Performance of Parallel K-Means Algorithms in Java

K-means is a well-known clustering algorithm often used for its simplicity and potential efficiency. Its properties and limitations have been investigated by many works reported in the literature. K-means, though, suffers from computational problems when dealing with large datasets with many dimensi...

Full description

Saved in:
Bibliographic Details
Published in:Algorithms Vol. 15; no. 4; p. 117
Main Author: Nigro, Libero
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.04.2022
Subjects:
ISSN:1999-4893, 1999-4893
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract K-means is a well-known clustering algorithm often used for its simplicity and potential efficiency. Its properties and limitations have been investigated by many works reported in the literature. K-means, though, suffers from computational problems when dealing with large datasets with many dimensions and great number of clusters. Therefore, many authors have proposed and experimented different techniques for the parallel execution of K-means. This paper describes a novel approach to parallel K-means which, today, is based on commodity multicore machines with shared memory. Two reference implementations in Java are developed and their performances are compared. The first one is structured according to a map/reduce schema that leverages the built-in multi-threaded concurrency automatically provided by Java to parallel streams. The second one, allocated on the available cores, exploits the parallel programming model of the Theatre actor system, which is control-based, totally lock-free, and purposely relies on threads as coarse-grain “programming-in-the-large” units. The experimental results confirm that some good execution performance can be achieved through the implicit and intuitive use of Java concurrency in parallel streams. However, better execution performance can be guaranteed by the modular Theatre implementation which proves more adequate for an exploitation of the computational resources.
AbstractList K-means is a well-known clustering algorithm often used for its simplicity and potential efficiency. Its properties and limitations have been investigated by many works reported in the literature. K-means, though, suffers from computational problems when dealing with large datasets with many dimensions and great number of clusters. Therefore, many authors have proposed and experimented different techniques for the parallel execution of K-means. This paper describes a novel approach to parallel K-means which, today, is based on commodity multicore machines with shared memory. Two reference implementations in Java are developed and their performances are compared. The first one is structured according to a map/reduce schema that leverages the built-in multi-threaded concurrency automatically provided by Java to parallel streams. The second one, allocated on the available cores, exploits the parallel programming model of the Theatre actor system, which is control-based, totally lock-free, and purposely relies on threads as coarse-grain “programming-in-the-large” units. The experimental results confirm that some good execution performance can be achieved through the implicit and intuitive use of Java concurrency in parallel streams. However, better execution performance can be guaranteed by the modular Theatre implementation which proves more adequate for an exploitation of the computational resources.
Author Nigro, Libero
Author_xml – sequence: 1
  givenname: Libero
  orcidid: 0000-0001-6577-4777
  surname: Nigro
  fullname: Nigro, Libero
BookMark eNplkEtPwzAQhC1UJNrCgX8QiROHUDvxIz5WFY9CET3A2do46-IqjYuTIvHvCRQQgtOOVjOjTzMigyY0SMgpoxd5rukEmKCcMqYOyJBprVNe6HzwSx-RUduuKZVCSzYk2RKjC3EDjcUkuGQJEeoa6-QuvUdo2mRar0L03fOmTXyT3MIrHJNDB3WLJ193TJ6uLh9nN-ni4Xo-my5Sm4uiS4uq0AKklJoXjrkyYygplKitcAAoMXNZXiprkbtCaEWrTJVKC-0KSvtAPibzfW8VYG220W8gvpkA3nw-QlwZiJ23NRqJlaik4lw55LbKoCpdUSpW2Zwh16rvOtt3bWN42WHbmXXYxabHN5kUWY8oJO9dk73LxtC2EZ2xvoPOh6aL4GvDqPkY2fyM3CfO_yS-Of973wH7cXwe
CitedBy_id crossref_primary_10_3390_a16070349
crossref_primary_10_3390_a16120572
crossref_primary_10_3390_math13081285
crossref_primary_10_1016_j_simpat_2022_102712
Cites_doi 10.1007/s10994-021-06021-7
10.1109/TIT.1982.1056489
10.1016/j.patcog.2019.04.014
10.1109/PAAP.2011.17
10.1016/j.eswa.2012.07.021
10.3389/frai.2021.740817
10.1016/j.compeleceng.2017.12.002
10.1109/ICCIC.2013.6724291
10.1007/978-0-387-09766-4_125
10.1007/978-3-642-10665-1_71
10.1145/342009.335388
10.1109/ICSESS.2015.7339213
10.1016/j.patrec.2009.04.013
10.1016/j.simpat.2018.07.011
10.1002/cpe.3102
10.1016/j.simpat.2020.102189
10.1016/j.patrec.2009.09.011
10.1126/science.1242072
10.7551/mitpress/1086.001.0001
10.1007/s10489-018-1238-7
ContentType Journal Article
Copyright 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/a15040117
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_6ed5d67447fe4cd2adbf8b71dc31e497
10_3390_a15040117
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-8d895a666948f1fb21e60abe9c5faae6e2f23b7cce4f85970d27b7959f800f1f3
IEDL.DBID M7S
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000785313400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4893
IngestDate Thu Dec 04 16:49:09 EST 2025
Mon Nov 17 23:13:01 EST 2025
Tue Nov 18 21:16:18 EST 2025
Sat Nov 29 07:11:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-8d895a666948f1fb21e60abe9c5faae6e2f23b7cce4f85970d27b7959f800f1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6577-4777
OpenAccessLink https://www.proquest.com/docview/2652948564?pq-origsite=%requestingapplication%
PQID 2652948564
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_6ed5d67447fe4cd2adbf8b71dc31e497
proquest_journals_2652948564
crossref_citationtrail_10_3390_a15040117
crossref_primary_10_3390_a15040117
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cuomo (ref_10) 2019; 75
Franti (ref_18) 2019; 93
ref_12
ref_11
Nigro (ref_20) 2018; 87
ref_30
Chaoji (ref_16) 2009; 30
ref_19
Yang (ref_28) 2021; 4
Gusev (ref_25) 2014; 26
Franti (ref_15) 2018; 48
ref_24
Kantabutra (ref_6) 2000; 1
ref_23
Rodriguez (ref_27) 2014; 344
Celebi (ref_17) 2013; 40
ref_22
Lloyd (ref_14) 1982; 28
Jain (ref_2) 2010; 31
ref_1
Nigro (ref_13) 2021; 106
ref_29
Cicirelli (ref_21) 2021; 25
ref_26
ref_9
ref_8
ref_5
Vouros (ref_3) 2021; 110
ref_4
ref_7
Ahmed (ref_31) 2011; 25
References_xml – volume: 110
  start-page: 1975
  year: 2021
  ident: ref_3
  article-title: An empirical comparison between stochastic and deterministic centroid initialisation for K-means variations
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-021-06021-7
– volume: 28
  start-page: 129
  year: 1982
  ident: ref_14
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 93
  start-page: 95
  year: 2019
  ident: ref_18
  article-title: How much can k-means be improved by using better initialization and repeats?
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.04.014
– ident: ref_30
– ident: ref_5
  doi: 10.1109/PAAP.2011.17
– volume: 40
  start-page: 200
  year: 2013
  ident: ref_17
  article-title: A comparative study of efficient initialization methods for the k-means clustering algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.07.021
– volume: 4
  start-page: 740817
  year: 2021
  ident: ref_28
  article-title: Adaptive initialization method for K-means algorithm
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2021.740817
– ident: ref_24
– ident: ref_26
– ident: ref_11
– volume: 75
  start-page: 262
  year: 2019
  ident: ref_10
  article-title: A GPU-accelerated parallel K-means algorithm
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.12.002
– ident: ref_9
  doi: 10.1109/ICCIC.2013.6724291
– ident: ref_23
  doi: 10.1007/978-0-387-09766-4_125
– ident: ref_7
  doi: 10.1007/978-3-642-10665-1_71
– ident: ref_1
– volume: 25
  start-page: 233
  year: 2021
  ident: ref_21
  article-title: A development methodology for cyber-physical systems based on deterministic Theatre with hybrid actors
  publication-title: TASK Q. Spec. Issue Cyber-Phys. Syst.
– ident: ref_19
  doi: 10.1145/342009.335388
– ident: ref_29
  doi: 10.1109/ICSESS.2015.7339213
– volume: 30
  start-page: 994
  year: 2009
  ident: ref_16
  article-title: Robust partitional clustering by outlier and density insensitive seeding
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.04.013
– ident: ref_8
– ident: ref_4
– volume: 87
  start-page: 343
  year: 2018
  ident: ref_20
  article-title: Qualitative and quantitative model checking of distributed probabilistic timed actors
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2018.07.011
– volume: 26
  start-page: 1847
  year: 2014
  ident: ref_25
  article-title: A superlinear speedup region for matrix multiplication
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.3102
– ident: ref_12
– volume: 106
  start-page: 102189
  year: 2021
  ident: ref_13
  article-title: Parallel Theatre: A Java actor-framework for high-performance computing
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2020.102189
– volume: 31
  start-page: 651
  year: 2010
  ident: ref_2
  article-title: Data clustering: 50 years beyond k-means
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 344
  start-page: 1492
  year: 2014
  ident: ref_27
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– ident: ref_22
  doi: 10.7551/mitpress/1086.001.0001
– volume: 25
  start-page: 1
  year: 2011
  ident: ref_31
  article-title: An initialization method for the K-means algorithm using RNN and coupling degree
  publication-title: Int. J. Comput. Appl.
– volume: 1
  start-page: 243
  year: 2000
  ident: ref_6
  article-title: Parallel K-means clustering algorithm on NOWs
  publication-title: NECTEC Tech. J.
– volume: 48
  start-page: 4743
  year: 2018
  ident: ref_15
  article-title: K-means properties on six clustering benchmark datasets
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1238-7
SSID ssj0065961
Score 2.315739
Snippet K-means is a well-known clustering algorithm often used for its simplicity and potential efficiency. Its properties and limitations have been investigated by...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 117
SubjectTerms Actors
Algorithms
Clustering
Concurrency
Datasets
functional parallel streams
High performance computing
Java
K-means clustering
Methods
multi-core machines
Neighborhoods
parallel algorithms
Parallel programming
Theater
Theaters & cinemas
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA1SXLjxLVarBHHhZmjzTpZVLOKjdKHS3ZCnCrWVtvb7TeZRFQU3boc7zHBuknsP3JwDwKniQStJWcYCshl1lGeGEJFpjD3yxklfeB0-3op-Xw6HavDF6ivNhJXywCVwbe4dc1xQKoKn1mHtTJBGIGcJ8lQV98g7QtVkqjyDOVMclTpCJJL6to5tD03qZ9-qTyHS_-MMLgpLbxOsVx0h7JZ_sgVW_HgbbNRuC7DafDsADz5n_OEkwIGeJh-UEbzJ7nwsOLA7eppEqv_8OoMvY3itF3oXPPQu7y-ussrxILOEyXkmnVRMR0ahqAwoGIw872jjlWVBa889DpgYYa2nQUYq0HFYmOQWHmLfF18ge6Axnoz9PoDIGaFjc6KlI9RSpQ0jKtER7a2U1jXBWY1Ebis58ORKMcojLUig5UvQmuBkGfpWamD8FnSe4FwGJNnq4kFMZl4lM_8rmU3QqpORV3tplmPOcNKw4fTgP75xCNZwusJQTN-0QGM-ffdHYNUu5i-z6XGxjD4APOrNLQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Performance of Parallel K-Means Algorithms in Java
URI https://www.proquest.com/docview/2652948564
https://doaj.org/article/6ed5d67447fe4cd2adbf8b71dc31e497
Volume 15
WOSCitedRecordID wos000785313400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: K7-
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M7S
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT1QxFG4UWLgBBA0oThrjwk0DfbcrA2aIikxuEAiubvoEkmEGZkaW_nbbTu8QgnHjpovb3qY5bc-jPf0-AD5oEY1WjCMesUPMM4EspRIZQgIO1qtQuA7Pv8vBQF1c6KYeuE1rWmWnE4ui9mOXz8h3ieAkI5kI9un2DmXWqHy7Wik0noPljJKAS-rej04TC64FnqMJ0RTa75rk_LCMgfbIBhWo_ieauJiXw7X_Hdg6WK2OJdyfr4SX4FkYbYC1jrQB1j28CUjz8FQAjiNszCTTqQzhEToOyW7B_eFl6n52dTOF1yP4zdybV-DssH_6-QuqxAnIUa5mSHmluUmBSRpXxNESHMSesUE7Ho0JIpBIqJXOBRZViij2PJE2k47H5D6mH-hrsDQaj8IWgNhbaZKPY5SnzDFtLKc6RzUmOKWc3wYfO1G2rqKKZ3KLYZuiiyz1diH1bfB-0fR2DqXxt0YHeT4WDTL6dfkwnly2dTO1InjuhWRMxsCcJ8bbqKzE3lEcmE6d7HRT1dYtOW0f5unNv6vfghckv3Eo6Tk7YGk2-RXegRV3P7ueTnpg-aA_aE56JXhP5ZFEvbLqcvm7n-qbr8fNzz9xSOBN
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQXyquiUGCFQOKyarzvPSBUHlVL0iiHgnoz-5gtlUJSklDEn-I3suvYqRCIWw9c7fHI9oy_mVnvzAfwzKrkrBGSylQFKqJQ1HOuqWMMK_TRYMN1-HGgh0NzfGxHa_Cz64Up2yo7TGyAOk5DWSPfYUqyMslEiVdnX2lhjSp_VzsKjaVb9PHH91yyzV8evM32fc7Y3rujN_u0ZRWggUuzoCYaK13O2rO2VCXPKlQ959EGmZxDhSwx7nUIKJLJ6XYvMu0LI3fKuVW-gGe9V-Cq4EaX76qvaYf8SlpVLacXcW57Oy4nW6LMXPst5jXUAH8gfxPO9jb-txdxC262iTPZXXr6bVjDyR3Y6EgpSItRd4GNLlohyDSRkZsVupgx6dNDzHGZ7I5P8uMsPn-Zk9MJee_O3T34cCl3vgnrk-kE7wOpotcu53DORC6CsM5LbkvV5jAYE-IWvOhMV4d2anoh7xjXuXoqVq5XVt6CpyvRs-WokL8JvS72XwmU6d7NgenspG7BolYYZVRaCJ1QhMhc9Ml4XcXAKxQ2K9nuXKNuIWdeX_jFg3-ffgLX948OB_XgYNh_CDdY6edotiJtw_pi9g0fwbVwvjidzx433k3g02V70S9_HDgH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RUFVcoPQhoLRdoVbqZZV4X949VBWURg2ByIe2oid3n4AUEkgCVf9afx27jh1UteqNA1d7vLI9n2e-Xc_OB_BGiaCVZBzzkFnMHBPYUJpjTYjPvHHSV1qH3w7zwUAeH6tiCX43e2FSWWUTE6tA7cY2rZG3ieAkdTIRrB3qsohiv_vh4hInBan0p7WR05hDpO9__YzTt-n73n709VtCup--fPyMa4UBbCmXMyydVFxHBh9HDlkwJPOio41XlgetvfAkEGpyaz0LMlLvjiO5SercIfKseAGN4z6A5UjJGWnBctE7Kr43eUBwJbJ5LyNKVaetI_ViqQPbHxmwEgr4Kw9Uya27dp9fy2NYrSk12p1_A-uw5EdPYK2Rq0B19HoKpLjdJIHGARV6koRkhqiPj3zM2Gh3eBIfZ3Z6PkVnI3Sgr_Uz-Hond_4cWqPxyG8AypzJdWR3WjrKLFPacKrSfE57K6V1m_CucWNp637qSdZjWMZ5VfJ4ufD4JuwsTC_mTUT-ZbSXsLAwSH2_qwPjyUlZh5FSeMedyBnLg2fWEe1MkCbPnKWZZyoOst3ApKyD0bS8xcjW_0-_hkcRPOVhb9B_ASskbfSoapS2oTWbXPmX8NBez86mk1c11BH8uGsY3QDjP0KI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+Parallel+K-Means+Algorithms+in+Java&rft.jtitle=Algorithms&rft.au=Nigro%2C+Libero&rft.date=2022-04-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=15&rft.issue=4&rft.spage=117&rft_id=info:doi/10.3390%2Fa15040117&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon