Interaction Solutions of Long and Short Waves in a Flexible Environment

In this study, the new traveling wave solutions resulting from the interaction of the long-short wave system were obtained by using the exp-function method. Two and three dimensional graphs of the obtained solutions were drawn by selecting the appropriate parameters. Density graphs of the solution f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Alexandria engineering journal Ročník 59; číslo 3; s. 1705 - 1716
Hlavní autor: Akturk, Tolga
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2020
Elsevier
Témata:
ISSN:1110-0168
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this study, the new traveling wave solutions resulting from the interaction of the long-short wave system were obtained by using the exp-function method. Two and three dimensional graphs of the obtained solutions were drawn by selecting the appropriate parameters. Density graphs of the solution functions were obtained and the interaction of the waves was observed.
AbstractList In this study, the new traveling wave solutions resulting from the interaction of the long-short wave system were obtained by using the exp-function method. Two and three dimensional graphs of the obtained solutions were drawn by selecting the appropriate parameters. Density graphs of the solution functions were obtained and the interaction of the waves was observed.
Author Akturk, Tolga
Author_xml – sequence: 1
  givenname: Tolga
  surname: Akturk
  fullname: Akturk, Tolga
  email: tolgaakturk@odu.edu.tr
  organization: Department of Mathematics and Science Education, Faculty of Education, Ordu University, Ordu, Turkey
BookMark eNp9kM9OwzAMxnMYEgP2ANzyAitO_yUVJzRtY9IkDgNxjNzUHam6BKVlgrcnY4gj38WWre8n-7tiE-cdMXYrIBEgyrsuQeqSFFJIIE8ggwmbCiFgHpfqks2GoYOoQlZ5VU7ZeuNGCmhG6x3f-f7j1Azct3zr3Z6ja_juzYeRv-KRBm4dR77q6dPWPfGlO9rg3YHceMMuWuwHmv3Wa_ayWj4vHufbp_Vm8bCdm6xQ41zWqhZVKqiAuhZNXRYmlbJNlaCmQZVS2yqqGiqBCLIsJUIUZZHlqABFK7JrtjlzG4-dfg_2gOFLe7T6Z-DDXmMYrelJyzotZC6NyqOUQSWhqstMYllGFFBkiTPLBD8Mgdo_ngB9ClN3OoapT2FqyHUMM3ruzx6KTx4tBT0YS85QYwOZMV5h_3F_A2ysf4Q
Cites_doi 10.4025/actascitechnol.v37i2.17273
10.1088/1009-1963/12/12/001
10.1016/S0960-0779(01)00247-8
10.2298/TSCI160111018A
10.1142/S021886351350015X
10.1143/PTP.114.533
10.1016/j.cam.2014.01.002
10.2298/TSCI170612273B
10.1016/j.physleta.2007.02.004
10.1140/epjp/i2016-16335-8
10.1155/2013/685695
10.1119/1.17120
10.1515/ijnsns-2011-0132
10.1016/j.chaos.2018.02.036
10.1016/0375-9601(96)00103-X
10.1016/j.chaos.2017.11.038
10.1007/s11071-019-05206-z
10.1016/S0010-4655(03)00207-8
10.1063/1.4952074
10.1016/S0960-0779(03)00081-X
10.2298/TSCI190408138A
10.1007/s11082-017-1112-6
10.1088/0305-4470/36/7/311
10.1016/j.physleta.2007.10.018
10.1016/j.chaos.2006.03.020
10.2298/TSCI1904131H
10.1016/S0375-9601(01)00815-5
10.1016/j.camwa.2016.11.012
10.2298/TSCI1904477L
10.1143/PTP.56.1719
10.1016/j.cnsns.2014.07.022
10.2298/TSCI1904163W
10.1142/S0218348X20500115
10.1016/S0375-9601(01)00580-1
10.1016/S0375-9601(00)00725-8
10.1016/j.chaos.2006.11.014
10.1016/j.chaos.2007.01.024
10.1155/2013/195708
10.1016/j.aml.2019.106179
10.2298/FIL1708243A
10.1016/j.ijleo.2020.164405
10.1007/s10092-015-0158-8
10.2298/TSCI1904351W
ContentType Journal Article
Copyright 2020 Faculty of Engineering, Alexandria University
Copyright_xml – notice: 2020 Faculty of Engineering, Alexandria University
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.aej.2020.04.030
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 1716
ExternalDocumentID oai_doaj_org_article_7b25747c844448ca8709b637a66a1f0e
10_1016_j_aej_2020_04_030
S1110016820301800
GroupedDBID --K
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
XH2
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c358t-7b8b1921e50bb1db65c277f281edda82eff8e9de60ee0332eeaa16534a80a1f13
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542588900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1110-0168
IngestDate Fri Oct 03 12:41:26 EDT 2025
Wed Oct 29 21:21:07 EDT 2025
Wed May 17 00:10:51 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Long-short interaction wave system
39A23
74G10
Kink type, hyperbolic and trigonometric function solutions
74H40
93C20
Exp-function method
35C07
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-7b8b1921e50bb1db65c277f281edda82eff8e9de60ee0332eeaa16534a80a1f13
OpenAccessLink https://doaj.org/article/7b25747c844448ca8709b637a66a1f0e
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_7b25747c844448ca8709b637a66a1f0e
crossref_primary_10_1016_j_aej_2020_04_030
elsevier_sciencedirect_doi_10_1016_j_aej_2020_04_030
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Alexandria engineering journal
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Fan, Hon (b0030) 2002; 292
Eslami, Rezazadeh (b0170) 2016; 53
Ali, Nuruddeen, Raslan (b0180) 2018; 106
He (b0235) 2013; 14
H. Chen & H. Zhang New multiple soliton solutions to the general Burgers–Fisher equation and the Kuramoto–Sivashinsky equation, Chaos, Solitons & Fractals
Liu, Fu, Zhao (b0010) 2001; 290
Wu, He (b0215) 2008; 38
Wu, Yu, Wang (b0145) 2020; 207
Chen, Zhang (b0025) 2004; 24
Liu (b0265) 2015; 22
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model
Khater, Malfliet, Callebaut, Kamel (b0055) 2002; 14
Wang, Xu, Qi (b0150) 2020; 103
Bas, Metin (b0125) 2018; 22
Ablowitz, Ablowitz, Clarkson (b0040) 1991
Fan (b0045) 2000; 277
Wang, Yao, Yang (b0190) 2019; 23
Ming-Liang, Yue-Ming, Jin-Liang (b0250) 2003; 12
Bekir, Boz (b0230) 2008; 372
Bas (b0130) 2015; 37
Liu (b0270) 2018; 109
Liu, Fu, Zhao (b0005) 2001; 289
Fang, Dai (b0275) 2020; 164574
Opt. Quant. Electron. 49(8) (2017) 279.
Wang (b0065) 1996; 213
He, Shen, Ji, He (b0205) 2020; 28
Malfliet (b0050) 1992; 60
I. Podlubny, Fractional differential equations of Mathematics in Science and Engineering 198 (1999).
Bas, Metin (b0120) 2016; 1738
Zhang (b0035) 2015; 60
Bas, Yilmazer, Panakhov (b0115) 2013; 2013
Khalil, Al Horani, Yousef, Sababheh (b0090) 2014; 264
Yang, Gao, Srivastava (b0175) 2017; 73
K.M. Owolabi, A. Atangana Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative, Europ. Phys. J. Plus 131(9) (2016) 335.
Eslami, Rezazadeh, Rezazadeh, Mosavi (b0160) 2017; 49
Bekir, Aksoy, Güner (b0245) 2013; 22
Liu, Yao, Yang, Liu (b0195) 2019; 23
Yan (b0020) 2003; 153
Ain, He (b0135) 2019; 23
(2016) arXiv preprint arXiv:1602.03408.
Wang, Lu, Dai, Chen (b0155) 2020; 103036
Yajima, Oikawa (b0240) 1976; 56
Akinlar, Kurulay (b0075) 2013; 2013
Atangana, Baleanu (b0100) 2017; 31
He (b0200) 2019
Zhang (b0220) 2007; 365
He, Ji (b0140) 2019; 23
Wang, Yao (b0185) 2019; 23
Yilmazer, Bas (b0095) 2012; 238
Dai, Fan, Wang (b0255) 2019; 98
Yan (b0015) 2003; 36
19(1) (2004) 71-76.
He, Wu (b0260) 2006; 30
J.H. He, Q.T. Ain, New promises and future challenges of fractal calculus: from two-scale thermodynamics to fractal variational principle
Therm. Sci. (00) (2020) 65.
Zhang (b0225) 2008; 38
M. Eslami, H. Rezazadeh, M. Rezazadeh, S.S. Mosavi, Exact solutions to the space–time fractional Schrödinger–Hirota equation and the space–time modified KDV–Zakharov–Kuznetsov equation
Owolabi, Atangana (b0165) 2016; 131
Cornejo-Pérez, Rosu (b0070) 2005; 114
Liu (10.1016/j.aej.2020.04.030_b0270) 2018; 109
Fang (10.1016/j.aej.2020.04.030_b0275) 2020; 164574
10.1016/j.aej.2020.04.030_b0080
Bas (10.1016/j.aej.2020.04.030_b0130) 2015; 37
Wang (10.1016/j.aej.2020.04.030_b0150) 2020; 103
Yajima (10.1016/j.aej.2020.04.030_b0240) 1976; 56
10.1016/j.aej.2020.04.030_b0085
He (10.1016/j.aej.2020.04.030_b0205) 2020; 28
Bekir (10.1016/j.aej.2020.04.030_b0245) 2013; 22
Cornejo-Pérez (10.1016/j.aej.2020.04.030_b0070) 2005; 114
Zhang (10.1016/j.aej.2020.04.030_b0220) 2007; 365
He (10.1016/j.aej.2020.04.030_b0140) 2019; 23
Liu (10.1016/j.aej.2020.04.030_b0005) 2001; 289
Liu (10.1016/j.aej.2020.04.030_b0010) 2001; 290
Yan (10.1016/j.aej.2020.04.030_b0015) 2003; 36
Khater (10.1016/j.aej.2020.04.030_b0055) 2002; 14
Eslami (10.1016/j.aej.2020.04.030_b0170) 2016; 53
Yilmazer (10.1016/j.aej.2020.04.030_b0095) 2012; 238
Wu (10.1016/j.aej.2020.04.030_b0145) 2020; 207
Malfliet (10.1016/j.aej.2020.04.030_b0050) 1992; 60
Wang (10.1016/j.aej.2020.04.030_b0065) 1996; 213
10.1016/j.aej.2020.04.030_b0110
Liu (10.1016/j.aej.2020.04.030_b0195) 2019; 23
Eslami (10.1016/j.aej.2020.04.030_b0160) 2017; 49
Ain (10.1016/j.aej.2020.04.030_b0135) 2019; 23
Liu (10.1016/j.aej.2020.04.030_b0265) 2015; 22
Ablowitz (10.1016/j.aej.2020.04.030_b0040) 1991
Ming-Liang (10.1016/j.aej.2020.04.030_b0250) 2003; 12
Chen (10.1016/j.aej.2020.04.030_b0025) 2004; 24
He (10.1016/j.aej.2020.04.030_b0235) 2013; 14
10.1016/j.aej.2020.04.030_b0060
He (10.1016/j.aej.2020.04.030_b0200) 2019
Atangana (10.1016/j.aej.2020.04.030_b0100) 2017; 31
Zhang (10.1016/j.aej.2020.04.030_b0225) 2008; 38
Akinlar (10.1016/j.aej.2020.04.030_b0075) 2013; 2013
Wang (10.1016/j.aej.2020.04.030_b0185) 2019; 23
Bas (10.1016/j.aej.2020.04.030_b0125) 2018; 22
10.1016/j.aej.2020.04.030_b0105
Wang (10.1016/j.aej.2020.04.030_b0155) 2020; 103036
Bekir (10.1016/j.aej.2020.04.030_b0230) 2008; 372
Khalil (10.1016/j.aej.2020.04.030_b0090) 2014; 264
He (10.1016/j.aej.2020.04.030_b0260) 2006; 30
Wu (10.1016/j.aej.2020.04.030_b0215) 2008; 38
Zhang (10.1016/j.aej.2020.04.030_b0035) 2015; 60
Owolabi (10.1016/j.aej.2020.04.030_b0165) 2016; 131
Fan (10.1016/j.aej.2020.04.030_b0045) 2000; 277
Bas (10.1016/j.aej.2020.04.030_b0120) 2016; 1738
Wang (10.1016/j.aej.2020.04.030_b0190) 2019; 23
10.1016/j.aej.2020.04.030_b0210
Yan (10.1016/j.aej.2020.04.030_b0020) 2003; 153
Bas (10.1016/j.aej.2020.04.030_b0115) 2013; 2013
Dai (10.1016/j.aej.2020.04.030_b0255) 2019; 98
Fan (10.1016/j.aej.2020.04.030_b0030) 2002; 292
Ali (10.1016/j.aej.2020.04.030_b0180) 2018; 106
Yang (10.1016/j.aej.2020.04.030_b0175) 2017; 73
References_xml – volume: 238
  start-page: 1
  year: 2012
  end-page: 10
  ident: b0095
  article-title: Explicit solutions of fractional Schrödinger equation via fractional calculus operators
  publication-title: Int. J. Open Probl. Comput. Sci. Math.
– volume: 207
  year: 2020
  ident: b0145
  article-title: Fractional optical solitons of the space-time fractional nonlinear Schrödinger equation
  publication-title: Optik
– volume: 28
  start-page: 2050011
  year: 2020
  end-page: 2052193
  ident: b0205
  article-title: Taylor series solution for fractal Bratu-type equation arising in electrospinning process
  publication-title: Fract
– reference: (2016) arXiv preprint arXiv:1602.03408.
– volume: 23
  start-page: 2163
  year: 2019
  end-page: 2170
  ident: b0185
  article-title: Numerical method for fractional Zakharov-Kuznetsov equations with He’s fractional derivative
  publication-title: Therm. Sci.
– volume: 103036
  year: 2020
  ident: b0155
  article-title: Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation
  publication-title: Results Phys.
– volume: 114
  start-page: 533
  year: 2005
  end-page: 538
  ident: b0070
  article-title: Nonlinear second order Ode's: factorizations and particular solutions
  publication-title: Progress Theoret. Phys.
– volume: 53
  start-page: 475
  year: 2016
  end-page: 485
  ident: b0170
  article-title: The first integral method for Wu–Zhang system with conformable time-fractional derivative
  publication-title: Calcolo
– volume: 23
  start-page: 2131
  year: 2019
  end-page: 2133
  ident: b0140
  article-title: Two-scale mathematics and fractional calculus for thermodynamics
  publication-title: Therm. Sci.
– year: 2019
  ident: b0200
  article-title: A fractal variational theory for one-dimensional compressible flow in a microgravity space
  publication-title: Fractals
– volume: 22
  start-page: 92
  year: 2015
  end-page: 94
  ident: b0265
  article-title: Counterexamples on Jumarie’s two basic fractional calculus formulae
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 49
  start-page: 279
  year: 2017
  ident: b0160
  article-title: Exact solutions to the space–time fractional Schrödinger-Hirota equation and the space–time modified KDV–Zakharov–Kuznetsov equation
  publication-title: Opt. Quant. Electron.
– volume: 98
  start-page: 489
  year: 2019
  end-page: 499
  ident: b0255
  article-title: Three-dimensional optical solitons formed by the balance between different-order nonlinearities and high-order dispersion/diffraction in parity-time symmetric potentials
  publication-title: Nonlinear Dyn.
– volume: 106
  start-page: 304
  year: 2018
  end-page: 309
  ident: b0180
  article-title: New structures for the space-time fractional simplified MCH and SRLW equations
  publication-title: Chaos, Solitons Fract.
– volume: 365
  start-page: 448
  year: 2007
  end-page: 453
  ident: b0220
  article-title: Application of Exp-function method to a KdV equation with variable coefficients
  publication-title: Phys. Lett. A
– year: 1991
  ident: b0040
  article-title: Solitons, nonlinear evolution equations and inverse scattering
– reference: 19(1) (2004) 71-76.
– volume: 12
  start-page: 1341
  year: 2003
  ident: b0250
  article-title: The periodic wave solutions for two systems of nonlinear wave equations
  publication-title: Chin. Phys.
– volume: 23
  start-page: 2351
  year: 2019
  end-page: 2354
  ident: b0190
  article-title: A fractal derivative model for snow’s thermal insulation property
  publication-title: Therm. Sci.
– volume: 292
  start-page: 335
  year: 2002
  end-page: 337
  ident: b0030
  article-title: Double periodic solutions with Jacobi elliptic functions for two generalized Hirota-Satsuma coupled KdV systems
  publication-title: Phys. Lett. A
– reference: I. Podlubny, Fractional differential equations of Mathematics in Science and Engineering 198 (1999).
– reference: K.M. Owolabi, A. Atangana Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative, Europ. Phys. J. Plus 131(9) (2016) 335.
– volume: 73
  start-page: 203
  year: 2017
  end-page: 210
  ident: b0175
  article-title: Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations
  publication-title: Comput. Math. Appl.
– volume: 289
  start-page: 69
  year: 2001
  end-page: 74
  ident: b0005
  article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations
  publication-title: Phys. Lett. A
– volume: 23
  start-page: 2477
  year: 2019
  end-page: 2480
  ident: b0195
  article-title: A fractal rate model for adsorption kinetics at solid/solution interface
  publication-title: Therm. Sci.
– volume: 164574
  year: 2020
  ident: b0275
  article-title: Optical solitons of a time-fractional higher-order nonlinear Schrödinger equation
  publication-title: Optik
– volume: 31
  start-page: 2243
  year: 2017
  end-page: 2248
  ident: b0100
  article-title: Application of fixed point theorem for stability analysis of a nonlinear Schrodinger with Caputo-Liouville derivative
  publication-title: Filomat
– volume: 153
  start-page: 145
  year: 2003
  end-page: 154
  ident: b0020
  article-title: The new extended Jacobian elliptic function expansion algorithm and its applications in nonlinear mathematical physics equations
  publication-title: Comput. Phys. Commun.
– reference: H. Chen & H. Zhang New multiple soliton solutions to the general Burgers–Fisher equation and the Kuramoto–Sivashinsky equation, Chaos, Solitons & Fractals
– volume: 213
  start-page: 279
  year: 1996
  end-page: 287
  ident: b0065
  article-title: Exact solutions for a compound KdV-Burgers equation
  publication-title: Phys. Lett. A
– volume: 372
  start-page: 1619
  year: 2008
  end-page: 1625
  ident: b0230
  article-title: Exact solutions for nonlinear evolution equations using Exp-function method
  publication-title: Phys. Lett. A
– volume: 103
  year: 2020
  ident: b0150
  article-title: Numerical analysis for rotating electro-osmotic flow of fractional Maxwell fluids
  publication-title: Appl. Math. Lett.
– volume: 38
  start-page: 270
  year: 2008
  end-page: 276
  ident: b0225
  article-title: Application of Exp-function method to high-dimensional nonlinear evolution equation
  publication-title: Chaos, Solitons Fract.
– volume: 56
  start-page: 1719
  year: 1976
  end-page: 1739
  ident: b0240
  article-title: Formation and interaction of sonic-Langmuir solitons: inverse scattering method
  publication-title: Prog. Theoret. Phys.
– volume: 290
  start-page: 72
  year: 2001
  end-page: 76
  ident: b0010
  article-title: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations
  publication-title: Phys. Lett. A
– volume: 2013
  year: 2013
  ident: b0115
  article-title: Fractional Solutions of Bessel Equation with-Method
  publication-title: Sci. World J.
– volume: 277
  start-page: 212
  year: 2000
  end-page: 218
  ident: b0045
  article-title: Extended tanh-function method and its applications to nonlinear equations
  publication-title: Phys. Lett. A
– volume: 36
  start-page: 1961
  year: 2003
  ident: b0015
  article-title: Jacobi elliptic function solutions of nonlinear wave equations via the new sinh-Gordon equation expansion method
  publication-title: J. Phys. A: Math. Gen.
– volume: 22
  start-page: 1350015
  year: 2013
  ident: b0245
  article-title: Optical soliton solutions of the long-short-wave interaction system
  publication-title: J. Nonlinear Opt. Phys. Mater.
– volume: 2013
  year: 2013
  ident: b0075
  article-title: A novel method for analytical solutions of fractional partial differential equations
  publication-title: Math. Probl. Eng.
– volume: 131
  start-page: 335
  year: 2016
  ident: b0165
  article-title: Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative
  publication-title: Europ. Phys. J. Plus
– reference: A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model
– reference: M. Eslami, H. Rezazadeh, M. Rezazadeh, S.S. Mosavi, Exact solutions to the space–time fractional Schrödinger–Hirota equation and the space–time modified KDV–Zakharov–Kuznetsov equation,
– volume: 24
  start-page: 430
  year: 2004
  end-page: 436
  ident: b0025
  article-title: On the Jacobi elliptic function expansion method
  publication-title: J. Math. Res. Expos
– reference: Opt. Quant. Electron. 49(8) (2017) 279.
– volume: 1738
  year: 2016
  ident: b0120
  article-title: Representation of the solution for fractional Sturm-Liouville problem
  publication-title: AIP Conference Proceedings AIP Publishing LLC
– volume: 14
  start-page: 513
  year: 2002
  end-page: 522
  ident: b0055
  article-title: The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction–diffusion equations
  publication-title: Chaos, Solitons Fractals
– reference: Therm. Sci. (00) (2020) 65.
– volume: 60
  start-page: 650
  year: 1992
  end-page: 654
  ident: b0050
  article-title: Solitary wave solutions of nonlinear wave equations
  publication-title: Am. J. Phys.
– volume: 109
  start-page: 219
  year: 2018
  end-page: 222
  ident: b0270
  article-title: Counterexamples on Jumarie’s three basic fractional calculus formulae for non-differentiable continuous functions
  publication-title: Chaos, Solitons Fract.
– volume: 23
  start-page: 1707
  year: 2019
  end-page: 1712
  ident: b0135
  article-title: On two-scale dimension and its applications
  publication-title: Therm. Sci.
– volume: 22
  start-page: 79
  year: 2018
  end-page: 85
  ident: b0125
  article-title: An application of comparison criteria to fractional spectral problem having Coloumb potential
  publication-title: Therm. Sci.
– reference: J.H. He, Q.T. Ain, New promises and future challenges of fractal calculus: from two-scale thermodynamics to fractal variational principle,
– volume: 14
  start-page: 363
  year: 2013
  end-page: 366
  ident: b0235
  article-title: Exp-function method for fractional differential equations
  publication-title: Int. J. Nonlinear Sci. Numer. Simulat.
– volume: 60
  start-page: 1384
  year: 2015
  end-page: 1394
  ident: b0035
  article-title: Jacobi elliptic function expansion method for the modified Korteweg-de Vries-Zakharov-Kuznetsov and the Hirota equations
  publication-title: Rom. J. Phys.
– volume: 264
  start-page: 65
  year: 2014
  end-page: 70
  ident: b0090
  article-title: A new definition of fractional derivative
  publication-title: J. Comput. Appl. Math.
– volume: 38
  start-page: 903
  year: 2008
  end-page: 910
  ident: b0215
  article-title: Exp-function method and its application to nonlinear equations
  publication-title: Chaos, Solitons Fract.
– volume: 30
  start-page: 700
  year: 2006
  end-page: 708
  ident: b0260
  article-title: Exp-function method for nonlinear wave equations
  publication-title: Chaos, Solitons Fract.
– volume: 37
  start-page: 51
  year: 2015
  end-page: 257
  ident: b0130
  article-title: < b> The Inverse Nodal problem for the fractional diffusion equation
  publication-title: Acta Sci. Technol.
– volume: 37
  start-page: 51
  issue: 2
  year: 2015
  ident: 10.1016/j.aej.2020.04.030_b0130
  article-title: < b> The Inverse Nodal problem for the fractional diffusion equation
  publication-title: Acta Sci. Technol.
  doi: 10.4025/actascitechnol.v37i2.17273
– volume: 12
  start-page: 1341
  issue: 12
  year: 2003
  ident: 10.1016/j.aej.2020.04.030_b0250
  article-title: The periodic wave solutions for two systems of nonlinear wave equations
  publication-title: Chin. Phys.
  doi: 10.1088/1009-1963/12/12/001
– volume: 164574
  year: 2020
  ident: 10.1016/j.aej.2020.04.030_b0275
  article-title: Optical solitons of a time-fractional higher-order nonlinear Schrödinger equation
  publication-title: Optik
– volume: 14
  start-page: 513
  issue: 3
  year: 2002
  ident: 10.1016/j.aej.2020.04.030_b0055
  article-title: The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction–diffusion equations
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/S0960-0779(01)00247-8
– ident: 10.1016/j.aej.2020.04.030_b0085
  doi: 10.2298/TSCI160111018A
– ident: 10.1016/j.aej.2020.04.030_b0210
– volume: 103036
  year: 2020
  ident: 10.1016/j.aej.2020.04.030_b0155
  article-title: Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation
  publication-title: Results Phys.
– volume: 22
  start-page: 1350015
  issue: 02
  year: 2013
  ident: 10.1016/j.aej.2020.04.030_b0245
  article-title: Optical soliton solutions of the long-short-wave interaction system
  publication-title: J. Nonlinear Opt. Phys. Mater.
  doi: 10.1142/S021886351350015X
– volume: 114
  start-page: 533
  issue: 3
  year: 2005
  ident: 10.1016/j.aej.2020.04.030_b0070
  article-title: Nonlinear second order Ode's: factorizations and particular solutions
  publication-title: Progress Theoret. Phys.
  doi: 10.1143/PTP.114.533
– volume: 264
  start-page: 65
  year: 2014
  ident: 10.1016/j.aej.2020.04.030_b0090
  article-title: A new definition of fractional derivative
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.01.002
– volume: 22
  start-page: 79
  year: 2018
  ident: 10.1016/j.aej.2020.04.030_b0125
  article-title: An application of comparison criteria to fractional spectral problem having Coloumb potential
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI170612273B
– volume: 365
  start-page: 448
  issue: 5–6
  year: 2007
  ident: 10.1016/j.aej.2020.04.030_b0220
  article-title: Application of Exp-function method to a KdV equation with variable coefficients
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2007.02.004
– ident: 10.1016/j.aej.2020.04.030_b0110
  doi: 10.1140/epjp/i2016-16335-8
– volume: 2013
  year: 2013
  ident: 10.1016/j.aej.2020.04.030_b0115
  article-title: Fractional Solutions of Bessel Equation with-Method
  publication-title: Sci. World J.
  doi: 10.1155/2013/685695
– volume: 60
  start-page: 650
  issue: 7
  year: 1992
  ident: 10.1016/j.aej.2020.04.030_b0050
  article-title: Solitary wave solutions of nonlinear wave equations
  publication-title: Am. J. Phys.
  doi: 10.1119/1.17120
– volume: 60
  start-page: 1384
  issue: 9–10
  year: 2015
  ident: 10.1016/j.aej.2020.04.030_b0035
  article-title: Jacobi elliptic function expansion method for the modified Korteweg-de Vries-Zakharov-Kuznetsov and the Hirota equations
  publication-title: Rom. J. Phys.
– volume: 14
  start-page: 363
  issue: 6
  year: 2013
  ident: 10.1016/j.aej.2020.04.030_b0235
  article-title: Exp-function method for fractional differential equations
  publication-title: Int. J. Nonlinear Sci. Numer. Simulat.
  doi: 10.1515/ijnsns-2011-0132
– volume: 109
  start-page: 219
  year: 2018
  ident: 10.1016/j.aej.2020.04.030_b0270
  article-title: Counterexamples on Jumarie’s three basic fractional calculus formulae for non-differentiable continuous functions
  publication-title: Chaos, Solitons Fract.
  doi: 10.1016/j.chaos.2018.02.036
– volume: 213
  start-page: 279
  issue: 5–6
  year: 1996
  ident: 10.1016/j.aej.2020.04.030_b0065
  article-title: Exact solutions for a compound KdV-Burgers equation
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(96)00103-X
– volume: 106
  start-page: 304
  year: 2018
  ident: 10.1016/j.aej.2020.04.030_b0180
  article-title: New structures for the space-time fractional simplified MCH and SRLW equations
  publication-title: Chaos, Solitons Fract.
  doi: 10.1016/j.chaos.2017.11.038
– volume: 98
  start-page: 489
  issue: 1
  year: 2019
  ident: 10.1016/j.aej.2020.04.030_b0255
  article-title: Three-dimensional optical solitons formed by the balance between different-order nonlinearities and high-order dispersion/diffraction in parity-time symmetric potentials
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05206-z
– volume: 153
  start-page: 145
  issue: 2
  year: 2003
  ident: 10.1016/j.aej.2020.04.030_b0020
  article-title: The new extended Jacobian elliptic function expansion algorithm and its applications in nonlinear mathematical physics equations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(03)00207-8
– volume: 1738
  issue: 1
  year: 2016
  ident: 10.1016/j.aej.2020.04.030_b0120
  article-title: Representation of the solution for fractional Sturm-Liouville problem
  publication-title: AIP Conference Proceedings AIP Publishing LLC
  doi: 10.1063/1.4952074
– year: 2019
  ident: 10.1016/j.aej.2020.04.030_b0200
  article-title: A fractal variational theory for one-dimensional compressible flow in a microgravity space
  publication-title: Fractals
– ident: 10.1016/j.aej.2020.04.030_b0060
  doi: 10.1016/S0960-0779(03)00081-X
– volume: 23
  start-page: 1707
  issue: 3
  year: 2019
  ident: 10.1016/j.aej.2020.04.030_b0135
  article-title: On two-scale dimension and its applications
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI190408138A
– volume: 49
  start-page: 279
  issue: 8
  year: 2017
  ident: 10.1016/j.aej.2020.04.030_b0160
  article-title: Exact solutions to the space–time fractional Schrödinger-Hirota equation and the space–time modified KDV–Zakharov–Kuznetsov equation
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-017-1112-6
– volume: 238
  start-page: 1
  issue: 1389
  year: 2012
  ident: 10.1016/j.aej.2020.04.030_b0095
  article-title: Explicit solutions of fractional Schrödinger equation via fractional calculus operators
  publication-title: Int. J. Open Probl. Comput. Sci. Math.
– ident: 10.1016/j.aej.2020.04.030_b0080
– volume: 36
  start-page: 1961
  issue: 7
  year: 2003
  ident: 10.1016/j.aej.2020.04.030_b0015
  article-title: Jacobi elliptic function solutions of nonlinear wave equations via the new sinh-Gordon equation expansion method
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/36/7/311
– volume: 372
  start-page: 1619
  issue: 10
  year: 2008
  ident: 10.1016/j.aej.2020.04.030_b0230
  article-title: Exact solutions for nonlinear evolution equations using Exp-function method
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2007.10.018
– volume: 30
  start-page: 700
  issue: 3
  year: 2006
  ident: 10.1016/j.aej.2020.04.030_b0260
  article-title: Exp-function method for nonlinear wave equations
  publication-title: Chaos, Solitons Fract.
  doi: 10.1016/j.chaos.2006.03.020
– volume: 23
  start-page: 2131
  issue: 4
  year: 2019
  ident: 10.1016/j.aej.2020.04.030_b0140
  article-title: Two-scale mathematics and fractional calculus for thermodynamics
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI1904131H
– volume: 292
  start-page: 335
  issue: 6
  year: 2002
  ident: 10.1016/j.aej.2020.04.030_b0030
  article-title: Double periodic solutions with Jacobi elliptic functions for two generalized Hirota-Satsuma coupled KdV systems
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00815-5
– volume: 73
  start-page: 203
  issue: 2
  year: 2017
  ident: 10.1016/j.aej.2020.04.030_b0175
  article-title: Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.11.012
– volume: 23
  start-page: 2477
  issue: 4
  year: 2019
  ident: 10.1016/j.aej.2020.04.030_b0195
  article-title: A fractal rate model for adsorption kinetics at solid/solution interface
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI1904477L
– volume: 56
  start-page: 1719
  issue: 6
  year: 1976
  ident: 10.1016/j.aej.2020.04.030_b0240
  article-title: Formation and interaction of sonic-Langmuir solitons: inverse scattering method
  publication-title: Prog. Theoret. Phys.
  doi: 10.1143/PTP.56.1719
– volume: 22
  start-page: 92
  issue: 1–3
  year: 2015
  ident: 10.1016/j.aej.2020.04.030_b0265
  article-title: Counterexamples on Jumarie’s two basic fractional calculus formulae
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2014.07.022
– volume: 23
  start-page: 2163
  issue: 4
  year: 2019
  ident: 10.1016/j.aej.2020.04.030_b0185
  article-title: Numerical method for fractional Zakharov-Kuznetsov equations with He’s fractional derivative
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI1904163W
– ident: 10.1016/j.aej.2020.04.030_b0105
  doi: 10.1007/s11082-017-1112-6
– volume: 28
  start-page: 2050011
  issue: 1
  year: 2020
  ident: 10.1016/j.aej.2020.04.030_b0205
  article-title: Taylor series solution for fractal Bratu-type equation arising in electrospinning process
  publication-title: Fract
  doi: 10.1142/S0218348X20500115
– volume: 289
  start-page: 69
  issue: 1–2
  year: 2001
  ident: 10.1016/j.aej.2020.04.030_b0005
  article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00580-1
– volume: 131
  start-page: 335
  issue: 9
  year: 2016
  ident: 10.1016/j.aej.2020.04.030_b0165
  article-title: Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative
  publication-title: Europ. Phys. J. Plus
  doi: 10.1140/epjp/i2016-16335-8
– volume: 277
  start-page: 212
  issue: 4–5
  year: 2000
  ident: 10.1016/j.aej.2020.04.030_b0045
  article-title: Extended tanh-function method and its applications to nonlinear equations
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(00)00725-8
– volume: 38
  start-page: 270
  issue: 1
  year: 2008
  ident: 10.1016/j.aej.2020.04.030_b0225
  article-title: Application of Exp-function method to high-dimensional nonlinear evolution equation
  publication-title: Chaos, Solitons Fract.
  doi: 10.1016/j.chaos.2006.11.014
– volume: 38
  start-page: 903
  issue: 3
  year: 2008
  ident: 10.1016/j.aej.2020.04.030_b0215
  article-title: Exp-function method and its application to nonlinear equations
  publication-title: Chaos, Solitons Fract.
  doi: 10.1016/j.chaos.2007.01.024
– volume: 2013
  year: 2013
  ident: 10.1016/j.aej.2020.04.030_b0075
  article-title: A novel method for analytical solutions of fractional partial differential equations
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2013/195708
– volume: 103
  year: 2020
  ident: 10.1016/j.aej.2020.04.030_b0150
  article-title: Numerical analysis for rotating electro-osmotic flow of fractional Maxwell fluids
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.106179
– volume: 24
  start-page: 430
  issue: 3
  year: 2004
  ident: 10.1016/j.aej.2020.04.030_b0025
  article-title: On the Jacobi elliptic function expansion method
  publication-title: J. Math. Res. Expos
– volume: 31
  start-page: 2243
  issue: 8
  year: 2017
  ident: 10.1016/j.aej.2020.04.030_b0100
  article-title: Application of fixed point theorem for stability analysis of a nonlinear Schrodinger with Caputo-Liouville derivative
  publication-title: Filomat
  doi: 10.2298/FIL1708243A
– volume: 207
  year: 2020
  ident: 10.1016/j.aej.2020.04.030_b0145
  article-title: Fractional optical solitons of the space-time fractional nonlinear Schrödinger equation
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.164405
– volume: 53
  start-page: 475
  issue: 3
  year: 2016
  ident: 10.1016/j.aej.2020.04.030_b0170
  article-title: The first integral method for Wu–Zhang system with conformable time-fractional derivative
  publication-title: Calcolo
  doi: 10.1007/s10092-015-0158-8
– volume: 290
  start-page: 72
  issue: 1–2
  year: 2001
  ident: 10.1016/j.aej.2020.04.030_b0010
  article-title: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations
  publication-title: Phys. Lett. A
– volume: 23
  start-page: 2351
  issue: 4
  year: 2019
  ident: 10.1016/j.aej.2020.04.030_b0190
  article-title: A fractal derivative model for snow’s thermal insulation property
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI1904351W
– year: 1991
  ident: 10.1016/j.aej.2020.04.030_b0040
SSID ssj0000579496
Score 2.2110732
Snippet In this study, the new traveling wave solutions resulting from the interaction of the long-short wave system were obtained by using the exp-function method....
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 1705
SubjectTerms 35C07
39A23
74G10
74H40
93C20
Exp-function method
Kink type, hyperbolic and trigonometric function solutions
Long-short interaction wave system
Title Interaction Solutions of Long and Short Waves in a Flexible Environment
URI https://dx.doi.org/10.1016/j.aej.2020.04.030
https://doaj.org/article/7b25747c844448ca8709b637a66a1f0e
Volume 59
WOSCitedRecordID wos000542588900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  issn: 1110-0168
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0000579496
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlJQ9MSBG24zjOCKiFAVVIgOhm-XGGVihFbenvx86jZEEsZIwSO_runDvbn79D6CIzXABIHYa4EQm3zCbGWpo4C5QK6y23rio2kQ-HcjQqHjulviInrJYHroG7yk1wKp5bycMlrQ7-VRiR5loITT2B-PcledGZTNWq3sHPquJcYSxH5pWQ7ZZmRe7SMAlzQ0YqmdPIgO4EpUq7vxObOvFmsIO2m0QRX9cfuIvWoNxDWx35wH10Vy3n1ScT8Gp9C089fpiWb1iXDj-9h_Qav-olzPG4xBoPogCm-QDc_znhdoBeBv3n2_ukKYyQ2DSTiyQ30kQdM8iIMdQZkVmW555JCs5pycB7CYUDQQBImjIAranIUq4lCaDR9BCtl9MSjhC2hAIJb3pWAE-Z09ZIL2UGLiQCgvAeumyRUZ-1_oVqiWETFWBUEUZFuAow9tBNxG71YJSurm4Eg6rGoOovg_YQb5FXTRZQR_fQ1Pj3vo__o-8TtBmbrKlgp2h9MfuCM7Rhl4vxfHZeudg3vODS2Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+Solutions+of+Long+and+Short+Waves+in+a+Flexible+Environment&rft.jtitle=Alexandria+engineering+journal&rft.au=Akturk%2C+Tolga&rft.date=2020-06-01&rft.issn=1110-0168&rft.volume=59&rft.issue=3&rft.spage=1705&rft.epage=1716&rft_id=info:doi/10.1016%2Fj.aej.2020.04.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aej_2020_04_030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon