LAMOS: A linear algorithm to identify the origin of multiple optimal flux distributions in metabolic networks
•In this work, a four-phase new algorithm (LAMOS) is proposed to identify the origin of optimal solutions.•A current non-basic variable with zero reduced cost is iteratively substituted with a basic variable satisfying the feasibility condition to find the optimal vertices enclosing the optimal solu...
Uložené v:
| Vydané v: | Computers & chemical engineering Ročník 117; s. 372 - 377 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
02.09.2018
|
| Predmet: | |
| ISSN: | 0098-1354, 1873-4375 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •In this work, a four-phase new algorithm (LAMOS) is proposed to identify the origin of optimal solutions.•A current non-basic variable with zero reduced cost is iteratively substituted with a basic variable satisfying the feasibility condition to find the optimal vertices enclosing the optimal solution region.•These basic and non-basic variables are key reaction pairs that their successive activity or inactivity causes alternate optimal solutions.•Key reactions were 1–3% of all reactions for the large scale models and identification of these reactions using only 1% of optimal solutions was possible.
In flux balance analysis, where flux distribution within a cell metabolic network is estimated by optimizing an objective function, there commonly exist multiple optimal flux distributions. Although finding all optimal solutions is possible, their interpretation is a challenge. A new four-phase algorithm (LAMOS) is therefore proposed in this work to efficiently enumerate all of these solutions based on iterative substitution of a current non-basic variable with a basic variable. These basic and non-basic variables are called key reaction pairs that their successive activity or inactivity causes alternate optimal solutions. LAMOS was implemented on E. coli metabolic models and the results proved it as a simple and fast method capable of finding the key reactions as well as reactions participating in the futile cycles. Key reactions were 1–3% of all reactions for the large-scale models and these reactions were identified using only 1% of optimal solutions. |
|---|---|
| AbstractList | •In this work, a four-phase new algorithm (LAMOS) is proposed to identify the origin of optimal solutions.•A current non-basic variable with zero reduced cost is iteratively substituted with a basic variable satisfying the feasibility condition to find the optimal vertices enclosing the optimal solution region.•These basic and non-basic variables are key reaction pairs that their successive activity or inactivity causes alternate optimal solutions.•Key reactions were 1–3% of all reactions for the large scale models and identification of these reactions using only 1% of optimal solutions was possible.
In flux balance analysis, where flux distribution within a cell metabolic network is estimated by optimizing an objective function, there commonly exist multiple optimal flux distributions. Although finding all optimal solutions is possible, their interpretation is a challenge. A new four-phase algorithm (LAMOS) is therefore proposed in this work to efficiently enumerate all of these solutions based on iterative substitution of a current non-basic variable with a basic variable. These basic and non-basic variables are called key reaction pairs that their successive activity or inactivity causes alternate optimal solutions. LAMOS was implemented on E. coli metabolic models and the results proved it as a simple and fast method capable of finding the key reactions as well as reactions participating in the futile cycles. Key reactions were 1–3% of all reactions for the large-scale models and these reactions were identified using only 1% of optimal solutions. |
| Author | Naeimpoor, Fereshteh Motamedian, Ehsan |
| Author_xml | – sequence: 1 givenname: Ehsan surname: Motamedian fullname: Motamedian, Ehsan organization: Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran – sequence: 2 givenname: Fereshteh surname: Naeimpoor fullname: Naeimpoor, Fereshteh email: fnaeim@iust.ac.ir organization: Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas engineering, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran |
| BookMark | eNqNkM1OwzAQhC0EEuXnHcwDJNhNnLpcUFXxJxVxAM6W42zaLY5d2S7Qt8cVHBAn9rLSaGa0-52QQ-cdEHLBWckZby7XpfHDxqxgALcsx4zLkjUl4_UBGXE5qYq6mohDMmJsKgteifqYnMS4ZoyNaylHZFjMHp-er-iMWnSgA9V26QOm1UCTp9iBS9jvaFoBzfISHfU9HbY24cZmaZNw0Jb2dvtJO4wpYLtN6F2k2TlA0q23aKiD9OHDWzwjR722Ec5_9il5vb15md8Xi6e7h_lsUZhKyFTITooemOi1EJwZYVqQXOtu2uRpdSVB9hNRtx0YM9YguroRzTRbmWwbI8bVKZl-95rgYwzQq03Ih4ad4kztuam1-sVN7bkp1qjMLWev_2QNJr1_KgWN9l8N8-8GyC--IwQVDYIz0GEAk1Tn8R8tX5Myluo |
| CitedBy_id | crossref_primary_10_1016_j_ijhydene_2018_12_049 crossref_primary_10_1016_j_compchemeng_2020_107070 crossref_primary_10_1007_s00253_021_11755_4 crossref_primary_10_1007_s00253_023_12776_x crossref_primary_10_1038_s41598_023_47846_7 crossref_primary_10_1016_j_ifacol_2019_06_087 crossref_primary_10_1038_s41598_021_91906_9 crossref_primary_10_1007_s12010_022_04186_y crossref_primary_10_1016_j_compchemeng_2023_108350 crossref_primary_10_1186_s13059_021_02289_z |
| Cites_doi | 10.1128/JB.00738-10 10.1038/nbt1094-994 10.1093/bioinformatics/btn401 10.1016/j.ymben.2003.09.002 10.1371/journal.pcbi.1004166 10.1016/j.copbio.2003.08.001 10.1016/S0098-1354(00)00323-9 10.1038/nature02456 10.1016/j.mib.2010.03.003 10.1263/jbb.105.1 10.1038/srep00580 10.1016/j.compchemeng.2014.11.006 10.1039/c3mb70090a 10.1529/biophysj.104.043000 10.1128/jb.169.12.5610-5614.1987 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compchemeng.2018.06.014 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-4375 |
| EndPage | 377 |
| ExternalDocumentID | 10_1016_j_compchemeng_2018_06_014 S0098135418303909 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SBC SDF SDG SDP SES SPC SPCBC SSG SST SSZ T5K ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB HLY HLZ HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c358t-8d85fe05fa5510c5cbe81aad96666ba38e8f754bdecc2ae5d4656951008b6c523 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441891600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-1354 |
| IngestDate | Sat Nov 29 05:10:53 EST 2025 Tue Nov 18 21:18:58 EST 2025 Fri Feb 23 02:26:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Genome- scale metabolic network Multiple optimal solution Flux balance analysis Linear algorithm Internal and futile cycles, Key reactions |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c358t-8d85fe05fa5510c5cbe81aad96666ba38e8f754bdecc2ae5d4656951008b6c523 |
| PageCount | 6 |
| ParticipantIDs | crossref_primary_10_1016_j_compchemeng_2018_06_014 crossref_citationtrail_10_1016_j_compchemeng_2018_06_014 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2018_06_014 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-09-02 |
| PublicationDateYYYYMMDD | 2018-09-02 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationTitle | Computers & chemical engineering |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Feist, Palsson (bib0003) 2010; 13 Maarleveld, Wortel, Olivier, Teusink, Bruggeman (bib0010) 2015; 11 Kim, Schneider, Reitzer (bib0006) 2010; 192 Taha (bib0015) 2006 Kauffman, Prakash, Edwards (bib0004) 2003; 14 Varma, Palsson (bib0017) 1994; 12 Llaneras, Picó (bib0009) 2008; 105 Terzer, Stelling (bib0016) 2008; 24 Covert, Knight, Reed, Herrgard, Palsson (bib0002) 2004; 429 Bazaraa, Jarvis, Sherali (bib0001) 1990 Motamedian (bib0012) 2015; 73 Wang, Buckley, Berg (bib0018) 1987; 169 Liu, Gao, Xu, Liu (bib0008) 2013; 9 Motamedian, Naeimpoor (bib0013) 2011; 9 Lee, Phalakornkule, Domach, Grossmann (bib0007) 2000; 24 Mahadevan, Schilling (bib0011) 2003; 5 Price, Schellenberger, Palsson (bib0014) 2004; 87 Kelk, Olivier, Stougie, Bruggeman (bib0005) 2012; 2 Taha (10.1016/j.compchemeng.2018.06.014_bib0015) 2006 Liu (10.1016/j.compchemeng.2018.06.014_bib0008) 2013; 9 Feist (10.1016/j.compchemeng.2018.06.014_bib0003) 2010; 13 Wang (10.1016/j.compchemeng.2018.06.014_bib0018) 1987; 169 Motamedian (10.1016/j.compchemeng.2018.06.014_bib0013) 2011; 9 Llaneras (10.1016/j.compchemeng.2018.06.014_bib0009) 2008; 105 Varma (10.1016/j.compchemeng.2018.06.014_bib0017) 1994; 12 Kelk (10.1016/j.compchemeng.2018.06.014_bib0005) 2012; 2 Covert (10.1016/j.compchemeng.2018.06.014_bib0002) 2004; 429 Motamedian (10.1016/j.compchemeng.2018.06.014_bib0012) 2015; 73 Terzer (10.1016/j.compchemeng.2018.06.014_bib0016) 2008; 24 Maarleveld (10.1016/j.compchemeng.2018.06.014_bib0010) 2015; 11 Kim (10.1016/j.compchemeng.2018.06.014_bib0006) 2010; 192 Lee (10.1016/j.compchemeng.2018.06.014_bib0007) 2000; 24 Mahadevan (10.1016/j.compchemeng.2018.06.014_bib0011) 2003; 5 Price (10.1016/j.compchemeng.2018.06.014_bib0014) 2004; 87 Kauffman (10.1016/j.compchemeng.2018.06.014_bib0004) 2003; 14 Bazaraa (10.1016/j.compchemeng.2018.06.014_bib0001) 1990 |
| References_xml | – volume: 169 start-page: 5610 year: 1987 end-page: 5614 ident: bib0018 article-title: Cloning of genes that suppress an publication-title: J. Bacteriol. – volume: 2 start-page: 580 year: 2012 ident: bib0005 article-title: Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks publication-title: Sci. Rep. – volume: 429 start-page: 92 year: 2004 end-page: 96 ident: bib0002 article-title: Integrating high-throughput and computational data elucidates bacterial networks publication-title: Nature – volume: 24 start-page: 2229 year: 2008 end-page: 2235 ident: bib0016 article-title: Large-scale computation of elementary flux modes with bit pattern trees publication-title: Bioinformatics – volume: 11 year: 2015 ident: bib0010 article-title: Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models publication-title: PLoS Comput. Biol. – volume: 24 start-page: 711 year: 2000 end-page: 716 ident: bib0007 article-title: Recursive MILP model for finding all the alternate optima in LP models for metabolic networks publication-title: Comput. Chem. Eng. – volume: 9 start-page: 1939 year: 2013 end-page: 1948 ident: bib0008 article-title: Genome-scale reconstruction and in silico analysis of Aspergillus terreus metabolism publication-title: Mole. BioSyst. – volume: 73 start-page: 64 year: 2015 end-page: 69 ident: bib0012 article-title: A new algorithm to find all alternate optimal flux distributions of a metabolic network publication-title: Comput. Chem. Eng. – volume: 13 start-page: 344 year: 2010 end-page: 349 ident: bib0003 article-title: The biomass objective function publication-title: Curr. Opin. Microbiol. – volume: 14 start-page: 491 year: 2003 end-page: 496 ident: bib0004 article-title: Advances in flux balance analysis publication-title: Curr. Opin. Biotechnol. – volume: 192 start-page: 5304 year: 2010 end-page: 5311 ident: bib0006 article-title: Genetics and regulation of the major enzymes of alanine synthesis in Escherichia coli publication-title: J. Bacteriol. – volume: 9 start-page: 260 year: 2011 end-page: 266 ident: bib0013 article-title: Flux distribution in Bacillus subtilis: inspection on plural-ity of optimal solutions publication-title: Iran. J. Biotechnol. – year: 2006 ident: bib0015 article-title: Operation Research: An Introduction – volume: 12 start-page: 994 year: 1994 ident: bib0017 article-title: Metabolic flux balancing: basic concepts, scientific and practical use publication-title: . Nat. Biotechnol. – volume: 105 start-page: 1 year: 2008 end-page: 11 ident: bib0009 article-title: Stoichiometric modelling of cell metabolism publication-title: J. Biosci. Bioeng. – year: 1990 ident: bib0001 article-title: Linear Programming and Network Flows – volume: 5 start-page: 264 year: 2003 end-page: 276 ident: bib0011 article-title: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models publication-title: Metab. Eng. – volume: 87 start-page: 2172 year: 2004 end-page: 2186 ident: bib0014 article-title: Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies publication-title: Biophys. J. – volume: 192 start-page: 5304 year: 2010 ident: 10.1016/j.compchemeng.2018.06.014_bib0006 article-title: Genetics and regulation of the major enzymes of alanine synthesis in Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.00738-10 – volume: 12 start-page: 994 year: 1994 ident: 10.1016/j.compchemeng.2018.06.014_bib0017 article-title: Metabolic flux balancing: basic concepts, scientific and practical use publication-title: . Nat. Biotechnol. doi: 10.1038/nbt1094-994 – volume: 24 start-page: 2229 year: 2008 ident: 10.1016/j.compchemeng.2018.06.014_bib0016 article-title: Large-scale computation of elementary flux modes with bit pattern trees publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn401 – volume: 5 start-page: 264 year: 2003 ident: 10.1016/j.compchemeng.2018.06.014_bib0011 article-title: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models publication-title: Metab. Eng. doi: 10.1016/j.ymben.2003.09.002 – volume: 11 year: 2015 ident: 10.1016/j.compchemeng.2018.06.014_bib0010 article-title: Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004166 – volume: 14 start-page: 491 year: 2003 ident: 10.1016/j.compchemeng.2018.06.014_bib0004 article-title: Advances in flux balance analysis publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2003.08.001 – year: 2006 ident: 10.1016/j.compchemeng.2018.06.014_bib0015 – volume: 24 start-page: 711 year: 2000 ident: 10.1016/j.compchemeng.2018.06.014_bib0007 article-title: Recursive MILP model for finding all the alternate optima in LP models for metabolic networks publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(00)00323-9 – volume: 429 start-page: 92 year: 2004 ident: 10.1016/j.compchemeng.2018.06.014_bib0002 article-title: Integrating high-throughput and computational data elucidates bacterial networks publication-title: Nature doi: 10.1038/nature02456 – volume: 13 start-page: 344 year: 2010 ident: 10.1016/j.compchemeng.2018.06.014_bib0003 article-title: The biomass objective function publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2010.03.003 – volume: 9 start-page: 260 year: 2011 ident: 10.1016/j.compchemeng.2018.06.014_bib0013 article-title: Flux distribution in Bacillus subtilis: inspection on plural-ity of optimal solutions publication-title: Iran. J. Biotechnol. – volume: 105 start-page: 1 year: 2008 ident: 10.1016/j.compchemeng.2018.06.014_bib0009 article-title: Stoichiometric modelling of cell metabolism publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.105.1 – volume: 2 start-page: 580 year: 2012 ident: 10.1016/j.compchemeng.2018.06.014_bib0005 article-title: Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks publication-title: Sci. Rep. doi: 10.1038/srep00580 – volume: 73 start-page: 64 year: 2015 ident: 10.1016/j.compchemeng.2018.06.014_bib0012 article-title: A new algorithm to find all alternate optimal flux distributions of a metabolic network publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2014.11.006 – volume: 9 start-page: 1939 year: 2013 ident: 10.1016/j.compchemeng.2018.06.014_bib0008 article-title: Genome-scale reconstruction and in silico analysis of Aspergillus terreus metabolism publication-title: Mole. BioSyst. doi: 10.1039/c3mb70090a – volume: 87 start-page: 2172 year: 2004 ident: 10.1016/j.compchemeng.2018.06.014_bib0014 article-title: Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies publication-title: Biophys. J. doi: 10.1529/biophysj.104.043000 – volume: 169 start-page: 5610 year: 1987 ident: 10.1016/j.compchemeng.2018.06.014_bib0018 article-title: Cloning of genes that suppress an Escherichia coli K-12 alanine auxotroph when present in multicopy plasmids publication-title: J. Bacteriol. doi: 10.1128/jb.169.12.5610-5614.1987 – year: 1990 ident: 10.1016/j.compchemeng.2018.06.014_bib0001 |
| SSID | ssj0002488 |
| Score | 2.298656 |
| Snippet | •In this work, a four-phase new algorithm (LAMOS) is proposed to identify the origin of optimal solutions.•A current non-basic variable with zero reduced cost... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 372 |
| SubjectTerms | Flux balance analysis Genome- scale metabolic network Internal and futile cycles, Key reactions Linear algorithm Multiple optimal solution |
| Title | LAMOS: A linear algorithm to identify the origin of multiple optimal flux distributions in metabolic networks |
| URI | https://dx.doi.org/10.1016/j.compchemeng.2018.06.014 |
| Volume | 117 |
| WOSCitedRecordID | wos000441891600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: AIEXJ dateStart: 19950611 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA7Drog-iFdcb0TwTSpt0rTJ4ssgu6joKOwK81aSTOrMMm2HTneZ_RH-Z3Np0oqKK-JLGUrPTJvzzcmX9DvnAPAiY5hhztNISZOSU6I04mWJooypXCwQ4WkmbbOJfDaj8zn7PJl887kwF-u8ruluxzb_1dX6nHa2SZ39C3eHL9Un9GftdH3UbtfHKzn-w_TjpxOXcG4oJG9f8vXXpl11y8oQzZXNzC0vLeN0bbHsO3YvLGx0DKlMVuP6fGde34SOWFY4W6lOo8YUxq6dfnw7Zre-RcTWAkr6WgRqqHkY_Nt03CatuO2f5UgaNONqVW0at41wrFq1XXZqOd6dSKyUIh7WsiFtZtAo2TDM9NIVu-rRr5SLvDTHUYpdG5UQml1eZx9csWvy08_T2LV_-WkKcLsRZ8aDG_Og-hmNgs-VaU3SYd4LasQTcz_mdnR4izEz6aD7KCdMx_n96buj-fswtaOUUl-E1RhcB88HweBvfvDXhGdEYk5vg1v96gNOHWrugImq74Kbo5qU90Bl8XMIp9ChBwb0wK6BHj1Qowc69MCmhB49sEcPNOiBP6AH6isDeqBHz33w5fjo9M3bqO_JEUlMaBfRBSWliknJNdWOJZFC0YTzhV41Z5ngmCpa5iQVCx0aEFdkYerxGRYfU5FJgvADsFc3tXoIIMsokYpxhahIRZ6LBCcZL6VAhAqJkgNA_cAVsi9Yb_qmrAuvTDwrRmNemDEvjEozSQ8ACqYbV7XlKkavvXeKnn46WlloaP3Z_NG_mT8GN4b_zxOw17Xn6im4Ji-61bZ91gPxOx0ftgA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LAMOS%3A+A+linear+algorithm+to+identify+the+origin+of+multiple+optimal+flux+distributions+in+metabolic+networks&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Motamedian%2C+Ehsan&rft.au=Naeimpoor%2C+Fereshteh&rft.date=2018-09-02&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.eissn=1873-4375&rft.volume=117&rft.spage=372&rft.epage=377&rft_id=info:doi/10.1016%2Fj.compchemeng.2018.06.014&rft.externalDocID=S0098135418303909 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |