A Fuzzy Reinforcement Learning Approach for Continuum Robot Control
Continuum robots (CRs) hold great potential for many medical and industrial applications where compliant interaction within the potentially confined environment is required. However, the navigation of CRs poses several challenges due to their limited actuation channels and the hyper-flexibility of t...
Gespeichert in:
| Veröffentlicht in: | Journal of intelligent & robotic systems Jg. 100; H. 3-4; S. 809 - 826 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.12.2020
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0921-0296, 1573-0409 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Continuum robots (CRs) hold great potential for many medical and industrial applications where compliant interaction within the potentially confined environment is required. However, the navigation of CRs poses several challenges due to their limited actuation channels and the hyper-flexibility of their structure. Environmental uncertainty and characteristic hysteresis in such procedures add to the complexity of their operation. Therefore, the quality of trajectory tracking for continuum robots plays an essential role in the success of the application procedures. While there are a few different actuation configurations available for CRs, the focus of this paper will be placed on tendon-driven manipulators. In this research, a new fuzzy reinforcement learning (FRL) approach is introduced. The proposed FRL-based control parameters are tuned by the Taguchi method and evolutionary genetic algorithm (GA) to provide faster convergence to the Nash Equilibrium. The approach is verified through a comprehensive set of simulations using a Cosserat rod model. The results show a steady and accurate trajectory tracking capability for a CR. |
|---|---|
| AbstractList | Continuum robots (CRs) hold great potential for many medical and industrial applications where compliant interaction within the potentially confined environment is required. However, the navigation of CRs poses several challenges due to their limited actuation channels and the hyper-flexibility of their structure. Environmental uncertainty and characteristic hysteresis in such procedures add to the complexity of their operation. Therefore, the quality of trajectory tracking for continuum robots plays an essential role in the success of the application procedures. While there are a few different actuation configurations available for CRs, the focus of this paper will be placed on tendon-driven manipulators. In this research, a new fuzzy reinforcement learning (FRL) approach is introduced. The proposed FRL-based control parameters are tuned by the Taguchi method and evolutionary genetic algorithm (GA) to provide faster convergence to the Nash Equilibrium. The approach is verified through a comprehensive set of simulations using a Cosserat rod model. The results show a steady and accurate trajectory tracking capability for a CR. Keywords Continuum robot. Fuzzy control Reinforcement learning. Evolutionary algorithms. Taguchi method Continuum robots (CRs) hold great potential for many medical and industrial applications where compliant interaction within the potentially confined environment is required. However, the navigation of CRs poses several challenges due to their limited actuation channels and the hyper-flexibility of their structure. Environmental uncertainty and characteristic hysteresis in such procedures add to the complexity of their operation. Therefore, the quality of trajectory tracking for continuum robots plays an essential role in the success of the application procedures. While there are a few different actuation configurations available for CRs, the focus of this paper will be placed on tendon-driven manipulators. In this research, a new fuzzy reinforcement learning (FRL) approach is introduced. The proposed FRL-based control parameters are tuned by the Taguchi method and evolutionary genetic algorithm (GA) to provide faster convergence to the Nash Equilibrium. The approach is verified through a comprehensive set of simulations using a Cosserat rod model. The results show a steady and accurate trajectory tracking capability for a CR. |
| Audience | Academic |
| Author | Goharimanesh, M. Mehrkish, A. Janabi-Sharifi, F. |
| Author_xml | – sequence: 1 givenname: M. surname: Goharimanesh fullname: Goharimanesh, M. organization: Department of Mechanical Engineering, University of Torbat Heydarieh – sequence: 2 givenname: A. surname: Mehrkish fullname: Mehrkish, A. organization: Department of Mechanical and Industrial Engineering, Ryerson University – sequence: 3 givenname: F. orcidid: 0000-0002-0314-0688 surname: Janabi-Sharifi fullname: Janabi-Sharifi, F. email: fsharifi@ryerson.ca organization: Department of Mechanical and Industrial Engineering, Ryerson University |
| BookMark | eNp9kEFrAyEUhKWk0CTtH-hpoedNn66uegyhaQuBQmjPYoymhkRTd_fQ_PqabKHQQ_AgOvM9nRmhQYjBInSPYYIB-GODQdC6BAIlYFLxsr5CQ8x4VQIFOUBDkARnWdY3aNQ0WwCQgskhmk2LeXc8fhdL64OLydi9DW2xsDoFHzbF9HBIUZvPImvFLIbWh67bF8u4iu35nOLuFl07vWvs3e8-Rh_zp_fZS7l4e36dTRelqZhoS-4qbAVbU7OuyFrI2nFNoOZMY7myIIBhzVeOZ7HmTjPsmJArSgylllJaVWP00M_NX_rqbNOqbexSyE8qQjPGmMAsuya9a6N3Vp1CtUmbvNZ2702uzfl8P-WESomlFBkQPWBSbJpknTK-1a0_hdN-pzCoU8eq71jljtW5Y1VnlPxDD8nvdfq-DFU91GRz2Nj0F-MC9QPT0I7r |
| CitedBy_id | crossref_primary_10_1007_s10846_022_01771_5 crossref_primary_10_1016_j_asoc_2022_108835 crossref_primary_10_1016_j_petsci_2023_08_016 crossref_primary_10_1002_rnc_7558 crossref_primary_10_3389_frobt_2022_895388 crossref_primary_10_1016_j_mechmachtheory_2021_104575 crossref_primary_10_1016_j_bspc_2024_106179 crossref_primary_10_1016_j_oceaneng_2022_112790 crossref_primary_10_1177_10775463221083803 crossref_primary_10_3389_fnins_2024_1330634 crossref_primary_10_1109_ACCESS_2022_3171236 crossref_primary_10_1007_s10846_021_01435_w crossref_primary_10_3390_act12040137 crossref_primary_10_1007_s40684_021_00405_9 crossref_primary_10_1017_S0263574724000651 crossref_primary_10_1016_j_robot_2021_103860 crossref_primary_10_3389_frobt_2025_1488869 crossref_primary_10_1109_TIE_2025_3532733 crossref_primary_10_1007_s10462_022_10355_6 crossref_primary_10_1111_aor_13870 crossref_primary_10_1109_TAI_2024_3440225 crossref_primary_10_1109_TMECH_2024_3378274 crossref_primary_10_1139_tcsme_2023_0155 crossref_primary_10_1016_j_ast_2022_107801 crossref_primary_10_1007_s40313_022_00914_1 crossref_primary_10_1016_j_robot_2021_103856 crossref_primary_10_1016_j_egyr_2023_11_006 crossref_primary_10_1016_j_engappai_2025_110791 crossref_primary_10_1016_j_jngse_2022_104662 crossref_primary_10_3390_app13169153 crossref_primary_10_1177_09544054221080031 crossref_primary_10_3390_axioms14030196 |
| Cites_doi | 10.1109/LRA.2018.2800037 10.1016/j.fss.2009.04.009 10.1109/TIE.2016.2554078 10.1137/S1052623493250780 10.1109/LRA.2016.2526062 10.1109/TASE.2014.2300532 10.1016/j.ins.2008.02.012 10.1109/LRA.2019.2898047 10.1109/TRO.2014.2309194 10.1016/j.mechmachtheory.2019.02.005 10.1109/TBCAS.2018.2864411 10.1007/s12206-019-1036-0 10.1109/37.126844 10.1109/TSMCC.2007.913919 10.1109/TMECH.2003.812829 10.1109/JSEN.2016.2643958 10.1007/s12555-016-0461-4 10.1142/S2424905X17500027 10.1109/TRO.2014.2309835 10.1115/1.4027305 10.5194/ms-10-119-2019 10.1109/TRO.2009.2022426 10.1109/TRO.2018.2878318 10.4028/www.scientific.net/AMM.419.706 10.1109/LRA.2017.2759789 10.3233/JIFS-161211 10.1109/ICRA.2012.6224735 10.1109/ROBOT.1995.525734 10.1109/IROS.2017.8206123 10.1109/FUZZY.1997.622790 10.1109/ICRA.2011.5980233 10.1109/ICCPCCT.2018.8574225 10.1109/CDC.2006.377452 10.1109/TMECH.2017.2775663 10.1109/ICRA.2019.8793653 10.1109/URAI.2018.8441801 10.1109/ISMR.2018.8333287 10.1109/CBS.2018.8612190 10.1109/ICRA.2015.7139264 10.1109/ICRA.2014.6907724 10.1109/TSMC.2018.2865488 10.1109/TNN.1998.712192 10.1109/IROS.2011.6048558 10.1109/ICRA.2014.6907161 |
| ContentType | Journal Article |
| Copyright | Springer Nature B.V. 2020 COPYRIGHT 2020 Springer Copyright Springer Nature B.V. Dec 2020 |
| Copyright_xml | – notice: Springer Nature B.V. 2020 – notice: COPYRIGHT 2020 Springer – notice: Copyright Springer Nature B.V. Dec 2020 |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10846-020-01237-6 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection (ProQuest) ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-0409 |
| EndPage | 826 |
| ExternalDocumentID | A724991998 10_1007_s10846_020_01237_6 |
| GrantInformation_xml | – fundername: Ryerson University grantid: 2019/06 funderid: http://dx.doi.org/10.13039/100007891 – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC) grantid: 2017-06930 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAK LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9P PF0 PQQKQ PROAC PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8S Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFFHD AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c358t-7f31e85d4cd32d896f7a20675a19be08051a7bf732d67fa51f589b42c44e44433 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000556677300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0921-0296 |
| IngestDate | Sat Oct 18 23:06:01 EDT 2025 Sat Nov 29 10:14:12 EST 2025 Sat Nov 29 01:33:00 EST 2025 Tue Nov 18 21:22:59 EST 2025 Fri Feb 21 02:35:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3-4 |
| Keywords | Fuzzy control ontinuum robot Evolutionary algorithms Reinforcement learning Taguchi method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-7f31e85d4cd32d896f7a20675a19be08051a7bf732d67fa51f589b42c44e44433 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0314-0688 |
| PQID | 2473255815 |
| PQPubID | 326251 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2473255815 gale_infotracacademiconefile_A724991998 crossref_citationtrail_10_1007_s10846_020_01237_6 crossref_primary_10_1007_s10846_020_01237_6 springer_journals_10_1007_s10846_020_01237_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20201200 2020-12-00 20201201 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | with a special section on Unmanned Systems |
| PublicationTitle | Journal of intelligent & robotic systems |
| PublicationTitleAbbrev | J Intell Robot Syst |
| PublicationYear | 2020 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | Camarillo, Carlson, Salisbury (CR5) 2009; 25 Thuruthel, Falotico, Renda, Laschi (CR20) 2019; 35 Yip, Camarillo (CR22) 2014; 30 AL-Saedi, Wu, Handroos (CR31) 2013; 1 CR38 CR37 Watkins, Dayan (CR51) 1992; 8 Zadeh (CR27) 2008; 178 CR33 Omisore, Han, Ren, Wang, Ou, Li, Wang (CR32) 2018; 12 Yip, Sganga, Camarillo (CR7) 2017; 2 Chikhaoui, Granna, Starke, Burgner-Kahrs (CR17) 2018; 3 Hu, Wellman (CR45) 2003; 4 Torczon (CR56) 1997; 7 CR4 Sutton (CR34) 1996 Yu, Yu, Chen, Zhang (CR39) 2019; 10 CR8 CR9 CR48 Yip, Camarillo (CR21) 2016; 1 Yuan, Zhou, Xu (CR57) 2019; 135 Zadeh (CR26) 2009; 160 CR44 Qi, Liu, Ataka, Lam, Althoefer (CR28) 2016; 63 CR42 CR41 CR40 Ganji, Janabi-Sharifi, Cheema (CR3) 2009; 4 Goldman, Bajo, Simaan (CR15) 2014; 30 Du, Wang, Yan, Dong, Wang (CR29) 2017; 17 Lotfavar, Hasanzadeh, Janabi-Sharifi (CR6) 2018; 3 CR16 Zhao, Jiang, Li, Liu (CR25) 2013; 419 CR14 Soltani, Khanmohammadi, Ghalichi, Janabi-Sharifi (CR50) 2017; 15 CR13 CR12 CR11 CR10 CR54 CR52 Hasanzadeh, Janabi-Sharifi (CR2) 2014; 6 Busoniu, Babuska, Schutter (CR47) 2008; 38 You, Bae, Moon, Kweon, Choi (CR43) 2019; 33 Goharimanesh, Akbari (CR55) 2015; 46 Gravagne, Rahn, Walker (CR18) 2003; 8 Li, Liu, Wang (CR53) 2014; 11 Zhang, Dequidt, Back, Liu, Duriez (CR19) 2019; 4 CR24 CR23 Goharimanesh, Lashkaripour, Shariatnia, Akbari (CR30) 2014; 16 Sutton, Barto, Williams (CR35) 1992; 12 Hasanzadeh, Janabi-Sharifi (CR1) 2015; 21 Akchurina (CR46) 2009 Goharimanesh, Akbari, Naghibi-Sistani (CR36) 2015; 27 Goharimanesh, Abbasi Jannatabadi, Moeinkhah, Naghibi-Sistani, Akbari (CR49) 2017; 33 A Lotfavar (1237_CR6) 2018; 3 XM Zhao (1237_CR25) 2013; 419 N Akchurina (1237_CR46) 2009 CJ Watkins (1237_CR51) 1992; 8 1237_CR23 1237_CR24 RS Sutton (1237_CR34) 1996 H You (1237_CR43) 2019; 33 Z Du (1237_CR29) 2017; 17 1237_CR52 LA Zadeh (1237_CR27) 2008; 178 MT Chikhaoui (1237_CR17) 2018; 3 1237_CR16 1237_CR14 1237_CR12 S Hasanzadeh (1237_CR2) 2014; 6 1237_CR13 Z Zhang (1237_CR19) 2019; 4 1237_CR10 TG Thuruthel (1237_CR20) 2019; 35 1237_CR54 1237_CR11 L Yu (1237_CR39) 2019; 10 M Goharimanesh (1237_CR49) 2017; 33 MC Yip (1237_CR21) 2016; 1 V Torczon (1237_CR56) 1997; 7 Y Ganji (1237_CR3) 2009; 4 M Goharimanesh (1237_CR55) 2015; 46 1237_CR41 1237_CR42 P Qi (1237_CR28) 2016; 63 1237_CR40 MC Yip (1237_CR7) 2017; 2 1237_CR48 RS Sutton (1237_CR35) 1992; 12 1237_CR44 H Li (1237_CR53) 2014; 11 MI AL-Saedi (1237_CR31) 2013; 1 MK Soltani (1237_CR50) 2017; 15 1237_CR4 H Yuan (1237_CR57) 2019; 135 1237_CR8 RE Goldman (1237_CR15) 2014; 30 S Hasanzadeh (1237_CR1) 2015; 21 1237_CR38 J Hu (1237_CR45) 2003; 4 IA Gravagne (1237_CR18) 2003; 8 1237_CR37 DB Camarillo (1237_CR5) 2009; 25 1237_CR33 M Goharimanesh (1237_CR36) 2015; 27 M Goharimanesh (1237_CR30) 2014; 16 LA Zadeh (1237_CR26) 2009; 160 L Busoniu (1237_CR47) 2008; 38 1237_CR9 OM Omisore (1237_CR32) 2018; 12 MC Yip (1237_CR22) 2014; 30 |
| References_xml | – volume: 3 start-page: 1793 issue: 3 year: 2018 end-page: 1800 ident: CR17 article-title: Toward motion coordination control and design optimization for dual-arm concentric tube continuum robots publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2800037 – volume: 160 start-page: 3175 issue: 21 year: 2009 end-page: 3181 ident: CR26 article-title: Toward extended fuzzy logic—a first step publication-title: Fuzzy Sets Sys. doi: 10.1016/j.fss.2009.04.009 – ident: CR4 – ident: CR16 – volume: 63 start-page: 5022 issue: 8 year: 2016 end-page: 5035 ident: CR28 article-title: Kinematic control of continuum manipulators using a fuzzy-model-based approach publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2554078 – volume: 7 start-page: 1 issue: 1 year: 1997 end-page: 25 ident: CR56 article-title: On the convergence of pattern search algorithms publication-title: SIAM J. on Opt. doi: 10.1137/S1052623493250780 – ident: CR12 – ident: CR54 – ident: CR8 – volume: 1 start-page: 844 issue: 2 year: 2016 end-page: 851 ident: CR21 article-title: Model-less hybrid position/force control: a minimalist approach for continuum manipulators in unknown, constrained environments publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2016.2526062 – volume: 11 start-page: 706 issue: 3 year: 2014 end-page: 714 ident: CR53 article-title: Integral reinforcement learning for linear continuous-time zero-sum games with completely unknown dynamics publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2014.2300532 – ident: CR42 – volume: 4 start-page: 1039 issue: Nov year: 2003 end-page: 1069 ident: CR45 article-title: Nash Q-learning for general-sum stochastic games publication-title: J. Mach. Learn. Res. – volume: 178 start-page: 2751 issue: 13 year: 2008 end-page: 2779 ident: CR27 article-title: Is there a need for fuzzy logic? publication-title: Inf. Sci. doi: 10.1016/j.ins.2008.02.012 – volume: 4 start-page: 1852 issue: 2 year: 2019 end-page: 1859 ident: CR19 article-title: Motion control of cable-driven continuum catheter robot through contacts publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2019.2898047 – volume: 4 start-page: 307 issue: 4 year: 2009 end-page: 315 ident: CR3 article-title: Robot-assisted catheter manipulation for intracardiac navigation publication-title: Int. J. Comput. Ass. Rad. – volume: 16 start-page: 133 issue: 2 year: 2014 end-page: 139 ident: CR30 article-title: Diabetic control using genetic fuzzy-PI controller publication-title: Int. J. Fuzzy Sys. – volume: 30 start-page: 880 issue: 4 year: 2014 end-page: 889 ident: CR22 article-title: Model-less feedback control of continuum manipulators in constrained environments publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2014.2309194 – ident: CR11 – ident: CR9 – volume: 135 start-page: 130 year: 2019 end-page: 149 ident: CR57 article-title: A comprehensive static model of cable-driven multi-section continuum robots considering friction effect publication-title: Mech. Theory doi: 10.1016/j.mechmachtheory.2019.02.005 – start-page: 725 year: 2009 end-page: 732 ident: CR46 publication-title: Multiagent reinforcement learning: algorithm converging to Nash Equilibrium in general-sum discounted stochastic games, in: Proceedings of 8 International Conference on Autonomous Agents and Multiagent Systems-Volume 2 – volume: 12 start-page: 1 issue: 4 year: 2018 end-page: 15 ident: CR32 article-title: Towards characterization and adaptive compensation of backlash in a novel robotic catheter system for cardiovascular interventions publication-title: IEEE Trans. Biomed. Circ. Sys. doi: 10.1109/TBCAS.2018.2864411 – volume: 33 start-page: 5415 issue: 11 year: 2019 end-page: 5423 ident: CR43 article-title: Automatic control of cardiac ablation catheter with deep reinforcement learning method publication-title: J. Mech. Sci. Tech. doi: 10.1007/s12206-019-1036-0 – volume: 12 start-page: 19 issue: 2 year: 1992 end-page: 22 ident: CR35 article-title: Reinforcement learning is direct adaptive optimal control publication-title: IEEE Con. Sys. Mag. doi: 10.1109/37.126844 – volume: 38 start-page: 156 issue: 2 year: 2008 end-page: 172 ident: CR47 article-title: A comprehensive survey of multiagent reinforcement learning publication-title: IEEE Trans. Sys. Man Cyber., Part C (Applications and Reviews) doi: 10.1109/TSMCC.2007.913919 – volume: 8 start-page: 279 issue: 3–4 year: 1992 end-page: 292 ident: CR51 article-title: Q-learning publication-title: Mach. Learn. – volume: 8 start-page: 299 issue: 2 year: 2003 end-page: 307 ident: CR18 article-title: Large deflection dynamics and control for planar continuum robots publication-title: IEEE-ASME Trans. Mech. doi: 10.1109/TMECH.2003.812829 – volume: 17 start-page: 1 issue: 4 year: 2017 end-page: 15 ident: CR29 article-title: Variable admittance control based on fuzzy reinforcement learning for minimally invasive surgery manipulator publication-title: Sensors doi: 10.1109/JSEN.2016.2643958 – start-page: 1038 year: 1996 end-page: 1044 ident: CR34 publication-title: Generalization in reinforcement learning: Successful examples using sparse coarse coding, in: Proceedings of Advances in Neural Information Processing Systems – volume: 15 start-page: 54 issue: 1 year: 2017 end-page: 63 ident: CR50 article-title: A soft robotics nonlinear hybrid position/force control for tendon driven catheters publication-title: Int. J Control Autom. doi: 10.1007/s12555-016-0461-4 – volume: 2 start-page: 1 issue: 1 year: 2017 end-page: 13 ident: CR7 article-title: Autonomous control of continuum robot manipulators for complex cardiac ablation tasks publication-title: J. Med. Robot. Res. doi: 10.1142/S2424905X17500027 – volume: 30 start-page: 890 issue: 4 year: 2014 end-page: 902 ident: CR15 article-title: Compliant motion control for multisegment continuum robots with actuation force sensing publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2014.2309835 – volume: 1 start-page: 213 issue: 3 year: 2013 end-page: 226 ident: CR31 article-title: ANFIS and fuzzy tuning of PID controller for trajectory tracking of a flexible hydraulically driven parallel robot machine publication-title: J. Autom. Con. Eng. – volume: 6 start-page: 1 issue: 3 year: 2014 end-page: 5 ident: CR2 article-title: An efficient static analysis of continuum robots publication-title: J. Mech. Robot. doi: 10.1115/1.4027305 – ident: CR14 – ident: CR37 – ident: CR10 – ident: CR33 – volume: 10 start-page: 119 issue: 1 year: 2019 end-page: 131 ident: CR39 article-title: Laparoscope arm automatic positioning for robot-assisted surgery based on reinforcement learning publication-title: Mech. Sci. doi: 10.5194/ms-10-119-2019 – volume: 27 start-page: 1 issue: 1 year: 2015 end-page: 14 ident: CR36 article-title: Combining the principles of fuzzy logic and reinforcement learning for control of dynamic systems publication-title: J. app. comput. sci imech. – volume: 21 start-page: 154 issue: 1 year: 2015 end-page: 162 ident: CR1 article-title: Model-based force estimation for intracardiac catheters publication-title: IEEE/ASME Trans. Mech. – ident: CR40 – ident: CR23 – ident: CR44 – volume: 25 start-page: 798 issue: 4 year: 2009 end-page: 808 ident: CR5 article-title: Configuration tracking for continuum manipulators with coupled tendon drive publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2009.2022426 – volume: 35 start-page: 124 issue: 1 year: 2019 end-page: 134 ident: CR20 article-title: Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2018.2878318 – ident: CR48 – ident: CR38 – volume: 419 start-page: 706 year: 2013 end-page: 712 ident: CR25 article-title: Adaptive fuzzy PID controller of a master-slave robotic catheter system in minimally invasive surgery publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.419.706 – ident: CR52 – volume: 3 start-page: 426 issue: 1 year: 2018 end-page: 433 ident: CR6 article-title: Cooperative continuum robots: concept, modeling, and workspace analysis publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2017.2759789 – ident: CR13 – ident: CR41 – ident: CR24 – volume: 46 start-page: 233 issue: 2 year: 2015 end-page: 241 ident: CR55 article-title: Optimum parameters of nonlinear integrator using design of experiments based on Taguchi method publication-title: J. App. Mech. – volume: 33 start-page: 125 issue: 1 year: 2017 end-page: 136 ident: CR49 article-title: An intelligent controller for ionic polymer metal composites using optimized fuzzy reinforcement learning publication-title: J. Intell. Fuzzy Sys. doi: 10.3233/JIFS-161211 – volume: 30 start-page: 890 issue: 4 year: 2014 ident: 1237_CR15 publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2014.2309835 – ident: 1237_CR16 doi: 10.1109/ICRA.2012.6224735 – volume: 8 start-page: 279 issue: 3–4 year: 1992 ident: 1237_CR51 publication-title: Mach. Learn. – volume: 63 start-page: 5022 issue: 8 year: 2016 ident: 1237_CR28 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2554078 – volume: 21 start-page: 154 issue: 1 year: 2015 ident: 1237_CR1 publication-title: IEEE/ASME Trans. Mech. – volume: 30 start-page: 880 issue: 4 year: 2014 ident: 1237_CR22 publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2014.2309194 – volume: 7 start-page: 1 issue: 1 year: 1997 ident: 1237_CR56 publication-title: SIAM J. on Opt. doi: 10.1137/S1052623493250780 – volume: 3 start-page: 1793 issue: 3 year: 2018 ident: 1237_CR17 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2800037 – volume: 12 start-page: 1 issue: 4 year: 2018 ident: 1237_CR32 publication-title: IEEE Trans. Biomed. Circ. Sys. doi: 10.1109/TBCAS.2018.2864411 – volume: 12 start-page: 19 issue: 2 year: 1992 ident: 1237_CR35 publication-title: IEEE Con. Sys. Mag. doi: 10.1109/37.126844 – ident: 1237_CR11 doi: 10.1109/ROBOT.1995.525734 – volume: 17 start-page: 1 issue: 4 year: 2017 ident: 1237_CR29 publication-title: Sensors doi: 10.1109/JSEN.2016.2643958 – ident: 1237_CR23 doi: 10.1109/IROS.2017.8206123 – ident: 1237_CR37 – ident: 1237_CR54 doi: 10.1109/FUZZY.1997.622790 – ident: 1237_CR14 doi: 10.1109/ICRA.2011.5980233 – volume: 4 start-page: 307 issue: 4 year: 2009 ident: 1237_CR3 publication-title: Int. J. Comput. Ass. Rad. – volume: 1 start-page: 213 issue: 3 year: 2013 ident: 1237_CR31 publication-title: J. Autom. Con. Eng. – volume: 27 start-page: 1 issue: 1 year: 2015 ident: 1237_CR36 publication-title: J. app. comput. sci imech. – volume: 11 start-page: 706 issue: 3 year: 2014 ident: 1237_CR53 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2014.2300532 – ident: 1237_CR42 doi: 10.1109/ICCPCCT.2018.8574225 – volume: 4 start-page: 1852 issue: 2 year: 2019 ident: 1237_CR19 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2019.2898047 – start-page: 1038 volume-title: Generalization in reinforcement learning: Successful examples using sparse coarse coding, in: Proceedings of Advances in Neural Information Processing Systems year: 1996 ident: 1237_CR34 – volume: 6 start-page: 1 issue: 3 year: 2014 ident: 1237_CR2 publication-title: J. Mech. Robot. doi: 10.1115/1.4027305 – ident: 1237_CR9 doi: 10.1109/CDC.2006.377452 – volume: 178 start-page: 2751 issue: 13 year: 2008 ident: 1237_CR27 publication-title: Inf. Sci. doi: 10.1016/j.ins.2008.02.012 – volume: 16 start-page: 133 issue: 2 year: 2014 ident: 1237_CR30 publication-title: Int. J. Fuzzy Sys. – volume: 4 start-page: 1039 issue: Nov year: 2003 ident: 1237_CR45 publication-title: J. Mach. Learn. Res. – ident: 1237_CR24 doi: 10.1109/TMECH.2017.2775663 – volume: 419 start-page: 706 year: 2013 ident: 1237_CR25 publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.419.706 – volume: 160 start-page: 3175 issue: 21 year: 2009 ident: 1237_CR26 publication-title: Fuzzy Sets Sys. doi: 10.1016/j.fss.2009.04.009 – ident: 1237_CR44 doi: 10.1109/ICRA.2019.8793653 – ident: 1237_CR38 – volume: 33 start-page: 125 issue: 1 year: 2017 ident: 1237_CR49 publication-title: J. Intell. Fuzzy Sys. doi: 10.3233/JIFS-161211 – volume: 15 start-page: 54 issue: 1 year: 2017 ident: 1237_CR50 publication-title: Int. J Control Autom. doi: 10.1007/s12555-016-0461-4 – volume: 38 start-page: 156 issue: 2 year: 2008 ident: 1237_CR47 publication-title: IEEE Trans. Sys. Man Cyber., Part C (Applications and Reviews) doi: 10.1109/TSMCC.2007.913919 – volume: 33 start-page: 5415 issue: 11 year: 2019 ident: 1237_CR43 publication-title: J. Mech. Sci. Tech. doi: 10.1007/s12206-019-1036-0 – volume: 10 start-page: 119 issue: 1 year: 2019 ident: 1237_CR39 publication-title: Mech. Sci. doi: 10.5194/ms-10-119-2019 – ident: 1237_CR41 doi: 10.1109/URAI.2018.8441801 – volume: 8 start-page: 299 issue: 2 year: 2003 ident: 1237_CR18 publication-title: IEEE-ASME Trans. Mech. doi: 10.1109/TMECH.2003.812829 – volume: 35 start-page: 124 issue: 1 year: 2019 ident: 1237_CR20 publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2018.2878318 – volume: 2 start-page: 1 issue: 1 year: 2017 ident: 1237_CR7 publication-title: J. Med. Robot. Res. doi: 10.1142/S2424905X17500027 – ident: 1237_CR4 doi: 10.1109/ISMR.2018.8333287 – ident: 1237_CR52 – volume: 25 start-page: 798 issue: 4 year: 2009 ident: 1237_CR5 publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2009.2022426 – volume: 46 start-page: 233 issue: 2 year: 2015 ident: 1237_CR55 publication-title: J. App. Mech. – ident: 1237_CR40 doi: 10.1109/CBS.2018.8612190 – volume: 135 start-page: 130 year: 2019 ident: 1237_CR57 publication-title: Mech. Theory doi: 10.1016/j.mechmachtheory.2019.02.005 – ident: 1237_CR10 doi: 10.1109/ICRA.2015.7139264 – ident: 1237_CR8 doi: 10.1109/ICRA.2014.6907724 – ident: 1237_CR48 doi: 10.1109/TSMC.2018.2865488 – volume: 1 start-page: 844 issue: 2 year: 2016 ident: 1237_CR21 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2016.2526062 – ident: 1237_CR33 doi: 10.1109/TNN.1998.712192 – start-page: 725 volume-title: Multiagent reinforcement learning: algorithm converging to Nash Equilibrium in general-sum discounted stochastic games, in: Proceedings of 8th International Conference on Autonomous Agents and Multiagent Systems-Volume 2 year: 2009 ident: 1237_CR46 – volume: 3 start-page: 426 issue: 1 year: 2018 ident: 1237_CR6 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2017.2759789 – ident: 1237_CR12 doi: 10.1109/IROS.2011.6048558 – ident: 1237_CR13 doi: 10.1109/ICRA.2014.6907161 |
| SSID | ssj0009859 |
| Score | 2.4456465 |
| Snippet | Continuum robots (CRs) hold great potential for many medical and industrial applications where compliant interaction within the potentially confined... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 809 |
| SubjectTerms | Actuation Algorithms Analysis Artificial Intelligence Confined spaces Control Electrical Engineering Engineering Evolutionary algorithms Game theory Genetic algorithms Industrial applications Learning Machine learning Mechanical Engineering Mechatronics Robot control Robotics Robots Taguchi methods Tracking |
| SummonAdditionalLinks | – databaseName: Springer Journals New Starts & Take-Overs Collection dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMAfOj3owelUnE7JQfCghaVNmvRYhsODiEwdu4U2TWUwV9mH4P56kyx18xP0WF6Spi9f7zV5vwCc8iT00zwjZoeRe0TK0EtVpCfDEONUhrlq2kDa7jW7ueG9XnTrgsLG5Wn3ckvSztRLwW56rfSMu2PsAOaFq7BGDW3G-Oh33QVql9M5Yc_XjrIfhS5U5vsyPixHnyflL7ujdtFpV_9X3W3YckYmiue9YgdW1LAG1fICB-TGcw02l2iEu9CKUXs6m72ijrI4VWn_HCJHYH1EscOPIy1DhmrVH06nT6hTpMXEPo-KwR48tC_vW1eeu2PBkwHlE4_lAVacZkRmgZ_xKMxZYojuNMFRqrQ5SXHC0pxpYcjyhOKc8iglviREEUKCYB8qw2KoDgBlLFNBRHOcUm2mJM2EG4eXYYm1FaktmzrgUtVCOgC5uQdjIBboZKMzoXUmrM6EznP-nud5jt_4NfWZaUFhlKRLlokLMdD1M5QrETPtbEYmqrAOjbKRhRu0Y-ET_ZmUckzrcFE26kL883sP_5b8CDZ80y_soZgGVCajqTqGdfky6Y9HJ7YzvwEsOen1 priority: 102 providerName: Springer Nature |
| Title | A Fuzzy Reinforcement Learning Approach for Continuum Robot Control |
| URI | https://link.springer.com/article/10.1007/s10846-020-01237-6 https://www.proquest.com/docview/2473255815 |
| Volume | 100 |
| WOSCitedRecordID | wos000556677300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: K7- dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: M7S dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: P5Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7x6KEcgEIrltKVD5U4UKs4sWPnhLaIFVKr1Wp5CHGxEsepkGAD-0CCX89M1ulSKrj0Yily7Die8Xhm7PkG4KvJkigvC0knjIZL5xKe-xSFYSJE7pLS79eBtOe_dK9nLi7SfnC4jcO1ykYm1oK6qBz5yL9HUseo_hqhDm7vOGWNotPVkEJjEZYJqQz5fPnHUa8_mMPuGjVD24vQaI7SJITNhOA53Hs5mU-kV2ie_LU1vRTQ_5yU1htQd-1_h74Oq0H1ZJ0Zr3yABT_cgLUmrQMLq3wDVp5hFG7CYYd1p4-PD2zga5BVV_sTWcBl_c06AZScYR0jrKur4XR6wwZVXk3q51F1_RHOukenh8c8ZF7gLlZmwnUZC29UIV0RR4VJk1JnhPOuMpHmHpVMJTKdl_hbRaLLTIlSmTSXkZPSSynj-BMsDauh3wJW6MLHqSpFrlB5yfYzQ2awFg7pRVDyLRDNpFsXYMkpO8a1nQMqE6EsEsrWhLLYZu9Pm9sZKMebb-8SLS1NEvbsshB4gOMj7Cvb0WiCphRr2IKdhoA2LOWxnVOvBd8aFphXv_7d7bd7-wzvI2K--mrMDixNRlP_Bd65-8nVeNQOjNyGxZ-at-lG6gmWfXWJ5eDk_AnNQPk3 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk4UCggFgr4AOIAEbXjVw4IrQqrVrusUFVQbyZxHFSpbMo-QO2P4jcy43VYHqK3HjhGju3E_jwP2_MNwGNbalE1taQTRptJ73VWhQKFoea88roJ2zGQ9sPIjMf28LB4twbfu1gYulbZycQoqOvW0x75CyFNjuav5erVyZeMskbR6WqXQmMJi2E4_YYu2-zl3muc3ydCDN4c7OxmKatA5nNl55lpch6sqqWvc1HbQjemJA5zVfKiCmhAKV6aqsHeam2aUvFG2aKSwksZpJS0AYoi_5LMraYVNTTZiuTXqiW3n0AXXRQ6BemkUD3U9Bk5a2TFmEz_pgj_VAd_nctGdTfY-N8G6gZcT4Y16y9Xwk1YC5NN2OiSVrAkwzbh2i8MjLdgp88Gi7OzU7YfIoWsj7ulLLHOfmL9RLnOsIwRk9fRZLH4zPbbqp3H52l7fBveX8iP3YH1STsJd4HVpg55oRpeKTTNyu3SkpNvuOdoOaM11wPeTbLziXSdcn8cuxVdNAHDITBcBIbDOs9-1jlZUo6c-_ZTwo6jQcKWfZnCKvD7iNnL9Q062AVFUvZgqwOMS4Jq5lZo6cHzDnKr4n_3e-_81h7Bld2DtyM32hsP78NVQcCPl4C2YH0-XYQHcNl_nR_Npg_jEmLw8aKh-AMmck7y |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4TgQKFQsaWADyAOELV27Ng5ILS0XVG1Wq1WgHoziWOjSmXT7gPU_jR-HTNZh-UheuuBY-TYTuzP87A93wA8M0UmylBJOmE0iXQuS0qfozDMOC9dFvxOE0j78UgPBub4OB-uwPc2FoauVbYysRHUVe1oj3xbSJ2i-Wu42g7xWsRwr__m7DyhDFJ00tqm01hA5NBffEP3bfr6YA_n-rkQ_f33u--SmGEgcakys0SHlHujKumqVFQmz4IuiM9cFTwvPRpTihe6DNhzlelQKB6UyUspnJReSkmboSj-V3WKTk8HVt_uD4ajJeWvUQumP4EOu8izGLITA_dQ7yfkupFNo5PsN7X4p3L465S2UX79tf952O7CnWhys95ijdyDFT9eh7U2nQWL0m0dbv_CzXgfdnusP7-8vGAj35DLumYflUU-2s-sF8nYGZYx4vg6Gc_nX9ioLutZ8zypTx_Ah2v5sQ3ojOuxfwis0pVPcxV4qdBoK3YKQ-6_5o6jTY12Xhd4O-HWRTp2ygpyapdE0gQSiyCxDUgs1nn5s87ZgozkyrdfEI4sDRK27IoYcIHfR5xftqfR9c4pxrILWy14bBRhU7tEThdetfBbFv-7382rW3sKNxGB9uhgcPgIbglaA83toC3ozCZz_xhuuK-zk-nkSVxPDD5dNxZ_AOgvWUQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fuzzy+Reinforcement+Learning+Approach+for+Continuum+Robot+Control&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Goharimanesh%2C+M.&rft.au=Mehrkish%2C+A.&rft.au=Janabi-Sharifi%2C+F.&rft.date=2020-12-01&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=100&rft.issue=3-4&rft.spage=809&rft.epage=826&rft_id=info:doi/10.1007%2Fs10846-020-01237-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10846_020_01237_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon |