BreathVisionNet: A pulmonary-function-guided CNN-transformer hybrid model for expiratory CT image synthesis

•A model of synthesizing expiratory CT images from inspiratory images is developed.•A CNN-Transformer network with a global context injection module is introduced.•GOLD stage is incorporated to guide the model in capturing the disease severity.•The model achieves a mean absolute error of 78.207 HU a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer methods and programs in biomedicine Ročník 259; s. 108516
Hlavní autori: Zhang, Tiande, Pang, Haowen, Wu, Yanan, Xu, Jiaxuan, Liu, Lingkai, Li, Shang, Xia, Shuyue, Chen, Rongchang, Liang, Zhenyu, Qi, Shouliang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Ireland Elsevier B.V 01.02.2025
Predmet:
ISSN:0169-2607, 1872-7565, 1872-7565
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A model of synthesizing expiratory CT images from inspiratory images is developed.•A CNN-Transformer network with a global context injection module is introduced.•GOLD stage is incorporated to guide the model in capturing the disease severity.•The model achieves a mean absolute error of 78.207 HU and outperforms other models.•Predicted parametric response mapping can quantify functional small airway disease.•Predicted voxel distribution maps can aid in COPD phenotyping and classification. Chronic obstructive pulmonary disease (COPD) has high heterogeneity in etiologies and clinical manifestations. Expiratory Computed tomography (CT) can effectively assess air trapping, aiding in disease diagnosis. However, due to concerns about radiation exposure and cost, expiratory CT is not routinely performed. Recent work on synthesizing expiratory CT has primarily focused on imaging features while neglecting patient-specific pulmonary function. To address these issues, we developed a novel model named BreathVisionNet that incorporates pulmonary function data to guide the synthesis of expiratory CT from inspiratory CT. An architecture combining a convolutional neural network and transformer is introduced to leverage the irregular phenotypic distribution in COPD patients. The model can better understand the long-range and global contexts by incorporating global information into the encoder. The utilization of edge information and multi-view data further enhances the quality of the synthesized CT. Parametric response mapping (PRM) can be estimated by using synthesized expiratory CT and inspiratory CT to quantify COPD phenotypes of the normal, emphysema, and functional small airway disease (fSAD), including their percentages, spatial distributions, and voxel distribution maps. BreathVisionNet outperforms other generative models in terms of synthesized image quality. It achieves a mean absolute error, normalized mean square error, structural similarity index and peak signal-to-noise ratio of 78.207 HU, 0.643, 0.847 and 25.828 dB, respectively. Comparing the predicted and real PRM, the Dice coefficient can reach 0.732 (emphysema) and 0.560 (fSAD). The mean of differences between true and predicted fSAD percentage is 4.42 for the development dataset (low radiation dose CT scans), and 9.05 for an independent external validation dataset (routine dose), indicating that model has great generalizability. A classifier trained on voxel distribution maps can achieve an accuracy of 0.891 in predicting the presence of COPD. BreathVisionNet can accurately synthesize expiratory CT images from inspiratory CT and predict their voxel distribution. The estimated PRM can help to quantify COPD phenotypes of the normal, emphysema, and fSAD. This capability provides additional insights into COPD diversity while only inspiratory CT images are available.
AbstractList •A model of synthesizing expiratory CT images from inspiratory images is developed.•A CNN-Transformer network with a global context injection module is introduced.•GOLD stage is incorporated to guide the model in capturing the disease severity.•The model achieves a mean absolute error of 78.207 HU and outperforms other models.•Predicted parametric response mapping can quantify functional small airway disease.•Predicted voxel distribution maps can aid in COPD phenotyping and classification. Chronic obstructive pulmonary disease (COPD) has high heterogeneity in etiologies and clinical manifestations. Expiratory Computed tomography (CT) can effectively assess air trapping, aiding in disease diagnosis. However, due to concerns about radiation exposure and cost, expiratory CT is not routinely performed. Recent work on synthesizing expiratory CT has primarily focused on imaging features while neglecting patient-specific pulmonary function. To address these issues, we developed a novel model named BreathVisionNet that incorporates pulmonary function data to guide the synthesis of expiratory CT from inspiratory CT. An architecture combining a convolutional neural network and transformer is introduced to leverage the irregular phenotypic distribution in COPD patients. The model can better understand the long-range and global contexts by incorporating global information into the encoder. The utilization of edge information and multi-view data further enhances the quality of the synthesized CT. Parametric response mapping (PRM) can be estimated by using synthesized expiratory CT and inspiratory CT to quantify COPD phenotypes of the normal, emphysema, and functional small airway disease (fSAD), including their percentages, spatial distributions, and voxel distribution maps. BreathVisionNet outperforms other generative models in terms of synthesized image quality. It achieves a mean absolute error, normalized mean square error, structural similarity index and peak signal-to-noise ratio of 78.207 HU, 0.643, 0.847 and 25.828 dB, respectively. Comparing the predicted and real PRM, the Dice coefficient can reach 0.732 (emphysema) and 0.560 (fSAD). The mean of differences between true and predicted fSAD percentage is 4.42 for the development dataset (low radiation dose CT scans), and 9.05 for an independent external validation dataset (routine dose), indicating that model has great generalizability. A classifier trained on voxel distribution maps can achieve an accuracy of 0.891 in predicting the presence of COPD. BreathVisionNet can accurately synthesize expiratory CT images from inspiratory CT and predict their voxel distribution. The estimated PRM can help to quantify COPD phenotypes of the normal, emphysema, and fSAD. This capability provides additional insights into COPD diversity while only inspiratory CT images are available.
Chronic obstructive pulmonary disease (COPD) has high heterogeneity in etiologies and clinical manifestations. Expiratory Computed tomography (CT) can effectively assess air trapping, aiding in disease diagnosis. However, due to concerns about radiation exposure and cost, expiratory CT is not routinely performed. Recent work on synthesizing expiratory CT has primarily focused on imaging features while neglecting patient-specific pulmonary function. To address these issues, we developed a novel model named BreathVisionNet that incorporates pulmonary function data to guide the synthesis of expiratory CT from inspiratory CT. An architecture combining a convolutional neural network and transformer is introduced to leverage the irregular phenotypic distribution in COPD patients. The model can better understand the long-range and global contexts by incorporating global information into the encoder. The utilization of edge information and multi-view data further enhances the quality of the synthesized CT. Parametric response mapping (PRM) can be estimated by using synthesized expiratory CT and inspiratory CT to quantify COPD phenotypes of the normal, emphysema, and functional small airway disease (fSAD), including their percentages, spatial distributions, and voxel distribution maps. BreathVisionNet outperforms other generative models in terms of synthesized image quality. It achieves a mean absolute error, normalized mean square error, structural similarity index and peak signal-to-noise ratio of 78.207 HU, 0.643, 0.847 and 25.828 dB, respectively. Comparing the predicted and real PRM, the Dice coefficient can reach 0.732 (emphysema) and 0.560 (fSAD). The mean of differences between true and predicted fSAD percentage is 4.42 for the development dataset (low radiation dose CT scans), and 9.05 for an independent external validation dataset (routine dose), indicating that model has great generalizability. A classifier trained on voxel distribution maps can achieve an accuracy of 0.891 in predicting the presence of COPD. BreathVisionNet can accurately synthesize expiratory CT images from inspiratory CT and predict their voxel distribution. The estimated PRM can help to quantify COPD phenotypes of the normal, emphysema, and fSAD. This capability provides additional insights into COPD diversity while only inspiratory CT images are available.
Chronic obstructive pulmonary disease (COPD) has high heterogeneity in etiologies and clinical manifestations. Expiratory Computed tomography (CT) can effectively assess air trapping, aiding in disease diagnosis. However, due to concerns about radiation exposure and cost, expiratory CT is not routinely performed. Recent work on synthesizing expiratory CT has primarily focused on imaging features while neglecting patient-specific pulmonary function.BACKGROUND AND OBJECTIVEChronic obstructive pulmonary disease (COPD) has high heterogeneity in etiologies and clinical manifestations. Expiratory Computed tomography (CT) can effectively assess air trapping, aiding in disease diagnosis. However, due to concerns about radiation exposure and cost, expiratory CT is not routinely performed. Recent work on synthesizing expiratory CT has primarily focused on imaging features while neglecting patient-specific pulmonary function.To address these issues, we developed a novel model named BreathVisionNet that incorporates pulmonary function data to guide the synthesis of expiratory CT from inspiratory CT. An architecture combining a convolutional neural network and transformer is introduced to leverage the irregular phenotypic distribution in COPD patients. The model can better understand the long-range and global contexts by incorporating global information into the encoder. The utilization of edge information and multi-view data further enhances the quality of the synthesized CT. Parametric response mapping (PRM) can be estimated by using synthesized expiratory CT and inspiratory CT to quantify COPD phenotypes of the normal, emphysema, and functional small airway disease (fSAD), including their percentages, spatial distributions, and voxel distribution maps.METHODSTo address these issues, we developed a novel model named BreathVisionNet that incorporates pulmonary function data to guide the synthesis of expiratory CT from inspiratory CT. An architecture combining a convolutional neural network and transformer is introduced to leverage the irregular phenotypic distribution in COPD patients. The model can better understand the long-range and global contexts by incorporating global information into the encoder. The utilization of edge information and multi-view data further enhances the quality of the synthesized CT. Parametric response mapping (PRM) can be estimated by using synthesized expiratory CT and inspiratory CT to quantify COPD phenotypes of the normal, emphysema, and functional small airway disease (fSAD), including their percentages, spatial distributions, and voxel distribution maps.BreathVisionNet outperforms other generative models in terms of synthesized image quality. It achieves a mean absolute error, normalized mean square error, structural similarity index and peak signal-to-noise ratio of 78.207 HU, 0.643, 0.847 and 25.828 dB, respectively. Comparing the predicted and real PRM, the Dice coefficient can reach 0.732 (emphysema) and 0.560 (fSAD). The mean of differences between true and predicted fSAD percentage is 4.42 for the development dataset (low radiation dose CT scans), and 9.05 for an independent external validation dataset (routine dose), indicating that model has great generalizability. A classifier trained on voxel distribution maps can achieve an accuracy of 0.891 in predicting the presence of COPD.RESULTSBreathVisionNet outperforms other generative models in terms of synthesized image quality. It achieves a mean absolute error, normalized mean square error, structural similarity index and peak signal-to-noise ratio of 78.207 HU, 0.643, 0.847 and 25.828 dB, respectively. Comparing the predicted and real PRM, the Dice coefficient can reach 0.732 (emphysema) and 0.560 (fSAD). The mean of differences between true and predicted fSAD percentage is 4.42 for the development dataset (low radiation dose CT scans), and 9.05 for an independent external validation dataset (routine dose), indicating that model has great generalizability. A classifier trained on voxel distribution maps can achieve an accuracy of 0.891 in predicting the presence of COPD.BreathVisionNet can accurately synthesize expiratory CT images from inspiratory CT and predict their voxel distribution. The estimated PRM can help to quantify COPD phenotypes of the normal, emphysema, and fSAD. This capability provides additional insights into COPD diversity while only inspiratory CT images are available.CONCLUSIONSBreathVisionNet can accurately synthesize expiratory CT images from inspiratory CT and predict their voxel distribution. The estimated PRM can help to quantify COPD phenotypes of the normal, emphysema, and fSAD. This capability provides additional insights into COPD diversity while only inspiratory CT images are available.
ArticleNumber 108516
Author Qi, Shouliang
Zhang, Tiande
Chen, Rongchang
Xia, Shuyue
Liu, Lingkai
Xu, Jiaxuan
Pang, Haowen
Wu, Yanan
Liang, Zhenyu
Li, Shang
Author_xml – sequence: 1
  givenname: Tiande
  orcidid: 0009-0001-7617-6235
  surname: Zhang
  fullname: Zhang, Tiande
  organization: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Haowen
  surname: Pang
  fullname: Pang, Haowen
  organization: School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Yanan
  surname: Wu
  fullname: Wu, Yanan
  organization: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
– sequence: 4
  givenname: Jiaxuan
  surname: Xu
  fullname: Xu, Jiaxuan
  organization: State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
– sequence: 5
  givenname: Lingkai
  surname: Liu
  fullname: Liu, Lingkai
  organization: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
– sequence: 6
  givenname: Shang
  surname: Li
  fullname: Li, Shang
  organization: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
– sequence: 7
  givenname: Shuyue
  surname: Xia
  fullname: Xia, Shuyue
  organization: Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
– sequence: 8
  givenname: Rongchang
  surname: Chen
  fullname: Chen, Rongchang
  organization: State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
– sequence: 9
  givenname: Zhenyu
  orcidid: 0000-0002-8746-315X
  surname: Liang
  fullname: Liang, Zhenyu
  email: 490458234@qq.com
  organization: State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
– sequence: 10
  givenname: Shouliang
  orcidid: 0000-0003-0977-1939
  surname: Qi
  fullname: Qi, Shouliang
  email: qisl@bmie.neu.edu.cn
  organization: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39571504$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi3Uik4LL8ACeckmgx3HTlKxKSMKSNV0U9ha_rnpeJrYwU4Qeft6NIUFi3Z1pe-eY9n-ztGJDx4QekfJmhIqPu7XZhj1uiRllYOGU_EKrWhTl0XNBT9Bqwy1RSlIfYbOU9oTQkrOxWt0xlpeU06qFXr4HEFNu58uueC3MF3iKzzO_RC8ikvRzd5MeVHcz86CxZvttpii8qkLcYCId4uOzuIhWOhxzjD8GV1UU4gL3txhN6h7wGnx0w6SS2_Qaaf6BG-f5gX6cf3lbvOtuLn9-n1zdVMYxpupqA2hlS67moAxnbBtx5rWsoqpElpubdc0HGpKWs0qrVRdVUyA1kabuhUaSnaBPhzPHWP4NUOa5OCSgb5XHsKcJKOMNpwILjL6_gmd9QBWjjHfOS7y7wdloDwCJoaUInT_EErkoQW5l4cW5KEFeWwhS5-OEuRX_nYQZTIOvAHrIphJ2uCe1y__003vvDOqf4DlJfkRzt-koQ
Cites_doi 10.2307/1932409
10.1109/TIP.2003.819861
10.1148/radiol.2019191022
10.1148/radiol.2423060196
10.1109/TMI.2019.2895894
10.1109/TMI.2024.3382043
10.1016/j.acra.2011.01.011
10.1109/TMI.2022.3167808
10.1016/j.cmpb.2023.107389
10.1016/j.media.2017.06.015
10.1016/j.media.2020.101840
10.5815/ijigsp.2021.04.03
10.1186/s12931-023-02611-2
10.1145/3422622
10.2214/ajr.170.5.9574614
10.1109/TMI.2024.3367321
10.1109/TMI.2023.3290149
10.4081/mrm.2013.542
10.1007/s11548-023-02946-7
10.1016/j.compbiomed.2022.105792
10.1109/TMI.2009.2035616
10.1109/ACCESS.2023.3246762
10.1038/s41598-021-00058-3
10.1109/TMI.2017.2785879
10.1155/2021/5624909
10.1038/nm.2971
10.1016/j.jcm.2016.02.012
10.1109/TMI.2019.2901750
10.1364/BOE.8.000679
10.1016/j.media.2023.102983
10.1016/j.bspc.2022.104162
10.1016/j.artmed.2023.102637
10.1109/TMI.2022.3174827
10.1109/4.996
10.1148/radiol.2015141579
10.1016/j.media.2022.102614
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier B.V.
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2024.108516
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 39571504
10_1016_j_cmpb_2024_108516
S0169260724005091
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AACTN
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
9DU
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c358t-7c014b2f70eccf6d9f389d343a2e95ddf885e7109b34baa74436ebbcbc796be23
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001362991200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-2607
1872-7565
IngestDate Sun Sep 28 11:48:30 EDT 2025
Mon Jul 21 05:51:38 EDT 2025
Sat Nov 29 04:39:05 EST 2025
Sat Dec 28 15:50:46 EST 2024
Tue Oct 14 19:41:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Parametric response mapping
Chronic obstructive pulmonary disease
Transformer
Generative adversarial network
Image translation
Language English
License Copyright © 2024. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c358t-7c014b2f70eccf6d9f389d343a2e95ddf885e7109b34baa74436ebbcbc796be23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0977-1939
0000-0002-8746-315X
0009-0001-7617-6235
PMID 39571504
PQID 3131850656
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3131850656
pubmed_primary_39571504
crossref_primary_10_1016_j_cmpb_2024_108516
elsevier_sciencedirect_doi_10_1016_j_cmpb_2024_108516
elsevier_clinicalkey_doi_10_1016_j_cmpb_2024_108516
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
2025-Feb
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Weninger, Rippel, Koppers, Merhof (bib0049) 2019
Ho, Jain, Abbeel (bib0016) 2020; 33
M.F. Chaudhary, S.E. Gerard, G.E. Christensen, C.B. Cooper, J.D. Schroeder, E.A. Hoffman, J.M. Reinhardt, Lung2Lung: volumetric style transfer with self-ensembling for high-resolution cross-volume computed tomography, ArXiv. org, (2022).
Zhao, Balakrishnan, Durand, Guttag, Dalca (bib0027) 2019
Hatamizadeh, Nath, Tang, Yang, Roth, Xu (bib0066) 2021
Xu (bib0047) 2021; 13
He, Chen, Xie, Li, Dollár, Girshick (bib0046) 2022
Pang, Wu, Qi, Li, Shen, Yue, Qian, Wu (bib0053) 2022; 147
Arakawa, Webb (bib0006) 1998; 170
Shamonin, Bron, Lelieveldt, Smits, Klein, Staring, Initiative (bib0051) 2014; 7
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint, (2014).
Dar, Yurt, Karacan, Erdem, Erdem, Cukur (bib0021) 2019; 38
Wang, Bovik, Sheikh, Simoncelli (bib0061) 2004; 13
H.-C. Shin, A. Ihsani, S. Mandava, S.T. Sreenivas, C. Forster, J. Cha, A.s.D.N. Initiative, Ganbert: generative adversarial networks with bidirectional encoder representations from transformers for mri to pet synthesis, arXiv preprint, (2020).
Zhong, Chen, Shu, Zheng, Li, Chen, Wu, Ma, Feng, Yang (bib0024) 2023
Ronneberger, Fischer, Brox (bib0064) 2015
X. Zhang, X. He, J. Guo, N. Ettehadi, N. Aw, D. Semanek, J. Posner, A. Laine, Y. Wang, PTNet: a high-resolution infant MRI synthesizer based on transformer, arXiv preprint, (2021).
Kim, Park (bib0022) 2024
Isola, Zhu, Zhou, Efros (bib0018) 2017
N.-C. Ristea, A.-I. Miron, O. Savencu, M.-I. Georgescu, N. Verga, F.S. Khan, R.T. Ionescu, Cytran: cycle-consistent transformers for non-contrast to contrast ct translation, arXiv preprint (2021).
Z. Liu, Q. Lv, Y. Li, Z. Yang, L. Shen, Medaugment: universal automatic data augmentation plug-in for medical image analysis, arXiv preprint, (2023).
Yu, Tang, Lin, Han, Tang, Chen (bib0056) 2019
Chaudhary, Gerard, Christensen, Cooper, Schroeder, Hoffman, Reinhardt (bib0011) 2024
M.J. Cardoso, W. Li, R. Brown, N. Ma, E. Kerfoot, Y. Wang, B. Murrey, A. Myronenko, C. Zhao, D. Yang, Monai: an open-source framework for deep learning in healthcare, arXiv preprint, (2022).
Tiago, Snare, Šprem, McLeod (bib0070) 2023; 11
Hatamizadeh, Tang, Nath, Yang, Myronenko, Landman, Roth, Xu (bib0065) 2022
Yu, Zhou, Wang, Shi, Fripp, Bourgeat (bib0013) 2019; 38
Kearney, Ziemer, Perry, Wang, Chan, Ma, Morin, Yom, Solberg (bib0023) 2020; 2
Zhang, Zhang, Gu, Yang (bib0030) 2023; 18
D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv preprint, (2013).
Zha, Zhang, Li (bib0029) 2022
Kong, Lian, Huang, Hu, Zhou (bib0034) 2021; 34
Gatys, Ecker, Bethge (bib0059) 2016
Yang, Yu, Dong, Slabaugh, Dragotti, Ye, Liu, Arridge, Keegan, Guo (bib0033) 2017; 37
Lynch, Austin, Hogg, Grenier, Kauczor, Bankier, Barr, Colby, Galvin, Gevenois (bib0003) 2015; 277
Klein, Staring, Murphy, Viergever, Pluim (bib0052) 2009; 29
Dalmaz, Yurt, Çukur (bib0020) 2022; 41
Hu, Liu, Li, Yu (bib0040) 2021; 2021
Wu, Zhao, Qi, Feng, Pang, Chang, Bai, Li, Xia, Qian (bib0054) 2023; 143
L. Qi, J. Lu, Y. Lu, H. Cui, C.-C. Fu, W. Zhang, Q. Fang, C. He, S. Zhang, Y. Yang, Evaluation of Gas Trapping in Chronic Obstructive Pulmonary Disease: prediction of Parametric Response Mapping from Solo Inspiratory Chest CT Scan by Deep Learning, Available at SSRN 4016494.
M.O. Topal, A. Bas, I. van Heerden, Exploring transformers in natural language generation: gpt, bert, and xlnet, arXiv preprint, (2021).
Chen, Liu, Lu, Li, Kuang, Yang, Wang, Sun, Du, Qi (bib0012) 2023; 24
Pang, Qi, Wu, Wang, Li, Sun, Qian, Tang, Xu, Liang (bib0032) 2023; 231
Koo, Li (bib0063) 2016; 15
Zhou, Sodha, Pang, Gotway, Liang (bib0050) 2021; 67
Wu, Du, Feng, Qi, Pang, Xia, Qian (bib0001) 2023; 79
Choi, Cho, Ha, Lee, Lee, Choi, Cheon, Kim (bib0031) 2021; 11
Luo, Wang, Zu, Zhan, Wu, Zhou, Shen, Zhou (bib0045) 2021
Zhang, He, Guo, Ettehadi, Aw, Semanek, Posner, Laine, Wang (bib0067) 2022; 41
Galbán, Han, Boes, Chughtai, Meyer, Johnson, Galbán, Rehemtulla, Kazerooni, Martinez (bib0007) 2012; 18
Xia, Yang, Qu, Guo, Zhou, Zhang, Wang (bib0057) 2022; 82
Zhu, Park, Isola, Efros (bib0019) 2017
Gaeta, Minutoli, Girbino, Murabito, Benedetto, Contiguglia, Ruggeri, Privitera (bib0005) 2013; 8
M. Mirza, S. Osindero, Conditional generative adversarial nets, arXiv preprint, (2014).
Wang, Yang, Chen, Yuan, Sermesant, Delingette, Wu (bib0071) 2024
Liu, Lin, Cao, Hu, Wei, Zhang, Lin, Guo (bib0039) 2021
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0017) 2020; 63
Özbey, Dalmaz, Dar, Bedel, Özturk, Güngör, Çukur (bib0069) 2023
Dice (bib0062) 1945; 26
Kanopoulos, Vasanthavada, Baker (bib0060) 1988; 23
Gietema, Müller, Fauerbach, Sharma, Edwards, Camp, Coxson (bib0004) 2011; 18
Chen, Zhang, Zhang, Liao, Li, Zhou, Wang (bib0026) 2017; 8
Bankier, Schaefer-Prokop, De Maertelaer, Tack, Jaksch, Klepetko, Gevenois (bib0008) 2007; 242
Wang, Luo, Zu, Zhan, Jiao, Wu, Zhou, Shen, Zhou (bib0044) 2024; 91
Vila, Escolano, Fonollosa, Costa-Jussa (bib0037) 2018
J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A.L. Yuille, Y. Zhou, Transunet: transformers make strong encoders for medical image segmentation, arXiv preprint, (2021).
Q. Yang, P. Yan, M.K. Kalra, G. Wang, CT image denoising with perceptive deep neural networks, arXiv preprint, (2017).
Setio, Traverso, De Bel, Berens, Van Den Bogaard, Cerello, Chen, Dou, Fantacci, Geurts (bib0048) 2017; 42
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, An image is worth 16×16 words: transformers for image recognition at scale, arXiv preprint, (2020).
Humphries, Notary, Centeno, Strand, Crapo, Silverman, Lynch (bib0002) 2020; 294
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0035) 2017; 30
10.1016/j.cmpb.2024.108516_bib0036
10.1016/j.cmpb.2024.108516_bib0038
Wu (10.1016/j.cmpb.2024.108516_bib0001) 2023; 79
Wu (10.1016/j.cmpb.2024.108516_bib0054) 2023; 143
Wang (10.1016/j.cmpb.2024.108516_bib0061) 2004; 13
Arakawa (10.1016/j.cmpb.2024.108516_bib0006) 1998; 170
Zha (10.1016/j.cmpb.2024.108516_bib0029) 2022
Luo (10.1016/j.cmpb.2024.108516_bib0045) 2021
Hu (10.1016/j.cmpb.2024.108516_bib0040) 2021; 2021
Gietema (10.1016/j.cmpb.2024.108516_bib0004) 2011; 18
Gaeta (10.1016/j.cmpb.2024.108516_bib0005) 2013; 8
Wang (10.1016/j.cmpb.2024.108516_bib0044) 2024; 91
Goodfellow (10.1016/j.cmpb.2024.108516_bib0017) 2020; 63
Isola (10.1016/j.cmpb.2024.108516_bib0018) 2017
Zhao (10.1016/j.cmpb.2024.108516_bib0027) 2019
Kanopoulos (10.1016/j.cmpb.2024.108516_bib0060) 1988; 23
Pang (10.1016/j.cmpb.2024.108516_bib0053) 2022; 147
10.1016/j.cmpb.2024.108516_bib0043
Xia (10.1016/j.cmpb.2024.108516_bib0057) 2022; 82
Ronneberger (10.1016/j.cmpb.2024.108516_bib0064) 2015
Vaswani (10.1016/j.cmpb.2024.108516_bib0035) 2017; 30
10.1016/j.cmpb.2024.108516_bib0041
10.1016/j.cmpb.2024.108516_bib0042
Liu (10.1016/j.cmpb.2024.108516_bib0039) 2021
Yu (10.1016/j.cmpb.2024.108516_bib0013) 2019; 38
Dice (10.1016/j.cmpb.2024.108516_bib0062) 1945; 26
Zhu (10.1016/j.cmpb.2024.108516_bib0019) 2017
Choi (10.1016/j.cmpb.2024.108516_bib0031) 2021; 11
He (10.1016/j.cmpb.2024.108516_bib0046) 2022
Zhong (10.1016/j.cmpb.2024.108516_bib0024) 2023
Lynch (10.1016/j.cmpb.2024.108516_bib0003) 2015; 277
Ho (10.1016/j.cmpb.2024.108516_bib0016) 2020; 33
10.1016/j.cmpb.2024.108516_bib0014
10.1016/j.cmpb.2024.108516_bib0058
10.1016/j.cmpb.2024.108516_bib0015
Kim (10.1016/j.cmpb.2024.108516_bib0022) 2024
10.1016/j.cmpb.2024.108516_bib0010
Hatamizadeh (10.1016/j.cmpb.2024.108516_bib0066) 2021
10.1016/j.cmpb.2024.108516_bib0055
Chaudhary (10.1016/j.cmpb.2024.108516_bib0011) 2024
Zhang (10.1016/j.cmpb.2024.108516_bib0030) 2023; 18
Zhang (10.1016/j.cmpb.2024.108516_bib0067) 2022; 41
Kearney (10.1016/j.cmpb.2024.108516_bib0023) 2020; 2
Zhou (10.1016/j.cmpb.2024.108516_bib0050) 2021; 67
Xu (10.1016/j.cmpb.2024.108516_bib0047) 2021; 13
Dar (10.1016/j.cmpb.2024.108516_bib0021) 2019; 38
Koo (10.1016/j.cmpb.2024.108516_bib0063) 2016; 15
Humphries (10.1016/j.cmpb.2024.108516_bib0002) 2020; 294
Bankier (10.1016/j.cmpb.2024.108516_bib0008) 2007; 242
Chen (10.1016/j.cmpb.2024.108516_bib0026) 2017; 8
Yang (10.1016/j.cmpb.2024.108516_bib0033) 2017; 37
Shamonin (10.1016/j.cmpb.2024.108516_bib0051) 2014; 7
Kong (10.1016/j.cmpb.2024.108516_bib0034) 2021; 34
Pang (10.1016/j.cmpb.2024.108516_bib0032) 2023; 231
Gatys (10.1016/j.cmpb.2024.108516_bib0059) 2016
10.1016/j.cmpb.2024.108516_bib0009
Wang (10.1016/j.cmpb.2024.108516_bib0071) 2024
10.1016/j.cmpb.2024.108516_bib0025
Setio (10.1016/j.cmpb.2024.108516_bib0048) 2017; 42
Hatamizadeh (10.1016/j.cmpb.2024.108516_bib0065) 2022
10.1016/j.cmpb.2024.108516_bib0028
10.1016/j.cmpb.2024.108516_bib0068
Weninger (10.1016/j.cmpb.2024.108516_bib0049) 2019
Vila (10.1016/j.cmpb.2024.108516_bib0037) 2018
Tiago (10.1016/j.cmpb.2024.108516_bib0070) 2023; 11
Dalmaz (10.1016/j.cmpb.2024.108516_bib0020) 2022; 41
Özbey (10.1016/j.cmpb.2024.108516_bib0069) 2023
Chen (10.1016/j.cmpb.2024.108516_bib0012) 2023; 24
Klein (10.1016/j.cmpb.2024.108516_bib0052) 2009; 29
Yu (10.1016/j.cmpb.2024.108516_bib0056) 2019
Galbán (10.1016/j.cmpb.2024.108516_bib0007) 2012; 18
References_xml – volume: 38
  start-page: 2375
  year: 2019
  end-page: 2388
  ident: bib0021
  article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks
  publication-title: IEEe Trans. Med. ImAging
– volume: 294
  start-page: 434
  year: 2020
  end-page: 444
  ident: bib0002
  article-title: GEoC Investigators, Deep learning enables automatic classification of emphysema pattern at CT
  publication-title: Radiology
– volume: 18
  start-page: 661
  year: 2011
  end-page: 671
  ident: bib0004
  article-title: Eocltipse investigators, Quantifying the extent of emphysema: factors associated with Radiologists’ Estimations and quantitative indices of emphysema severity using the ECLIPSE cohort
  publication-title: Acad. Radiol.
– reference: H.-C. Shin, A. Ihsani, S. Mandava, S.T. Sreenivas, C. Forster, J. Cha, A.s.D.N. Initiative, Ganbert: generative adversarial networks with bidirectional encoder representations from transformers for mri to pet synthesis, arXiv preprint, (2020).
– volume: 38
  start-page: 1750
  year: 2019
  end-page: 1762
  ident: bib0013
  article-title: Ea-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis
  publication-title: IEEe Trans. Med. ImAging
– start-page: 10012
  year: 2021
  end-page: 10022
  ident: bib0039
  article-title: Swin transformer: hierarchical vision transformer using shifted windows
  publication-title: Proceedings of the IEEE/CVF international conference on computer vision
– volume: 91
  year: 2024
  ident: bib0044
  article-title: 3D multi-modality Transformer-GAN for high-quality PET reconstruction
  publication-title: Med. Image Anal.
– start-page: 8543
  year: 2019
  end-page: 8553
  ident: bib0027
  article-title: Data augmentation using learned transformations for one-shot medical image segmentation
  publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
– volume: 277
  start-page: 192
  year: 2015
  end-page: 205
  ident: bib0003
  article-title: CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society
  publication-title: Radiology
– reference: D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv preprint, (2013).
– volume: 18
  start-page: 1287
  year: 2023
  end-page: 1294
  ident: bib0030
  article-title: Deep anatomy learning for lung airway and artery-vein modeling with contrast-enhanced CT synthesis
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 41
  start-page: 2925
  year: 2022
  end-page: 2940
  ident: bib0067
  article-title: PTNet3D: a 3D high-resolution longitudinal infant brain MRI synthesizer based on transformers
  publication-title: IEEe Trans. Med. ImAging
– year: 2024
  ident: bib0071
  article-title: Mutual information guided diffusion for zero-shot cross-modality medical image translation
  publication-title: IEEe Trans. Med. ImAging
– volume: 11
  start-page: 20403
  year: 2021
  ident: bib0031
  article-title: Generating synthetic contrast enhancement from non-contrast chest computed tomography using a generative adversarial network
  publication-title: Sci. Rep.
– reference: X. Zhang, X. He, J. Guo, N. Ettehadi, N. Aw, D. Semanek, J. Posner, A. Laine, Y. Wang, PTNet: a high-resolution infant MRI synthesizer based on transformer, arXiv preprint, (2021).
– volume: 8
  start-page: 679
  year: 2017
  end-page: 694
  ident: bib0026
  article-title: Low-dose CT via convolutional neural network
  publication-title: Biomed. Opt. Express.
– volume: 8
  start-page: 1
  year: 2013
  end-page: 8
  ident: bib0005
  article-title: Expiratory CT scan in patients with normal inspiratory CT scan: a finding of obliterative bronchiolitis and other causes of bronchiolar obstruction
  publication-title: Multidiscip. Respir. Med.
– reference: N.-C. Ristea, A.-I. Miron, O. Savencu, M.-I. Georgescu, N. Verga, F.S. Khan, R.T. Ionescu, Cytran: cycle-consistent transformers for non-contrast to contrast ct translation, arXiv preprint (2021).
– volume: 23
  start-page: 358
  year: 1988
  end-page: 367
  ident: bib0060
  article-title: Design of an image edge detection filter using the Sobel operator
  publication-title: IEEe J. Solid-State Circuits.
– reference: A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, An image is worth 16×16 words: transformers for image recognition at scale, arXiv preprint, (2020).
– volume: 82
  year: 2022
  ident: bib0057
  article-title: Multilevel structure-preserved GAN for domain adaptation in intravascular ultrasound analysis
  publication-title: Med. Image Anal.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0061
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 41
  start-page: 2598
  year: 2022
  end-page: 2614
  ident: bib0020
  article-title: ResViT: residual vision transformers for multimodal medical image synthesis
  publication-title: IEEe Trans. Med. ImAging
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: bib0062
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 42
  start-page: 1
  year: 2017
  end-page: 13
  ident: bib0048
  article-title: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge
  publication-title: Med. Image Anal.
– volume: 170
  start-page: 1349
  year: 1998
  end-page: 1353
  ident: bib0006
  article-title: Air trapping on expiratory high-resolution CT scans in the absence of inspiratory scan abnormalities: correlation with pulmonary function tests and differential diagnosis
  publication-title: AJR Am. J. Roentgenol.
– start-page: 3
  year: 2019
  end-page: 12
  ident: bib0049
  article-title: Segmentation of brain tumors and patient survival prediction: methods for the brats 2018 challenge
  publication-title: Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II 4
– year: 2023
  ident: bib0069
  article-title: Unsupervised medical image translation with adversarial diffusion models
  publication-title: IEEe Trans. Med. ImAging
– reference: L. Qi, J. Lu, Y. Lu, H. Cui, C.-C. Fu, W. Zhang, Q. Fang, C. He, S. Zhang, Y. Yang, Evaluation of Gas Trapping in Chronic Obstructive Pulmonary Disease: prediction of Parametric Response Mapping from Solo Inspiratory Chest CT Scan by Deep Learning, Available at SSRN 4016494.
– volume: 63
  start-page: 139
  year: 2020
  end-page: 144
  ident: bib0017
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
– volume: 79
  year: 2023
  ident: bib0001
  article-title: Deep CNN for COPD identification by multi-view snapshot integration of 3D airway tree and lung field
  publication-title: Biomed. Signal. Process. Control
– volume: 2
  year: 2020
  ident: bib0023
  article-title: Attention-aware discrimination for MR-to-CT image translation using cycle-consistent generative adversarial networks
  publication-title: Radiology
– volume: 7
  start-page: 50
  year: 2014
  ident: bib0051
  article-title: Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease
  publication-title: Front. Neuroinform.
– start-page: 2414
  year: 2016
  end-page: 2423
  ident: bib0059
  article-title: Image style transfer using convolutional neural networks
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– reference: Z. Liu, Q. Lv, Y. Li, Z. Yang, L. Shen, Medaugment: universal automatic data augmentation plug-in for medical image analysis, arXiv preprint, (2023).
– volume: 147
  year: 2022
  ident: bib0053
  article-title: A fully automatic segmentation pipeline of pulmonary lobes before and after lobectomy from computed tomography images
  publication-title: Comput. Biol. Med.
– start-page: 60
  year: 2018
  end-page: 63
  ident: bib0037
  article-title: End-to-End Speech Translation With the Transformer
– volume: 15
  start-page: 155
  year: 2016
  end-page: 163
  ident: bib0063
  article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research
  publication-title: J. Chiropr. Med.
– volume: 18
  start-page: 1711
  year: 2012
  end-page: 1715
  ident: bib0007
  article-title: Computed tomography–based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression
  publication-title: Nat. Med.
– volume: 242
  start-page: 898
  year: 2007
  end-page: 906
  ident: bib0008
  article-title: Air trapping: comparison of standard-dose and simulated low-dose thin-section CT techniques
  publication-title: Radiology
– reference: M. Mirza, S. Osindero, Conditional generative adversarial nets, arXiv preprint, (2014).
– start-page: 442
  year: 2022
  end-page: 452
  ident: bib0029
  article-title: Naf: neural attenuation fields for sparse-view cbct reconstruction
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  ident: bib0016
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: M.F. Chaudhary, S.E. Gerard, G.E. Christensen, C.B. Cooper, J.D. Schroeder, E.A. Hoffman, J.M. Reinhardt, Lung2Lung: volumetric style transfer with self-ensembling for high-resolution cross-volume computed tomography, ArXiv. org, (2022).
– start-page: 16000
  year: 2022
  end-page: 16009
  ident: bib0046
  article-title: Masked autoencoders are scalable vision learners
  publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
– start-page: 276
  year: 2021
  end-page: 285
  ident: bib0045
  article-title: 3D transformer-GAN for high-quality PET reconstruction
  publication-title: Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VI 24
– volume: 11
  start-page: 17594
  year: 2023
  end-page: 17602
  ident: bib0070
  article-title: A domain translation framework with an adversarial denoising diffusion model to generate synthetic datasets of echocardiography images
  publication-title: IEEe Access.
– start-page: 2223
  year: 2017
  end-page: 2232
  ident: bib0019
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
  publication-title: Proceedings of the IEEE international conference on computer vision
– start-page: 1125
  year: 2017
  end-page: 1134
  ident: bib0018
  article-title: Image-to-image translation with conditional adversarial networks
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 2713
  year: 2019
  end-page: 2718
  ident: bib0056
  article-title: CWGAN: conditional wasserstein generative adversarial nets for fault data generation
  publication-title: Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)
– volume: 143
  year: 2023
  ident: bib0054
  article-title: Two-stage contextual transformer-based convolutional neural network for airway extraction from ct images
  publication-title: Artif. Intell. Med.
– reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint, (2014).
– reference: Q. Yang, P. Yan, M.K. Kalra, G. Wang, CT image denoising with perceptive deep neural networks, arXiv preprint, (2017).
– reference: M.J. Cardoso, W. Li, R. Brown, N. Ma, E. Kerfoot, Y. Wang, B. Murrey, A. Myronenko, C. Zhao, D. Yang, Monai: an open-source framework for deep learning in healthcare, arXiv preprint, (2022).
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 7
  ident: bib0040
  article-title: Data-enabled intelligence in complex industrial systems cross-model transformer method for medical image synthesis
  publication-title: Complexity
– volume: 37
  start-page: 1310
  year: 2017
  end-page: 1321
  ident: bib0033
  article-title: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction
  publication-title: IEEe Trans. Med. ImAging
– reference: M.O. Topal, A. Bas, I. van Heerden, Exploring transformers in natural language generation: gpt, bert, and xlnet, arXiv preprint, (2021).
– volume: 24
  start-page: 299
  year: 2023
  ident: bib0012
  article-title: Deep learning parametric response mapping from inspiratory chest CT scans: a new approach for small airway disease screening
  publication-title: Respir. Res.
– volume: 13
  start-page: 33
  year: 2021
  end-page: 46
  ident: bib0047
  article-title: A review of self-supervised learning methods in the field of medical image analysis
  publication-title: IJIGSP
– start-page: 272
  year: 2021
  end-page: 284
  ident: bib0066
  article-title: Swin unetr: Swin transformers For Semantic Segmentation of Brain Tumors in MRI images, International MICCAI Brainlesion Workshop
– volume: 231
  year: 2023
  ident: bib0032
  article-title: NCCT-CECT image synthesizers and their application to pulmonary vessel segmentation
  publication-title: Comput. Methods Programs Biomed.
– volume: 30
  year: 2017
  ident: bib0035
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 34
  start-page: 1964
  year: 2021
  end-page: 1978
  ident: bib0034
  article-title: Breaking the dilemma of medical image-to-image translation
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 7604
  year: 2024
  end-page: 7613
  ident: bib0022
  article-title: Adaptive latent diffusion model for 3D medical image to image translation: multi-modal magnetic resonance imaging study
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– reference: J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A.L. Yuille, Y. Zhou, Transunet: transformers make strong encoders for medical image segmentation, arXiv preprint, (2021).
– start-page: 574
  year: 2022
  end-page: 584
  ident: bib0065
  article-title: Unetr: transformers for 3D medical image segmentation
  publication-title: Proceedings of the IEEE/CVF winter conference on applications of computer vision
– year: 2024
  ident: bib0011
  article-title: LungViT: ensembling cascade of texture sensitive hierarchical vision transformers for cross-volume chest CT image-to-image translation
  publication-title: IEEe Trans. Med. ImAging
– volume: 67
  year: 2021
  ident: bib0050
  article-title: Models genesis
  publication-title: Med. Image Anal.
– year: 2023
  ident: bib0024
  article-title: Multi-scale tokens-aware transformer network for multi-region and multi-sequence MR-to-CT synthesis in a single model
  publication-title: IEEe Trans. Med. ImAging
– volume: 29
  start-page: 196
  year: 2009
  end-page: 205
  ident: bib0052
  article-title: Elastix: a toolbox for intensity-based medical image registration
  publication-title: IEEe Trans. Med. ImAging
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0064
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: Proceedings of the Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18
– volume: 26
  start-page: 297
  year: 1945
  ident: 10.1016/j.cmpb.2024.108516_bib0062
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.cmpb.2024.108516_bib0061
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 294
  start-page: 434
  year: 2020
  ident: 10.1016/j.cmpb.2024.108516_bib0002
  article-title: GEoC Investigators, Deep learning enables automatic classification of emphysema pattern at CT
  publication-title: Radiology
  doi: 10.1148/radiol.2019191022
– volume: 242
  start-page: 898
  year: 2007
  ident: 10.1016/j.cmpb.2024.108516_bib0008
  article-title: Air trapping: comparison of standard-dose and simulated low-dose thin-section CT techniques
  publication-title: Radiology
  doi: 10.1148/radiol.2423060196
– start-page: 60
  year: 2018
  ident: 10.1016/j.cmpb.2024.108516_bib0037
– year: 2023
  ident: 10.1016/j.cmpb.2024.108516_bib0024
  article-title: Multi-scale tokens-aware transformer network for multi-region and multi-sequence MR-to-CT synthesis in a single model
  publication-title: IEEe Trans. Med. ImAging
– volume: 38
  start-page: 1750
  year: 2019
  ident: 10.1016/j.cmpb.2024.108516_bib0013
  article-title: Ea-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis
  publication-title: IEEe Trans. Med. ImAging
  doi: 10.1109/TMI.2019.2895894
– start-page: 2713
  year: 2019
  ident: 10.1016/j.cmpb.2024.108516_bib0056
  article-title: CWGAN: conditional wasserstein generative adversarial nets for fault data generation
– year: 2024
  ident: 10.1016/j.cmpb.2024.108516_bib0071
  article-title: Mutual information guided diffusion for zero-shot cross-modality medical image translation
  publication-title: IEEe Trans. Med. ImAging
  doi: 10.1109/TMI.2024.3382043
– volume: 18
  start-page: 661
  year: 2011
  ident: 10.1016/j.cmpb.2024.108516_bib0004
  article-title: Eocltipse investigators, Quantifying the extent of emphysema: factors associated with Radiologists’ Estimations and quantitative indices of emphysema severity using the ECLIPSE cohort
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2011.01.011
– ident: 10.1016/j.cmpb.2024.108516_bib0036
– ident: 10.1016/j.cmpb.2024.108516_bib0042
– volume: 41
  start-page: 2598
  year: 2022
  ident: 10.1016/j.cmpb.2024.108516_bib0020
  article-title: ResViT: residual vision transformers for multimodal medical image synthesis
  publication-title: IEEe Trans. Med. ImAging
  doi: 10.1109/TMI.2022.3167808
– start-page: 272
  year: 2021
  ident: 10.1016/j.cmpb.2024.108516_bib0066
– volume: 231
  year: 2023
  ident: 10.1016/j.cmpb.2024.108516_bib0032
  article-title: NCCT-CECT image synthesizers and their application to pulmonary vessel segmentation
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2023.107389
– volume: 42
  start-page: 1
  year: 2017
  ident: 10.1016/j.cmpb.2024.108516_bib0048
  article-title: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.06.015
– volume: 67
  year: 2021
  ident: 10.1016/j.cmpb.2024.108516_bib0050
  article-title: Models genesis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101840
– volume: 13
  start-page: 33
  year: 2021
  ident: 10.1016/j.cmpb.2024.108516_bib0047
  article-title: A review of self-supervised learning methods in the field of medical image analysis
  publication-title: IJIGSP
  doi: 10.5815/ijigsp.2021.04.03
– volume: 24
  start-page: 299
  year: 2023
  ident: 10.1016/j.cmpb.2024.108516_bib0012
  article-title: Deep learning parametric response mapping from inspiratory chest CT scans: a new approach for small airway disease screening
  publication-title: Respir. Res.
  doi: 10.1186/s12931-023-02611-2
– volume: 63
  start-page: 139
  year: 2020
  ident: 10.1016/j.cmpb.2024.108516_bib0017
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– volume: 170
  start-page: 1349
  year: 1998
  ident: 10.1016/j.cmpb.2024.108516_bib0006
  article-title: Air trapping on expiratory high-resolution CT scans in the absence of inspiratory scan abnormalities: correlation with pulmonary function tests and differential diagnosis
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/ajr.170.5.9574614
– ident: 10.1016/j.cmpb.2024.108516_bib0055
– start-page: 8543
  year: 2019
  ident: 10.1016/j.cmpb.2024.108516_bib0027
  article-title: Data augmentation using learned transformations for one-shot medical image segmentation
– start-page: 574
  year: 2022
  ident: 10.1016/j.cmpb.2024.108516_bib0065
  article-title: Unetr: transformers for 3D medical image segmentation
– year: 2024
  ident: 10.1016/j.cmpb.2024.108516_bib0011
  article-title: LungViT: ensembling cascade of texture sensitive hierarchical vision transformers for cross-volume chest CT image-to-image translation
  publication-title: IEEe Trans. Med. ImAging
  doi: 10.1109/TMI.2024.3367321
– year: 2023
  ident: 10.1016/j.cmpb.2024.108516_bib0069
  article-title: Unsupervised medical image translation with adversarial diffusion models
  publication-title: IEEe Trans. Med. ImAging
  doi: 10.1109/TMI.2023.3290149
– volume: 8
  start-page: 1
  year: 2013
  ident: 10.1016/j.cmpb.2024.108516_bib0005
  article-title: Expiratory CT scan in patients with normal inspiratory CT scan: a finding of obliterative bronchiolitis and other causes of bronchiolar obstruction
  publication-title: Multidiscip. Respir. Med.
  doi: 10.4081/mrm.2013.542
– volume: 18
  start-page: 1287
  year: 2023
  ident: 10.1016/j.cmpb.2024.108516_bib0030
  article-title: Deep anatomy learning for lung airway and artery-vein modeling with contrast-enhanced CT synthesis
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-023-02946-7
– start-page: 2414
  year: 2016
  ident: 10.1016/j.cmpb.2024.108516_bib0059
  article-title: Image style transfer using convolutional neural networks
– ident: 10.1016/j.cmpb.2024.108516_bib0014
– volume: 147
  year: 2022
  ident: 10.1016/j.cmpb.2024.108516_bib0053
  article-title: A fully automatic segmentation pipeline of pulmonary lobes before and after lobectomy from computed tomography images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105792
– ident: 10.1016/j.cmpb.2024.108516_bib0010
– volume: 30
  year: 2017
  ident: 10.1016/j.cmpb.2024.108516_bib0035
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 7604
  year: 2024
  ident: 10.1016/j.cmpb.2024.108516_bib0022
  article-title: Adaptive latent diffusion model for 3D medical image to image translation: multi-modal magnetic resonance imaging study
– start-page: 442
  year: 2022
  ident: 10.1016/j.cmpb.2024.108516_bib0029
  article-title: Naf: neural attenuation fields for sparse-view cbct reconstruction
– start-page: 10012
  year: 2021
  ident: 10.1016/j.cmpb.2024.108516_bib0039
  article-title: Swin transformer: hierarchical vision transformer using shifted windows
– start-page: 234
  year: 2015
  ident: 10.1016/j.cmpb.2024.108516_bib0064
  article-title: U-net: convolutional networks for biomedical image segmentation
– ident: 10.1016/j.cmpb.2024.108516_bib0041
– volume: 29
  start-page: 196
  year: 2009
  ident: 10.1016/j.cmpb.2024.108516_bib0052
  article-title: Elastix: a toolbox for intensity-based medical image registration
  publication-title: IEEe Trans. Med. ImAging
  doi: 10.1109/TMI.2009.2035616
– ident: 10.1016/j.cmpb.2024.108516_bib0028
– volume: 11
  start-page: 17594
  year: 2023
  ident: 10.1016/j.cmpb.2024.108516_bib0070
  article-title: A domain translation framework with an adversarial denoising diffusion model to generate synthetic datasets of echocardiography images
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2023.3246762
– ident: 10.1016/j.cmpb.2024.108516_bib0025
– volume: 11
  start-page: 20403
  year: 2021
  ident: 10.1016/j.cmpb.2024.108516_bib0031
  article-title: Generating synthetic contrast enhancement from non-contrast chest computed tomography using a generative adversarial network
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-00058-3
– volume: 37
  start-page: 1310
  year: 2017
  ident: 10.1016/j.cmpb.2024.108516_bib0033
  article-title: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction
  publication-title: IEEe Trans. Med. ImAging
  doi: 10.1109/TMI.2017.2785879
– volume: 7
  start-page: 50
  year: 2014
  ident: 10.1016/j.cmpb.2024.108516_bib0051
  article-title: Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease
  publication-title: Front. Neuroinform.
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.cmpb.2024.108516_bib0040
  article-title: Data-enabled intelligence in complex industrial systems cross-model transformer method for medical image synthesis
  publication-title: Complexity
  doi: 10.1155/2021/5624909
– volume: 18
  start-page: 1711
  year: 2012
  ident: 10.1016/j.cmpb.2024.108516_bib0007
  article-title: Computed tomography–based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression
  publication-title: Nat. Med.
  doi: 10.1038/nm.2971
– ident: 10.1016/j.cmpb.2024.108516_bib0058
– ident: 10.1016/j.cmpb.2024.108516_bib0038
– volume: 15
  start-page: 155
  year: 2016
  ident: 10.1016/j.cmpb.2024.108516_bib0063
  article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research
  publication-title: J. Chiropr. Med.
  doi: 10.1016/j.jcm.2016.02.012
– start-page: 276
  year: 2021
  ident: 10.1016/j.cmpb.2024.108516_bib0045
  article-title: 3D transformer-GAN for high-quality PET reconstruction
– ident: 10.1016/j.cmpb.2024.108516_bib0015
– volume: 38
  start-page: 2375
  year: 2019
  ident: 10.1016/j.cmpb.2024.108516_bib0021
  article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks
  publication-title: IEEe Trans. Med. ImAging
  doi: 10.1109/TMI.2019.2901750
– start-page: 3
  year: 2019
  ident: 10.1016/j.cmpb.2024.108516_bib0049
  article-title: Segmentation of brain tumors and patient survival prediction: methods for the brats 2018 challenge
– volume: 8
  start-page: 679
  year: 2017
  ident: 10.1016/j.cmpb.2024.108516_bib0026
  article-title: Low-dose CT via convolutional neural network
  publication-title: Biomed. Opt. Express.
  doi: 10.1364/BOE.8.000679
– volume: 91
  year: 2024
  ident: 10.1016/j.cmpb.2024.108516_bib0044
  article-title: 3D multi-modality Transformer-GAN for high-quality PET reconstruction
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2023.102983
– volume: 2
  year: 2020
  ident: 10.1016/j.cmpb.2024.108516_bib0023
  article-title: Attention-aware discrimination for MR-to-CT image translation using cycle-consistent generative adversarial networks
  publication-title: Radiology
– volume: 34
  start-page: 1964
  year: 2021
  ident: 10.1016/j.cmpb.2024.108516_bib0034
  article-title: Breaking the dilemma of medical image-to-image translation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 79
  year: 2023
  ident: 10.1016/j.cmpb.2024.108516_bib0001
  article-title: Deep CNN for COPD identification by multi-view snapshot integration of 3D airway tree and lung field
  publication-title: Biomed. Signal. Process. Control
  doi: 10.1016/j.bspc.2022.104162
– volume: 33
  start-page: 6840
  year: 2020
  ident: 10.1016/j.cmpb.2024.108516_bib0016
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 16000
  year: 2022
  ident: 10.1016/j.cmpb.2024.108516_bib0046
  article-title: Masked autoencoders are scalable vision learners
– volume: 143
  year: 2023
  ident: 10.1016/j.cmpb.2024.108516_bib0054
  article-title: Two-stage contextual transformer-based convolutional neural network for airway extraction from ct images
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2023.102637
– volume: 41
  start-page: 2925
  year: 2022
  ident: 10.1016/j.cmpb.2024.108516_bib0067
  article-title: PTNet3D: a 3D high-resolution longitudinal infant brain MRI synthesizer based on transformers
  publication-title: IEEe Trans. Med. ImAging
  doi: 10.1109/TMI.2022.3174827
– ident: 10.1016/j.cmpb.2024.108516_bib0043
– volume: 23
  start-page: 358
  year: 1988
  ident: 10.1016/j.cmpb.2024.108516_bib0060
  article-title: Design of an image edge detection filter using the Sobel operator
  publication-title: IEEe J. Solid-State Circuits.
  doi: 10.1109/4.996
– ident: 10.1016/j.cmpb.2024.108516_bib0068
– volume: 277
  start-page: 192
  year: 2015
  ident: 10.1016/j.cmpb.2024.108516_bib0003
  article-title: CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society
  publication-title: Radiology
  doi: 10.1148/radiol.2015141579
– start-page: 2223
  year: 2017
  ident: 10.1016/j.cmpb.2024.108516_bib0019
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
– ident: 10.1016/j.cmpb.2024.108516_bib0009
– start-page: 1125
  year: 2017
  ident: 10.1016/j.cmpb.2024.108516_bib0018
  article-title: Image-to-image translation with conditional adversarial networks
– volume: 82
  year: 2022
  ident: 10.1016/j.cmpb.2024.108516_bib0057
  article-title: Multilevel structure-preserved GAN for domain adaptation in intravascular ultrasound analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102614
SSID ssj0002556
Score 2.418388
Snippet •A model of synthesizing expiratory CT images from inspiratory images is developed.•A CNN-Transformer network with a global context injection module is...
Chronic obstructive pulmonary disease (COPD) has high heterogeneity in etiologies and clinical manifestations. Expiratory Computed tomography (CT) can...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 108516
SubjectTerms Algorithms
Chronic obstructive pulmonary disease
Deep learning
Exhalation
Generative adversarial network
Humans
Image Processing, Computer-Assisted - methods
Image translation
Lung - diagnostic imaging
Neural Networks, Computer
Parametric response mapping
Pulmonary Disease, Chronic Obstructive - diagnostic imaging
Pulmonary Disease, Chronic Obstructive - physiopathology
Respiratory Function Tests
Tomography, X-Ray Computed - methods
Transformer
Title BreathVisionNet: A pulmonary-function-guided CNN-transformer hybrid model for expiratory CT image synthesis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260724005091
https://dx.doi.org/10.1016/j.cmpb.2024.108516
https://www.ncbi.nlm.nih.gov/pubmed/39571504
https://www.proquest.com/docview/3131850656
Volume 259
WOSCitedRecordID wos001362991200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6DSEuE99swGQkbpWnksSxza1UQ2OCiEOA3CIncbaMLa2aZrT_CH8vz7GTbEUFduASRU-x6-T9-r783jNCr_0s5VxX94A2GRGPKkFkrnySi1GuhBKpr5pC4Y8sCHgUic-Dwc-2FubqgpUlXy7F7L-yGmjAbF06ewt2d5MCAe6B6XAFtsP1nxj_TpuBZ1-bmvFAmcjfcFZfwALkfEW0ItM_Tk7rItPh3SAgi9Z6VfPh2UrXcJkTckw_8GW3Fz8Jh8WlTvKpViUYjlVRXbdt2wMi7KnUle1B0OR_NVm3ptT_xlZ-F68OCx3N7je0DPVYTn_0tWrf6kZhyLJHdNSQTgq5rC3RRjAc2iY990FNXxDwq9h1qezYRuFGruoaCVOT-ZvIN9GH88P0cpaAv-94h_3DN_trr-m9LhuxTXQ7j_UcsZ4jNnNsoR2HUQECf2f84Sg66XS8btxmusabldtyLJM5uL6STSbPJpemMW3C-2jX-iR4bLD0AA1U-RDd_WRZ9Qh9X4PUWzzGGwGF1wCFDaBwAygMNNwDCk9C3AAKd4B6jL68Pwonx8Qe0kFSl_IFYSk42YmTsxEIg9zPRA4mcOZ6rnSUoFmWc06VTvhNXC-Rknme66skSZOUCT9RjvsEbZfTUj1DWIBCEbnjKnB6PS494bARzEJZlsFtRvfQsP2O8cz0Yok3824Pue2njtsqY9CLMeDmj6NoN8raoMa2_Ou4Vy03YxDQetdNlmpaV7H7RjcoAEsfnnlq2NytXm-Sg0fm7d_qzZ6je_3f6AXaXsxr9RLdSa8WRTU_QFss4gcWsL8AaZW_qA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BreathVisionNet%3A+A+pulmonary-function-guided+CNN-transformer+hybrid+model+for+expiratory+CT+image+synthesis&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Zhang%2C+Tiande&rft.au=Pang%2C+Haowen&rft.au=Wu%2C+Yanan&rft.au=Xu%2C+Jiaxuan&rft.date=2025-02-01&rft.issn=0169-2607&rft.volume=259&rft.spage=108516&rft_id=info:doi/10.1016%2Fj.cmpb.2024.108516&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2024_108516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon