A New DC Algorithm for Sparse Optimal Scoring Problem
Linear discriminant analysis (LDA) has attracted many attentions as a classical tool for both classification and dimensionality reduction. Classical LDA performs quite well in simple and low dimensional setting while it is not suitable for small sample size data (SSS). Feature selection is an effect...
Uloženo v:
| Vydáno v: | IEEE access Ročník 8; s. 53962 - 53971 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Linear discriminant analysis (LDA) has attracted many attentions as a classical tool for both classification and dimensionality reduction. Classical LDA performs quite well in simple and low dimensional setting while it is not suitable for small sample size data (SSS). Feature selection is an effective way to solve this problem. As a variant of LDA, sparse optimal scoring (SOS) with 10-norm regularization is considered in this paper. By using a new continuous nonconvex nonsmooth function to approximate 10-norm, we propose a novel difference of convex functions algorithm (DCA) for sparse optimal scoring. The most favorable property of the proposed DCA is its subproblem admits an analytical solution. The effectiveness of the proposed method is validated via theoretical analysis as well as some illustrative numerical experiments. |
|---|---|
| AbstractList | Linear discriminant analysis (LDA) has attracted many attentions as a classical tool for both classification and dimensionality reduction. Classical LDA performs quite well in simple and low dimensional setting while it is not suitable for small sample size data (SSS). Feature selection is an effective way to solve this problem. As a variant of LDA, sparse optimal scoring (SOS) with 10-norm regularization is considered in this paper. By using a new continuous nonconvex nonsmooth function to approximate 10-norm, we propose a novel difference of convex functions algorithm (DCA) for sparse optimal scoring. The most favorable property of the proposed DCA is its subproblem admits an analytical solution. The effectiveness of the proposed method is validated via theoretical analysis as well as some illustrative numerical experiments. |
| Author | Li, Guo-Quan Duan, Xu-Xiang Wu, Chang-Zhi |
| Author_xml | – sequence: 1 givenname: Guo-Quan orcidid: 0000-0002-3731-6848 surname: Li fullname: Li, Guo-Quan email: ligq@cqnu.edu.cn organization: School of Mathematical Sciences, Chongqing Normal University, Chongqing, China – sequence: 2 givenname: Xu-Xiang orcidid: 0000-0002-5776-0014 surname: Duan fullname: Duan, Xu-Xiang organization: School of Mathematical Sciences, Chongqing Normal University, Chongqing, China – sequence: 3 givenname: Chang-Zhi surname: Wu fullname: Wu, Chang-Zhi organization: School of Management, Guangzhou University, Guangzhou, China |
| BookMark | eNpNkFFPwjAQxxuDiYh8Al6W-Ax2vXa9Pi4TlYSIyfS5KVuHI4NiN2L89hZHiPdyl7v7_-_yuyWDvdtbQiYxncUxVQ9pls3zfMYoozOmMOZMXZEhixM1BQHJ4F99Q8Ztu6UhMLSEHBKRRq_2O3rMorTZOF93n7uocj7KD8a3Nlodunpnmigvwmy_id68Wzd2d0euK9O0dnzOI_LxNH_PXqbL1fMiS5fTAgR2U0TKuKziwtgSTFlSgxUHI4EbIZjkUBkpwOAaaSKlFLZUBrFQIKkqqaxgRBa9b-nMVh98-MX_aGdq_ddwfqON7-qisZpbrLBEEStFOeUMRakQwaylwAINBK_73uvg3dfRtp3euqPfh_c144ENAkgMW9BvFd61rbfV5WpM9Qm37nHrE259xh1Uk15VW2svCkVBJVzCL06_eZA |
| CODEN | IAECCG |
| Cites_doi | 10.1137/1.9781611972825.27 10.1021/jf030232s 10.1109/ACCESS.2017.2726543 10.1109/ACCESS.2016.2602354 10.1021/jf950305a 10.1109/TNNLS.2015.2422994 10.1007/s10589-016-9828-y 10.3934/jimo.2014.10.817 10.1016/j.mimet.2006.12.020 10.1016/j.sigpro.2020.107456 10.1214/088342306000000060 10.1007/s10107-018-1235-y 10.1016/j.asoc.2019.105768 10.1093/bioinformatics/btp019 10.1080/00401706.2012.746208 10.1016/j.neucom.2015.12.068 10.1016/j.compbiolchem.2008.07.015 10.3724/SP.J.1087.2012.01017 10.1021/jf0108967 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2020.2981429 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 53971 |
| ExternalDocumentID | oai_doaj_org_article_4e8f8d851990404285d9883ab758c8a3 10_1109_ACCESS_2020_2981429 9039647 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11871128 funderid: 10.13039/501100001809 – fundername: Chongqing Municipal Education Commission grantid: KJQN201900531 funderid: 10.13039/501100007957 – fundername: Natural Science Foundation of Chongqing grantid: cstc2019jcyj-msxmX0282; cstc2019jcyj-msxmX0368 funderid: 10.13039/501100005230 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c358t-880247f1caed3add0a8f43a734a552743fa753a8b8067775ed9a88c93709d07f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524749300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:36 EDT 2025 Mon Jun 30 02:30:51 EDT 2025 Sat Nov 29 02:42:08 EST 2025 Wed Aug 27 02:39:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-880247f1caed3add0a8f43a734a552743fa753a8b8067775ed9a88c93709d07f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3731-6848 0000-0002-5776-0014 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9039647 |
| PQID | 2453683378 |
| PQPubID | 4845423 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4e8f8d851990404285d9883ab758c8a3 crossref_primary_10_1109_ACCESS_2020_2981429 ieee_primary_9039647 proquest_journals_2453683378 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref24 ref12 ref23 ref15 ref14 ref20 journée (ref11) 2010; 11 mai (ref8) 2015 ref22 ref10 ref21 ref2 ref1 ref17 ref18 ref7 ref9 ref4 atkins (ref13) 2017 ref3 filannino (ref19) 0 ref6 ref5 tao (ref16) 1997; 22 |
| References_xml | – ident: ref20 doi: 10.1137/1.9781611972825.27 – ident: ref23 doi: 10.1021/jf030232s – volume: 22 start-page: 289 year: 1997 ident: ref16 article-title: Convex analysis approach to D.C. Programming: Theory, algorithms and applications publication-title: Acta Math Vietn – ident: ref3 doi: 10.1109/ACCESS.2017.2726543 – ident: ref2 doi: 10.1109/ACCESS.2016.2602354 – ident: ref22 doi: 10.1021/jf950305a – ident: ref9 doi: 10.1109/TNNLS.2015.2422994 – volume: 11 start-page: 517 year: 2010 ident: ref11 article-title: Generalized power method for sparse principal component analysis publication-title: J Mach Learn Res – ident: ref12 doi: 10.1007/s10589-016-9828-y – ident: ref18 doi: 10.3934/jimo.2014.10.817 – ident: ref24 doi: 10.1016/j.mimet.2006.12.020 – year: 0 ident: ref19 article-title: DBWorld e-mail classification using a very small corpus publication-title: Project of Machine Learning Course – ident: ref7 doi: 10.1016/j.sigpro.2020.107456 – ident: ref1 doi: 10.1214/088342306000000060 – ident: ref17 doi: 10.1007/s10107-018-1235-y – ident: ref10 doi: 10.1016/j.asoc.2019.105768 – year: 2017 ident: ref13 article-title: Proximal methods for sparse optimal scoring and discriminant analysis publication-title: arXiv 1705 07194 – year: 2015 ident: ref8 article-title: Multiclass sparse discriminant analysis publication-title: arXiv 1504 05845 – ident: ref6 doi: 10.1093/bioinformatics/btp019 – ident: ref4 doi: 10.1080/00401706.2012.746208 – ident: ref15 doi: 10.1016/j.neucom.2015.12.068 – ident: ref14 doi: 10.1016/j.compbiolchem.2008.07.015 – ident: ref5 doi: 10.3724/SP.J.1087.2012.01017 – ident: ref21 doi: 10.1021/jf0108967 |
| SSID | ssj0000816957 |
| Score | 2.152969 |
| Snippet | Linear discriminant analysis (LDA) has attracted many attentions as a classical tool for both classification and dimensionality reduction. Classical LDA... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 53962 |
| SubjectTerms | Algorithms Approximation algorithms Continuity (mathematics) Convergence Convex functions dc algorithm Dimensionality reduction Discriminant analysis Exact solutions Feature extraction Linear discriminant analysis Optimization Regularization sparse optimal scoring ℓ₀-norm |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQADAgqiUJAHRkLd2KnPYyhUDKhUKqBulhM7gEQ_1BZ-P2cnLZUYWFij6BK_i8_vRfY7Qi6lAiM4c1FmuI1EJlUEueQRGFt0rI2NDc1gXh5kvw-jkRpstPrye8JKe-ASuJZwUIBFXoBlU3iCn1gFwE2GRDcHE3w-mVQbYirUYGh3VCIrm6E2U62028URoSCM2XWsoC0CqfxZioJjf9Vi5VddDotNb5_sVSyRpuXbHZAtNzkkuxvegXWSpBQLFL3t0vTjdYoS_21MkYDS4QylqqOPWArGGGKYhx12dFA2jjkiz727p-59VPVAiHKewDLC6RULWbRz4yzHWsQMFIIbyYXx3mmCFwYFh4EMvBWcTJxVBiBH0sGUZbLgx6Q2mU7cCaGQJBkDpxgUGDKWuFAXkCEdyRRG6NgGuVrBoWel1YUOEoEpXaKnPXq6Qq9Bbjxk61u9T3W4gNnTVfb0X9lrkLoHfB1EMe6PxjZIc5UAXc2phY5FwjvAuYTT_3j0Gdnxwyl_pzRJbTn_dOdkO_9avi_mF-Fz-gbyQMer priority: 102 providerName: Directory of Open Access Journals |
| Title | A New DC Algorithm for Sparse Optimal Scoring Problem |
| URI | https://ieeexplore.ieee.org/document/9039647 https://www.proquest.com/docview/2453683378 https://doaj.org/article/4e8f8d851990404285d9883ab758c8a3 |
| Volume | 8 |
| WOSCitedRecordID | wos000524749300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED0BYoCBb0T5kgfGBtzYqc9jKSAGKJUKiM1yYgeQoEWlMPLbOTuhIMHCEkVRcnKe47t7jv0O4EBptFJwn-RWuETmSidYKJGgdWXbudS6WAzm9kL1enh3p_sz0JzuhfHex8Vn_jCcxn_5blS8hamyI81F2Dg5C7NKtau9WtP5lFBAQmeqFhZqcX3U6XbpHYgCpvww1diSMY38Dj5Ro78uqvLLE8fwcrb8v4atwFKdRrJO1e-rMOOHa7D4Q1xwHbIOIw_GTrqs83Q_Gj9OHp4ZZahs8EJc1rMr8hXPZGJQxCV4rF9VltmAm7PT6-55UhdJSAqR4SSh8ZdKVbYK650gZ8UtllJYJaQN4mpSlJYYicUcg1acyrzTFrGgrIRrx1UpNmFuOBr6LWCYZTlHrzmWZDJVFMlLzClfyTVZaLsGNL_QMy-VFoaJHIJrU4FtAtimBrsBxwHh6a1ByDpeIOhMPS6M9Fiio7SPoqIM_C1zGlHYnHhMgVY0YD3APTVSI92A3a_-MvWgezWpzEQbhVC4_fdTO7AQGljNoOzC3GT85vdgvnifPL6O9yMdp-Plx-l-_LY-ATNNyCM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH9iMGlwADZAlI_hw44E3Niun4-lgEArBQk2cbOc2AEkaFEp_P08O6FMYhduUZQ8OT_nfdr-PYBf2qCTgoescMJnstAmw1KLDJ2vOt7nzqdmMH_7ejDA62tzMQO707MwIYS0-Szsxcu0lu9H5XMsle0bLuLByS8wp6TMeX1aa1pRiS0kjNINtVCbm_1ur0dfQUlgzvdyg22ZAsl395NY-pu2Kh9scXIwx0ufG9oyLDaBJOvWM_8dZsLwByz8Qy-4AqrLyIaxwx7r3t-MxneT2wdGMSq7fKRsNrBzshYPJOKyTJvw2EXdW2YV_hwfXfVOsqZNQlYKhZOMNDCXumqXLnhB5oo7rKRwWkgX6dWkqBzlJA4LjGxxWgVvHGJJcQk3nutKrMHscDQM68BQqYJjMBwrEplr8uUVFhSxFIYkdHwLdt_Qs481G4ZNWQQ3tgbbRrBtA3YLDiLC00cjlXW6QdDZRjOsDFihp8CP_KKMGZzyBlG4gjKZEp1owUqEeyqkQboFW2_zZRu1e7K5VKKDQmjc-P9bO_Dt5Oqsb_ung9-bMB8HW9dTtmB2Mn4O2_C1fJncPY1_pn_rFVntyUQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+DC+Algorithm+for+Sparse+Optimal+Scoring+Problem&rft.jtitle=IEEE+access&rft.au=Li%2C+Guo-Quan&rft.au=Duan%2C+Xu-Xiang&rft.au=Wu%2C+Chang-Zhi&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=53962&rft.epage=53971&rft_id=info:doi/10.1109%2FACCESS.2020.2981429&rft.externalDocID=9039647 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |