New LP-based local and global algorithms for continuous and mixed-integer nonconvex quadratic programming
In this work, we propose a new approach called “Successive Linear Programming Algorithm (SLPA)” for finding an approximate global minimizer of general nonconvex quadratic programs. This algorithm can be initialized by any extreme point of the convex polyhedron of the feasible domain. Furthermore, we...
Uloženo v:
| Vydáno v: | Journal of global optimization Ročník 82; číslo 4; s. 659 - 689 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.04.2022
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!