end-page: 97
  ident: CR7
  article-title: Realistic input models for geometric algorithms
  publication-title: Algorithmica
  doi: 10.1007/s00453-002-0961-x
– volume: 5
  start-page: 187
  year: 1995
  end-page: 206
  ident: CR1
  article-title: Computing depth orders for fat objects and related problems
  publication-title: Comput. Geom. Theory Appl.
– volume: 2
  start-page: 153
  year: 1987
  end-page: 174
  ident: CR16
  article-title: Storing the subdivision of a polyhedral surface
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02187877
– volume: 8
  start-page: 391
  year: 1992
  end-page: 406
  ident: CR4
  article-title: Approximate motion planning and the complexity of the boundary of the union of simple geometric figures
  publication-title: Algorithmica
  doi: 10.1007/BF01758853
– volume: 44
  start-page: 567
  year: 1997
  end-page: 584
  ident: CR2
  article-title: Approximate shortest paths on a convex polytope in three dimensions
  publication-title: J. ACM
  doi: 10.1145/263867.263869
– start-page: 246
  volume-title: Proc. of the 14th Internat. Sympos. Fundam. Comput. Theory (FCT’03)
  year: 2003
  ident: 9136_CR3
  doi: 10.1007/978-3-540-45077-1_23
– volume: 44
  start-page: 567
  year: 1997
  ident: 9136_CR2
  publication-title: J. ACM
  doi: 10.1145/263867.263869
– ident: 9136_CR12
  doi: 10.1145/262839.262983
– volume: 34
  start-page: 81
  year: 2002
  ident: 9136_CR7
  publication-title: Algorithmica
  doi: 10.1007/s00453-002-0961-x
– volume: 28
  start-page: 353
  year: 2000
  ident: 9136_CR6
  publication-title: Algorithmica
  doi: 10.1007/s004530010047
– ident: 9136_CR10
  doi: 10.1145/301250.301449
– start-page: 243
  volume-title: Proc. of the 2nd Sympos. Theoretical Aspects of Computer Science
  year: 1985
  ident: 9136_CR17
  doi: 10.1007/BFb0024013
– ident: 9136_CR23
  doi: 10.1145/177424.177453
– volume: 30
  start-page: 527
  issue: 4
  year: 2001
  ident: 9136_CR11
  publication-title: Algorithmica
  doi: 10.1007/s00453-001-0027-5
– volume: 8
  start-page: 391
  year: 1992
  ident: 9136_CR4
  publication-title: Algorithmica
  doi: 10.1007/BF01758853
– ident: 9136_CR14
  doi: 10.1145/1137856.1137885
– volume: 60
  start-page: 121
  year: 1996
  ident: 9136_CR20
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(96)00154-8
– volume: 5
  start-page: 187
  year: 1995
  ident: 9136_CR1
  publication-title: Comput. Geom. Theory Appl.
  doi: 10.1016/0925-7721(95)00005-8
– volume: 6
  start-page: 127
  year: 1996
  ident: 9136_CR5
  publication-title: Int. J. Comput. Geom. Appl.
  doi: 10.1142/S0218195996000095
– volume: 28
  start-page: 2215
  issue: 6
  year: 1999
  ident: 9136_CR9
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539795289604
– volume: 16
  start-page: 561
  year: 1987
  ident: 9136_CR21
  publication-title: SIAM J. Comput.
  doi: 10.1137/0216038
– volume: 20
  start-page: 561
  issue: 4
  year: 1998
  ident: 9136_CR24
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/PL00009402
– volume: 2
  start-page: 153
  year: 1987
  ident: 9136_CR16
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02187877
– ident: 9136_CR15
  doi: 10.21236/ADA166246
– volume: 28
  start-page: 1182
  issue: 4
  year: 1999
  ident: 9136_CR8
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539797325223
– ident: 9136_CR18
– volume: 30
  start-page: 1321
  issue: 4
  year: 2000
  ident: 9136_CR26
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539799352759
– volume: 39
  start-page: 500
  year: 2008
  ident: 9136_CR19
  publication-title: Discrete Comput. Geom. (20th anniversary special issue)
  doi: 10.1007/s00454-007-9031-0
– volume: 15
  start-page: 193
  year: 1986
  ident: 9136_CR22
  publication-title: SIAM J. Comput.
  doi: 10.1137/0215014
– volume: 16
  start-page: 647
  year: 1987
  ident: 9136_CR13
  publication-title: SIAM J. Comput.
  doi: 10.1137/0216045
– volume: 9
  start-page: 197
  year: 1998
  ident: 9136_CR25
  publication-title: Comput. Geom. Theory Appl.
  doi: 10.1016/S0925-7721(96)00016-8
SSID ssj0004908
Score 1.8879268
Snippet We generalize our optimal-time algorithm for computing (an implicit representation of) the shortest-path map from a fixed source s on the surface of a convex...
We generalize our optimal-time algorithm for computing (an implicit representation of) the shortest-path map from a fixed source s on the surface of a convex...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21
SubjectTerms Algorithms
Combinatorics
Computational Mathematics and Numerical Analysis
Geometry
Mathematics
Mathematics and Statistics
Polyhedra
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTsMwDLVgcIADgwFiDFAOnECR2qZtkuMETBxgTBug3aomadmkrUNrQeJv-Ba-jKRrN0CABLdKiaPKcWwntp8Bji3lUi0JBgrRibH-jnFohwo7sXIsxbULoPKuJVe03Wb9Pu8Uddxpme1ehiRzTT0vdsvR4rB5zOe2QdFdhhVt7Zjp19Dt3S-KIXnehs5IGjZYJWUo87slPhujhYf5JSia25pW9V9_uQkbhWuJmjNZ2IKlKKlBtWzbgIpTXIP16zlUa7oN580E3Wi9MQ5H2NSDoOboYTIdZoMx0v4s6g1MNm6aoY4mStEkeXvtRgY0UVOjzmT0MojUNNyBu9bF7dklLlorYEk8lmGuL6OESksyE7aLqBI2Z4JEyheMEOlJ1yXSFralREyI63Hl-NwWPuUeiUMlyC5UkkkS7QFyqdYDTFgu9fVdhoah1gjS4yxmns8cEdbBKnkcyAJ33LS_GAVzxOScZ4HmWWB4FrA6nMxJHmegG79NbpQbFxTnLw20XqEusympw2m5Tx9Gf1pr_0-zG7A2yyUwDzIHUMmmT9EhrMrnbJhOj3KpfAdqs9l3
  priority: 102
  providerName: Springer Nature
Title An Optimal-Time Algorithm for Shortest Paths on Realistic Polyhedra
URI https://link.springer.com/article/10.1007/s00454-009-9136-8
https://www.proquest.com/docview/196748173
Volume 43
WOSCitedRecordID wos000272902500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: K7-
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4N2MN4GAM20QGVH_bEZJHESWw_TQWBJm2UqB0T2ksU2wmd1KasyZD497tLk8KQxsteTpESW5HvfD77zt8H8MFzoURLICjEoOD4XPDMzxwPChd4TmMI4BrWkq9yOFTX1zppa3Oqtqyy84mNo3ZzS2fkx2gpMlS-FJ9uf3EijaLkasugsQYbGNj4VNF1ESQP1yJ1Q0hHNscJtaRLanpLDNEo5JQZ0D5B8v69LD3Emk_So82qc771n__7Bl634SYbLO1jG17k5Q5sdVQOrJ3ZO7B5sYJvrXbhdFCyS_Qls2zK6Y4IG0xvsPN6MmMY47LxhCp0q5ol2Khi85KNcsJRxMYsmU_vJ7lbZG_h6vzs2-ln3rItcCsiVXON-1MhrWcVZfJy6YyvlRG5i40SwkY2DIX1je85UwgRRtoFsfZNLHUkiswZ8Q7Wy3mZ7wELJboGZbxQxri9kVmGTsJGWhUqilVgsh543WCntoUiJ0aMaboCUW70k6J-UtJPqnpwtGpyu8TheO7j_U4naTslq3SlkB587JT66O2_-nr_bF_78GpZTkBnMgewXi9-54fw0t7VP6tFHzZOzobJqA9rXyTvk3FeNjIhKccok-gHytH4-x-Ec-ie
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQ9tFBALOXDB7iALJLYie1DhVaFqlW3ywqK1Fsa2wmLtM2WTQrqj-I_MpOPLSDRWw_cIiW25Ph5POMZvwfwIvBSIRKICjEqOD4XPAszz6PCR4E36AL4RrVkpMZjfXxsJivws78LQ2WVvU1sDLWfOzojf4NIUVKHSrw9-8ZJNIqSq72CRouKg_ziB0Zs1fb-O5zel1G0-_5oZ493ogLciVjX3GAYJpQLnKaEVa68xbDbitwnVgvhYielcKENA28LIWRsfJSY0CbKxKLIvBXY7w24KYlYjCoFo8nlNUzTCOARxjmxpPRJ1KDlLI0lp0yECYkC-M9t8NK3_Ssd2-xyuxv_2f-5C-udO82GLf7vwUpebsJGL1XBOsu1CWuHS3ra6j7sDEv2AW3laTbjdAeGDWdfcDD19JShD88-TakCuarZBBtVbF6yjznxRGJjNpnPLqa5X2QP4PO1DOwhrJbzMn8ETCo0fdoGUiUYvqksQyPoYqMLHSc6stkAgn5yU9dRrZPixyxdkkQ3eEgRDynhIdUDeLVsctbyjFz18VaPgbQzOVW6BMAAXvcg-u3tv_p6fGVfz-H23tHhKB3tjw-24E5bOkHnT09gtV6c50_hlvtef60Wz5qlwODkurH1C4ahPeQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB31A1VwoFBALKXgA1xAVpM4ie0DQqu2K6qWJWpBqriksZ2wSNts2QRQfxr_jpl8bCkSvfXALVJiS46fxzOe8XsALzwXSkQCUSEGBcfngmd-5nhQuMBzGl0A16iWHMrxWJ2c6GQJfvV3YaissreJjaF2M0tn5NuIFBkqX4rtoquKSHZHb8-_cRKQokRrr6bRIuQgv_iJ0Vv1Zn8Xp_plEIz2Pu68453AALciUjXXGJIJaT2rKHmVS2cwBDcid7FRQtjIhqGwvvE9Zwohwki7INa-iaWORJE5I7DfZViVGGJSNWESfb68kqkbMTzCOyfGlD6h6rX8pVHIKSuhfaIDvrolXvq5f6Vmmx1vtP4f_6t7cLdzs9mwXRf3YSkvN2C9l7BgnUXbgDvvF7S11QPYGZbsA9rQs2zK6W4MG06_4GDqyRlD354dT6gyuapZgo0qNivZUU78kdiYJbPpxSR38-whfLqRgT2ClXJW5o-BhRJNojJeKGMM62SWoXG0kVaFimIVmGwAXj_Rqe0o2EkJZJouyKMbbKSIjZSwkaoBvFo0OW_5R677eLPHQ9qZoipdgGEAr3tA_fH2X309ubav57CGkEoP98cHm3C7raigY6mnsFLPv-dbcMv-qL9W82fNqmBwetPQ-g2GiEbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimal-Time+Algorithm+for+Shortest+Paths+on%C2%A0Realistic+Polyhedra&rft.jtitle=Discrete+%26+computational+geometry&rft.au=Schreiber%2C+Yevgeny&rft.date=2010-01-01&rft.issn=0179-5376&rft.eissn=1432-0444&rft.volume=43&rft.issue=1&rft.spage=21&rft.epage=53&rft_id=info:doi/10.1007%2Fs00454-009-9136-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00454_009_9136_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-5376&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-5376&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-5376&client=summon