Interaction Solutions of Long and Short Waves in a Flexible Environment
In this study, the new traveling wave solutions resulting from the interaction of the long-short wave system were obtained by using the exp-function method. Two and three dimensional graphs of the obtained solutions were drawn by selecting the appropriate parameters. Density graphs of the solution f...
Uloženo v:
| Vydáno v: | Alexandria engineering journal Ročník 59; číslo 3; s. 1705 - 1716 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.06.2020
Elsevier |
| Témata: | |
| ISSN: | 1110-0168 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this study, the new traveling wave solutions resulting from the interaction of the long-short wave system were obtained by using the exp-function method. Two and three dimensional graphs of the obtained solutions were drawn by selecting the appropriate parameters. Density graphs of the solution functions were obtained and the interaction of the waves was observed. |
|---|---|
| AbstractList | In this study, the new traveling wave solutions resulting from the interaction of the long-short wave system were obtained by using the exp-function method. Two and three dimensional graphs of the obtained solutions were drawn by selecting the appropriate parameters. Density graphs of the solution functions were obtained and the interaction of the waves was observed. |
| Author | Akturk, Tolga |
| Author_xml | – sequence: 1 givenname: Tolga surname: Akturk fullname: Akturk, Tolga email: tolgaakturk@odu.edu.tr organization: Department of Mathematics and Science Education, Faculty of Education, Ordu University, Ordu, Turkey |
| BookMark | eNp9kM9OwzAMxnMYEgP2ANzyAitO_yUVJzRtY9IkDgNxjNzUHam6BKVlgrcnY4gj38WWre8n-7tiE-cdMXYrIBEgyrsuQeqSFFJIIE8ggwmbCiFgHpfqks2GoYOoQlZ5VU7ZeuNGCmhG6x3f-f7j1Azct3zr3Z6ja_juzYeRv-KRBm4dR77q6dPWPfGlO9rg3YHceMMuWuwHmv3Wa_ayWj4vHufbp_Vm8bCdm6xQ41zWqhZVKqiAuhZNXRYmlbJNlaCmQZVS2yqqGiqBCLIsJUIUZZHlqABFK7JrtjlzG4-dfg_2gOFLe7T6Z-DDXmMYrelJyzotZC6NyqOUQSWhqstMYllGFFBkiTPLBD8Mgdo_ngB9ClN3OoapT2FqyHUMM3ruzx6KTx4tBT0YS85QYwOZMV5h_3F_A2ysf4Q |
| Cites_doi | 10.4025/actascitechnol.v37i2.17273 10.1088/1009-1963/12/12/001 10.1016/S0960-0779(01)00247-8 10.2298/TSCI160111018A 10.1142/S021886351350015X 10.1143/PTP.114.533 10.1016/j.cam.2014.01.002 10.2298/TSCI170612273B 10.1016/j.physleta.2007.02.004 10.1140/epjp/i2016-16335-8 10.1155/2013/685695 10.1119/1.17120 10.1515/ijnsns-2011-0132 10.1016/j.chaos.2018.02.036 10.1016/0375-9601(96)00103-X 10.1016/j.chaos.2017.11.038 10.1007/s11071-019-05206-z 10.1016/S0010-4655(03)00207-8 10.1063/1.4952074 10.1016/S0960-0779(03)00081-X 10.2298/TSCI190408138A 10.1007/s11082-017-1112-6 10.1088/0305-4470/36/7/311 10.1016/j.physleta.2007.10.018 10.1016/j.chaos.2006.03.020 10.2298/TSCI1904131H 10.1016/S0375-9601(01)00815-5 10.1016/j.camwa.2016.11.012 10.2298/TSCI1904477L 10.1143/PTP.56.1719 10.1016/j.cnsns.2014.07.022 10.2298/TSCI1904163W 10.1142/S0218348X20500115 10.1016/S0375-9601(01)00580-1 10.1016/S0375-9601(00)00725-8 10.1016/j.chaos.2006.11.014 10.1016/j.chaos.2007.01.024 10.1155/2013/195708 10.1016/j.aml.2019.106179 10.2298/FIL1708243A 10.1016/j.ijleo.2020.164405 10.1007/s10092-015-0158-8 10.2298/TSCI1904351W |
| ContentType | Journal Article |
| Copyright | 2020 Faculty of Engineering, Alexandria University |
| Copyright_xml | – notice: 2020 Faculty of Engineering, Alexandria University |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.aej.2020.04.030 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 1716 |
| ExternalDocumentID | oai_doaj_org_article_7b25747c844448ca8709b637a66a1f0e 10_1016_j_aej_2020_04_030 S1110016820301800 |
| GroupedDBID | --K 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
| ID | FETCH-LOGICAL-c358t-7b8b1921e50bb1db65c277f281edda82eff8e9de60ee0332eeaa16534a80a1f13 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542588900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1110-0168 |
| IngestDate | Fri Oct 03 12:41:26 EDT 2025 Wed Oct 29 21:21:07 EDT 2025 Wed May 17 00:10:51 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Long-short interaction wave system 39A23 74G10 Kink type, hyperbolic and trigonometric function solutions 74H40 93C20 Exp-function method 35C07 |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-7b8b1921e50bb1db65c277f281edda82eff8e9de60ee0332eeaa16534a80a1f13 |
| OpenAccessLink | https://doaj.org/article/7b25747c844448ca8709b637a66a1f0e |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7b25747c844448ca8709b637a66a1f0e crossref_primary_10_1016_j_aej_2020_04_030 elsevier_sciencedirect_doi_10_1016_j_aej_2020_04_030 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 2020-06-00 2020-06-01 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Alexandria engineering journal |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Fan, Hon (b0030) 2002; 292 Eslami, Rezazadeh (b0170) 2016; 53 Ali, Nuruddeen, Raslan (b0180) 2018; 106 He (b0235) 2013; 14 H. Chen & H. Zhang New multiple soliton solutions to the general Burgers–Fisher equation and the Kuramoto–Sivashinsky equation, Chaos, Solitons & Fractals Liu, Fu, Zhao (b0010) 2001; 290 Wu, He (b0215) 2008; 38 Wu, Yu, Wang (b0145) 2020; 207 Chen, Zhang (b0025) 2004; 24 Liu (b0265) 2015; 22 A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model Khater, Malfliet, Callebaut, Kamel (b0055) 2002; 14 Wang, Xu, Qi (b0150) 2020; 103 Bas, Metin (b0125) 2018; 22 Ablowitz, Ablowitz, Clarkson (b0040) 1991 Fan (b0045) 2000; 277 Wang, Yao, Yang (b0190) 2019; 23 Ming-Liang, Yue-Ming, Jin-Liang (b0250) 2003; 12 Bekir, Boz (b0230) 2008; 372 Bas (b0130) 2015; 37 Liu (b0270) 2018; 109 Liu, Fu, Zhao (b0005) 2001; 289 Fang, Dai (b0275) 2020; 164574 Opt. Quant. Electron. 49(8) (2017) 279. Wang (b0065) 1996; 213 He, Shen, Ji, He (b0205) 2020; 28 Malfliet (b0050) 1992; 60 I. Podlubny, Fractional differential equations of Mathematics in Science and Engineering 198 (1999). Bas, Metin (b0120) 2016; 1738 Zhang (b0035) 2015; 60 Bas, Yilmazer, Panakhov (b0115) 2013; 2013 Khalil, Al Horani, Yousef, Sababheh (b0090) 2014; 264 Yang, Gao, Srivastava (b0175) 2017; 73 K.M. Owolabi, A. Atangana Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative, Europ. Phys. J. Plus 131(9) (2016) 335. Eslami, Rezazadeh, Rezazadeh, Mosavi (b0160) 2017; 49 Bekir, Aksoy, Güner (b0245) 2013; 22 Liu, Yao, Yang, Liu (b0195) 2019; 23 Yan (b0020) 2003; 153 Ain, He (b0135) 2019; 23 (2016) arXiv preprint arXiv:1602.03408. Wang, Lu, Dai, Chen (b0155) 2020; 103036 Yajima, Oikawa (b0240) 1976; 56 Akinlar, Kurulay (b0075) 2013; 2013 Atangana, Baleanu (b0100) 2017; 31 He (b0200) 2019 Zhang (b0220) 2007; 365 He, Ji (b0140) 2019; 23 Wang, Yao (b0185) 2019; 23 Yilmazer, Bas (b0095) 2012; 238 Dai, Fan, Wang (b0255) 2019; 98 Yan (b0015) 2003; 36 19(1) (2004) 71-76. He, Wu (b0260) 2006; 30 J.H. He, Q.T. Ain, New promises and future challenges of fractal calculus: from two-scale thermodynamics to fractal variational principle Therm. Sci. (00) (2020) 65. Zhang (b0225) 2008; 38 M. Eslami, H. Rezazadeh, M. Rezazadeh, S.S. Mosavi, Exact solutions to the space–time fractional Schrödinger–Hirota equation and the space–time modified KDV–Zakharov–Kuznetsov equation Owolabi, Atangana (b0165) 2016; 131 Cornejo-Pérez, Rosu (b0070) 2005; 114 Liu (10.1016/j.aej.2020.04.030_b0270) 2018; 109 Fang (10.1016/j.aej.2020.04.030_b0275) 2020; 164574 10.1016/j.aej.2020.04.030_b0080 Bas (10.1016/j.aej.2020.04.030_b0130) 2015; 37 Wang (10.1016/j.aej.2020.04.030_b0150) 2020; 103 Yajima (10.1016/j.aej.2020.04.030_b0240) 1976; 56 10.1016/j.aej.2020.04.030_b0085 He (10.1016/j.aej.2020.04.030_b0205) 2020; 28 Bekir (10.1016/j.aej.2020.04.030_b0245) 2013; 22 Cornejo-Pérez (10.1016/j.aej.2020.04.030_b0070) 2005; 114 Zhang (10.1016/j.aej.2020.04.030_b0220) 2007; 365 He (10.1016/j.aej.2020.04.030_b0140) 2019; 23 Liu (10.1016/j.aej.2020.04.030_b0005) 2001; 289 Liu (10.1016/j.aej.2020.04.030_b0010) 2001; 290 Yan (10.1016/j.aej.2020.04.030_b0015) 2003; 36 Khater (10.1016/j.aej.2020.04.030_b0055) 2002; 14 Eslami (10.1016/j.aej.2020.04.030_b0170) 2016; 53 Yilmazer (10.1016/j.aej.2020.04.030_b0095) 2012; 238 Wu (10.1016/j.aej.2020.04.030_b0145) 2020; 207 Malfliet (10.1016/j.aej.2020.04.030_b0050) 1992; 60 Wang (10.1016/j.aej.2020.04.030_b0065) 1996; 213 10.1016/j.aej.2020.04.030_b0110 Liu (10.1016/j.aej.2020.04.030_b0195) 2019; 23 Eslami (10.1016/j.aej.2020.04.030_b0160) 2017; 49 Ain (10.1016/j.aej.2020.04.030_b0135) 2019; 23 Liu (10.1016/j.aej.2020.04.030_b0265) 2015; 22 Ablowitz (10.1016/j.aej.2020.04.030_b0040) 1991 Ming-Liang (10.1016/j.aej.2020.04.030_b0250) 2003; 12 Chen (10.1016/j.aej.2020.04.030_b0025) 2004; 24 He (10.1016/j.aej.2020.04.030_b0235) 2013; 14 10.1016/j.aej.2020.04.030_b0060 He (10.1016/j.aej.2020.04.030_b0200) 2019 Atangana (10.1016/j.aej.2020.04.030_b0100) 2017; 31 Zhang (10.1016/j.aej.2020.04.030_b0225) 2008; 38 Akinlar (10.1016/j.aej.2020.04.030_b0075) 2013; 2013 Wang (10.1016/j.aej.2020.04.030_b0185) 2019; 23 Bas (10.1016/j.aej.2020.04.030_b0125) 2018; 22 10.1016/j.aej.2020.04.030_b0105 Wang (10.1016/j.aej.2020.04.030_b0155) 2020; 103036 Bekir (10.1016/j.aej.2020.04.030_b0230) 2008; 372 Khalil (10.1016/j.aej.2020.04.030_b0090) 2014; 264 He (10.1016/j.aej.2020.04.030_b0260) 2006; 30 Wu (10.1016/j.aej.2020.04.030_b0215) 2008; 38 Zhang (10.1016/j.aej.2020.04.030_b0035) 2015; 60 Owolabi (10.1016/j.aej.2020.04.030_b0165) 2016; 131 Fan (10.1016/j.aej.2020.04.030_b0045) 2000; 277 Bas (10.1016/j.aej.2020.04.030_b0120) 2016; 1738 Wang (10.1016/j.aej.2020.04.030_b0190) 2019; 23 10.1016/j.aej.2020.04.030_b0210 Yan (10.1016/j.aej.2020.04.030_b0020) 2003; 153 Bas (10.1016/j.aej.2020.04.030_b0115) 2013; 2013 Dai (10.1016/j.aej.2020.04.030_b0255) 2019; 98 Fan (10.1016/j.aej.2020.04.030_b0030) 2002; 292 Ali (10.1016/j.aej.2020.04.030_b0180) 2018; 106 Yang (10.1016/j.aej.2020.04.030_b0175) 2017; 73 |
| References_xml | – volume: 238 start-page: 1 year: 2012 end-page: 10 ident: b0095 article-title: Explicit solutions of fractional Schrödinger equation via fractional calculus operators publication-title: Int. J. Open Probl. Comput. Sci. Math. – volume: 207 year: 2020 ident: b0145 article-title: Fractional optical solitons of the space-time fractional nonlinear Schrödinger equation publication-title: Optik – volume: 28 start-page: 2050011 year: 2020 end-page: 2052193 ident: b0205 article-title: Taylor series solution for fractal Bratu-type equation arising in electrospinning process publication-title: Fract – reference: (2016) arXiv preprint arXiv:1602.03408. – volume: 23 start-page: 2163 year: 2019 end-page: 2170 ident: b0185 article-title: Numerical method for fractional Zakharov-Kuznetsov equations with He’s fractional derivative publication-title: Therm. Sci. – volume: 103036 year: 2020 ident: b0155 article-title: Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation publication-title: Results Phys. – volume: 114 start-page: 533 year: 2005 end-page: 538 ident: b0070 article-title: Nonlinear second order Ode's: factorizations and particular solutions publication-title: Progress Theoret. Phys. – volume: 53 start-page: 475 year: 2016 end-page: 485 ident: b0170 article-title: The first integral method for Wu–Zhang system with conformable time-fractional derivative publication-title: Calcolo – volume: 23 start-page: 2131 year: 2019 end-page: 2133 ident: b0140 article-title: Two-scale mathematics and fractional calculus for thermodynamics publication-title: Therm. Sci. – year: 2019 ident: b0200 article-title: A fractal variational theory for one-dimensional compressible flow in a microgravity space publication-title: Fractals – volume: 22 start-page: 92 year: 2015 end-page: 94 ident: b0265 article-title: Counterexamples on Jumarie’s two basic fractional calculus formulae publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 49 start-page: 279 year: 2017 ident: b0160 article-title: Exact solutions to the space–time fractional Schrödinger-Hirota equation and the space–time modified KDV–Zakharov–Kuznetsov equation publication-title: Opt. Quant. Electron. – volume: 98 start-page: 489 year: 2019 end-page: 499 ident: b0255 article-title: Three-dimensional optical solitons formed by the balance between different-order nonlinearities and high-order dispersion/diffraction in parity-time symmetric potentials publication-title: Nonlinear Dyn. – volume: 106 start-page: 304 year: 2018 end-page: 309 ident: b0180 article-title: New structures for the space-time fractional simplified MCH and SRLW equations publication-title: Chaos, Solitons Fract. – volume: 365 start-page: 448 year: 2007 end-page: 453 ident: b0220 article-title: Application of Exp-function method to a KdV equation with variable coefficients publication-title: Phys. Lett. A – year: 1991 ident: b0040 article-title: Solitons, nonlinear evolution equations and inverse scattering – reference: 19(1) (2004) 71-76. – volume: 12 start-page: 1341 year: 2003 ident: b0250 article-title: The periodic wave solutions for two systems of nonlinear wave equations publication-title: Chin. Phys. – volume: 23 start-page: 2351 year: 2019 end-page: 2354 ident: b0190 article-title: A fractal derivative model for snow’s thermal insulation property publication-title: Therm. Sci. – volume: 292 start-page: 335 year: 2002 end-page: 337 ident: b0030 article-title: Double periodic solutions with Jacobi elliptic functions for two generalized Hirota-Satsuma coupled KdV systems publication-title: Phys. Lett. A – reference: I. Podlubny, Fractional differential equations of Mathematics in Science and Engineering 198 (1999). – reference: K.M. Owolabi, A. Atangana Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative, Europ. Phys. J. Plus 131(9) (2016) 335. – volume: 73 start-page: 203 year: 2017 end-page: 210 ident: b0175 article-title: Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations publication-title: Comput. Math. Appl. – volume: 289 start-page: 69 year: 2001 end-page: 74 ident: b0005 article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations publication-title: Phys. Lett. A – volume: 23 start-page: 2477 year: 2019 end-page: 2480 ident: b0195 article-title: A fractal rate model for adsorption kinetics at solid/solution interface publication-title: Therm. Sci. – volume: 164574 year: 2020 ident: b0275 article-title: Optical solitons of a time-fractional higher-order nonlinear Schrödinger equation publication-title: Optik – volume: 31 start-page: 2243 year: 2017 end-page: 2248 ident: b0100 article-title: Application of fixed point theorem for stability analysis of a nonlinear Schrodinger with Caputo-Liouville derivative publication-title: Filomat – volume: 153 start-page: 145 year: 2003 end-page: 154 ident: b0020 article-title: The new extended Jacobian elliptic function expansion algorithm and its applications in nonlinear mathematical physics equations publication-title: Comput. Phys. Commun. – reference: H. Chen & H. Zhang New multiple soliton solutions to the general Burgers–Fisher equation and the Kuramoto–Sivashinsky equation, Chaos, Solitons & Fractals – volume: 213 start-page: 279 year: 1996 end-page: 287 ident: b0065 article-title: Exact solutions for a compound KdV-Burgers equation publication-title: Phys. Lett. A – volume: 372 start-page: 1619 year: 2008 end-page: 1625 ident: b0230 article-title: Exact solutions for nonlinear evolution equations using Exp-function method publication-title: Phys. Lett. A – volume: 103 year: 2020 ident: b0150 article-title: Numerical analysis for rotating electro-osmotic flow of fractional Maxwell fluids publication-title: Appl. Math. Lett. – volume: 38 start-page: 270 year: 2008 end-page: 276 ident: b0225 article-title: Application of Exp-function method to high-dimensional nonlinear evolution equation publication-title: Chaos, Solitons Fract. – volume: 56 start-page: 1719 year: 1976 end-page: 1739 ident: b0240 article-title: Formation and interaction of sonic-Langmuir solitons: inverse scattering method publication-title: Prog. Theoret. Phys. – volume: 290 start-page: 72 year: 2001 end-page: 76 ident: b0010 article-title: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations publication-title: Phys. Lett. A – volume: 2013 year: 2013 ident: b0115 article-title: Fractional Solutions of Bessel Equation with-Method publication-title: Sci. World J. – volume: 277 start-page: 212 year: 2000 end-page: 218 ident: b0045 article-title: Extended tanh-function method and its applications to nonlinear equations publication-title: Phys. Lett. A – volume: 36 start-page: 1961 year: 2003 ident: b0015 article-title: Jacobi elliptic function solutions of nonlinear wave equations via the new sinh-Gordon equation expansion method publication-title: J. Phys. A: Math. Gen. – volume: 22 start-page: 1350015 year: 2013 ident: b0245 article-title: Optical soliton solutions of the long-short-wave interaction system publication-title: J. Nonlinear Opt. Phys. Mater. – volume: 2013 year: 2013 ident: b0075 article-title: A novel method for analytical solutions of fractional partial differential equations publication-title: Math. Probl. Eng. – volume: 131 start-page: 335 year: 2016 ident: b0165 article-title: Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative publication-title: Europ. Phys. J. Plus – reference: A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model – reference: M. Eslami, H. Rezazadeh, M. Rezazadeh, S.S. Mosavi, Exact solutions to the space–time fractional Schrödinger–Hirota equation and the space–time modified KDV–Zakharov–Kuznetsov equation, – volume: 24 start-page: 430 year: 2004 end-page: 436 ident: b0025 article-title: On the Jacobi elliptic function expansion method publication-title: J. Math. Res. Expos – reference: Opt. Quant. Electron. 49(8) (2017) 279. – volume: 1738 year: 2016 ident: b0120 article-title: Representation of the solution for fractional Sturm-Liouville problem publication-title: AIP Conference Proceedings AIP Publishing LLC – volume: 14 start-page: 513 year: 2002 end-page: 522 ident: b0055 article-title: The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction–diffusion equations publication-title: Chaos, Solitons Fractals – reference: Therm. Sci. (00) (2020) 65. – volume: 60 start-page: 650 year: 1992 end-page: 654 ident: b0050 article-title: Solitary wave solutions of nonlinear wave equations publication-title: Am. J. Phys. – volume: 109 start-page: 219 year: 2018 end-page: 222 ident: b0270 article-title: Counterexamples on Jumarie’s three basic fractional calculus formulae for non-differentiable continuous functions publication-title: Chaos, Solitons Fract. – volume: 23 start-page: 1707 year: 2019 end-page: 1712 ident: b0135 article-title: On two-scale dimension and its applications publication-title: Therm. Sci. – volume: 22 start-page: 79 year: 2018 end-page: 85 ident: b0125 article-title: An application of comparison criteria to fractional spectral problem having Coloumb potential publication-title: Therm. Sci. – reference: J.H. He, Q.T. Ain, New promises and future challenges of fractal calculus: from two-scale thermodynamics to fractal variational principle, – volume: 14 start-page: 363 year: 2013 end-page: 366 ident: b0235 article-title: Exp-function method for fractional differential equations publication-title: Int. J. Nonlinear Sci. Numer. Simulat. – volume: 60 start-page: 1384 year: 2015 end-page: 1394 ident: b0035 article-title: Jacobi elliptic function expansion method for the modified Korteweg-de Vries-Zakharov-Kuznetsov and the Hirota equations publication-title: Rom. J. Phys. – volume: 264 start-page: 65 year: 2014 end-page: 70 ident: b0090 article-title: A new definition of fractional derivative publication-title: J. Comput. Appl. Math. – volume: 38 start-page: 903 year: 2008 end-page: 910 ident: b0215 article-title: Exp-function method and its application to nonlinear equations publication-title: Chaos, Solitons Fract. – volume: 30 start-page: 700 year: 2006 end-page: 708 ident: b0260 article-title: Exp-function method for nonlinear wave equations publication-title: Chaos, Solitons Fract. – volume: 37 start-page: 51 year: 2015 end-page: 257 ident: b0130 article-title: < b> The Inverse Nodal problem for the fractional diffusion equation publication-title: Acta Sci. Technol. – volume: 37 start-page: 51 issue: 2 year: 2015 ident: 10.1016/j.aej.2020.04.030_b0130 article-title: < b> The Inverse Nodal problem for the fractional diffusion equation publication-title: Acta Sci. Technol. doi: 10.4025/actascitechnol.v37i2.17273 – volume: 12 start-page: 1341 issue: 12 year: 2003 ident: 10.1016/j.aej.2020.04.030_b0250 article-title: The periodic wave solutions for two systems of nonlinear wave equations publication-title: Chin. Phys. doi: 10.1088/1009-1963/12/12/001 – volume: 164574 year: 2020 ident: 10.1016/j.aej.2020.04.030_b0275 article-title: Optical solitons of a time-fractional higher-order nonlinear Schrödinger equation publication-title: Optik – volume: 14 start-page: 513 issue: 3 year: 2002 ident: 10.1016/j.aej.2020.04.030_b0055 article-title: The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction–diffusion equations publication-title: Chaos, Solitons Fractals doi: 10.1016/S0960-0779(01)00247-8 – ident: 10.1016/j.aej.2020.04.030_b0085 doi: 10.2298/TSCI160111018A – ident: 10.1016/j.aej.2020.04.030_b0210 – volume: 103036 year: 2020 ident: 10.1016/j.aej.2020.04.030_b0155 article-title: Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation publication-title: Results Phys. – volume: 22 start-page: 1350015 issue: 02 year: 2013 ident: 10.1016/j.aej.2020.04.030_b0245 article-title: Optical soliton solutions of the long-short-wave interaction system publication-title: J. Nonlinear Opt. Phys. Mater. doi: 10.1142/S021886351350015X – volume: 114 start-page: 533 issue: 3 year: 2005 ident: 10.1016/j.aej.2020.04.030_b0070 article-title: Nonlinear second order Ode's: factorizations and particular solutions publication-title: Progress Theoret. Phys. doi: 10.1143/PTP.114.533 – volume: 264 start-page: 65 year: 2014 ident: 10.1016/j.aej.2020.04.030_b0090 article-title: A new definition of fractional derivative publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.01.002 – volume: 22 start-page: 79 year: 2018 ident: 10.1016/j.aej.2020.04.030_b0125 article-title: An application of comparison criteria to fractional spectral problem having Coloumb potential publication-title: Therm. Sci. doi: 10.2298/TSCI170612273B – volume: 365 start-page: 448 issue: 5–6 year: 2007 ident: 10.1016/j.aej.2020.04.030_b0220 article-title: Application of Exp-function method to a KdV equation with variable coefficients publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2007.02.004 – ident: 10.1016/j.aej.2020.04.030_b0110 doi: 10.1140/epjp/i2016-16335-8 – volume: 2013 year: 2013 ident: 10.1016/j.aej.2020.04.030_b0115 article-title: Fractional Solutions of Bessel Equation with-Method publication-title: Sci. World J. doi: 10.1155/2013/685695 – volume: 60 start-page: 650 issue: 7 year: 1992 ident: 10.1016/j.aej.2020.04.030_b0050 article-title: Solitary wave solutions of nonlinear wave equations publication-title: Am. J. Phys. doi: 10.1119/1.17120 – volume: 60 start-page: 1384 issue: 9–10 year: 2015 ident: 10.1016/j.aej.2020.04.030_b0035 article-title: Jacobi elliptic function expansion method for the modified Korteweg-de Vries-Zakharov-Kuznetsov and the Hirota equations publication-title: Rom. J. Phys. – volume: 14 start-page: 363 issue: 6 year: 2013 ident: 10.1016/j.aej.2020.04.030_b0235 article-title: Exp-function method for fractional differential equations publication-title: Int. J. Nonlinear Sci. Numer. Simulat. doi: 10.1515/ijnsns-2011-0132 – volume: 109 start-page: 219 year: 2018 ident: 10.1016/j.aej.2020.04.030_b0270 article-title: Counterexamples on Jumarie’s three basic fractional calculus formulae for non-differentiable continuous functions publication-title: Chaos, Solitons Fract. doi: 10.1016/j.chaos.2018.02.036 – volume: 213 start-page: 279 issue: 5–6 year: 1996 ident: 10.1016/j.aej.2020.04.030_b0065 article-title: Exact solutions for a compound KdV-Burgers equation publication-title: Phys. Lett. A doi: 10.1016/0375-9601(96)00103-X – volume: 106 start-page: 304 year: 2018 ident: 10.1016/j.aej.2020.04.030_b0180 article-title: New structures for the space-time fractional simplified MCH and SRLW equations publication-title: Chaos, Solitons Fract. doi: 10.1016/j.chaos.2017.11.038 – volume: 98 start-page: 489 issue: 1 year: 2019 ident: 10.1016/j.aej.2020.04.030_b0255 article-title: Three-dimensional optical solitons formed by the balance between different-order nonlinearities and high-order dispersion/diffraction in parity-time symmetric potentials publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-05206-z – volume: 153 start-page: 145 issue: 2 year: 2003 ident: 10.1016/j.aej.2020.04.030_b0020 article-title: The new extended Jacobian elliptic function expansion algorithm and its applications in nonlinear mathematical physics equations publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(03)00207-8 – volume: 1738 issue: 1 year: 2016 ident: 10.1016/j.aej.2020.04.030_b0120 article-title: Representation of the solution for fractional Sturm-Liouville problem publication-title: AIP Conference Proceedings AIP Publishing LLC doi: 10.1063/1.4952074 – year: 2019 ident: 10.1016/j.aej.2020.04.030_b0200 article-title: A fractal variational theory for one-dimensional compressible flow in a microgravity space publication-title: Fractals – ident: 10.1016/j.aej.2020.04.030_b0060 doi: 10.1016/S0960-0779(03)00081-X – volume: 23 start-page: 1707 issue: 3 year: 2019 ident: 10.1016/j.aej.2020.04.030_b0135 article-title: On two-scale dimension and its applications publication-title: Therm. Sci. doi: 10.2298/TSCI190408138A – volume: 49 start-page: 279 issue: 8 year: 2017 ident: 10.1016/j.aej.2020.04.030_b0160 article-title: Exact solutions to the space–time fractional Schrödinger-Hirota equation and the space–time modified KDV–Zakharov–Kuznetsov equation publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-017-1112-6 – volume: 238 start-page: 1 issue: 1389 year: 2012 ident: 10.1016/j.aej.2020.04.030_b0095 article-title: Explicit solutions of fractional Schrödinger equation via fractional calculus operators publication-title: Int. J. Open Probl. Comput. Sci. Math. – ident: 10.1016/j.aej.2020.04.030_b0080 – volume: 36 start-page: 1961 issue: 7 year: 2003 ident: 10.1016/j.aej.2020.04.030_b0015 article-title: Jacobi elliptic function solutions of nonlinear wave equations via the new sinh-Gordon equation expansion method publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/36/7/311 – volume: 372 start-page: 1619 issue: 10 year: 2008 ident: 10.1016/j.aej.2020.04.030_b0230 article-title: Exact solutions for nonlinear evolution equations using Exp-function method publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2007.10.018 – volume: 30 start-page: 700 issue: 3 year: 2006 ident: 10.1016/j.aej.2020.04.030_b0260 article-title: Exp-function method for nonlinear wave equations publication-title: Chaos, Solitons Fract. doi: 10.1016/j.chaos.2006.03.020 – volume: 23 start-page: 2131 issue: 4 year: 2019 ident: 10.1016/j.aej.2020.04.030_b0140 article-title: Two-scale mathematics and fractional calculus for thermodynamics publication-title: Therm. Sci. doi: 10.2298/TSCI1904131H – volume: 292 start-page: 335 issue: 6 year: 2002 ident: 10.1016/j.aej.2020.04.030_b0030 article-title: Double periodic solutions with Jacobi elliptic functions for two generalized Hirota-Satsuma coupled KdV systems publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(01)00815-5 – volume: 73 start-page: 203 issue: 2 year: 2017 ident: 10.1016/j.aej.2020.04.030_b0175 article-title: Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.11.012 – volume: 23 start-page: 2477 issue: 4 year: 2019 ident: 10.1016/j.aej.2020.04.030_b0195 article-title: A fractal rate model for adsorption kinetics at solid/solution interface publication-title: Therm. Sci. doi: 10.2298/TSCI1904477L – volume: 56 start-page: 1719 issue: 6 year: 1976 ident: 10.1016/j.aej.2020.04.030_b0240 article-title: Formation and interaction of sonic-Langmuir solitons: inverse scattering method publication-title: Prog. Theoret. Phys. doi: 10.1143/PTP.56.1719 – volume: 22 start-page: 92 issue: 1–3 year: 2015 ident: 10.1016/j.aej.2020.04.030_b0265 article-title: Counterexamples on Jumarie’s two basic fractional calculus formulae publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2014.07.022 – volume: 23 start-page: 2163 issue: 4 year: 2019 ident: 10.1016/j.aej.2020.04.030_b0185 article-title: Numerical method for fractional Zakharov-Kuznetsov equations with He’s fractional derivative publication-title: Therm. Sci. doi: 10.2298/TSCI1904163W – ident: 10.1016/j.aej.2020.04.030_b0105 doi: 10.1007/s11082-017-1112-6 – volume: 28 start-page: 2050011 issue: 1 year: 2020 ident: 10.1016/j.aej.2020.04.030_b0205 article-title: Taylor series solution for fractal Bratu-type equation arising in electrospinning process publication-title: Fract doi: 10.1142/S0218348X20500115 – volume: 289 start-page: 69 issue: 1–2 year: 2001 ident: 10.1016/j.aej.2020.04.030_b0005 article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(01)00580-1 – volume: 131 start-page: 335 issue: 9 year: 2016 ident: 10.1016/j.aej.2020.04.030_b0165 article-title: Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative publication-title: Europ. Phys. J. Plus doi: 10.1140/epjp/i2016-16335-8 – volume: 277 start-page: 212 issue: 4–5 year: 2000 ident: 10.1016/j.aej.2020.04.030_b0045 article-title: Extended tanh-function method and its applications to nonlinear equations publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(00)00725-8 – volume: 38 start-page: 270 issue: 1 year: 2008 ident: 10.1016/j.aej.2020.04.030_b0225 article-title: Application of Exp-function method to high-dimensional nonlinear evolution equation publication-title: Chaos, Solitons Fract. doi: 10.1016/j.chaos.2006.11.014 – volume: 38 start-page: 903 issue: 3 year: 2008 ident: 10.1016/j.aej.2020.04.030_b0215 article-title: Exp-function method and its application to nonlinear equations publication-title: Chaos, Solitons Fract. doi: 10.1016/j.chaos.2007.01.024 – volume: 2013 year: 2013 ident: 10.1016/j.aej.2020.04.030_b0075 article-title: A novel method for analytical solutions of fractional partial differential equations publication-title: Math. Probl. Eng. doi: 10.1155/2013/195708 – volume: 103 year: 2020 ident: 10.1016/j.aej.2020.04.030_b0150 article-title: Numerical analysis for rotating electro-osmotic flow of fractional Maxwell fluids publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.106179 – volume: 24 start-page: 430 issue: 3 year: 2004 ident: 10.1016/j.aej.2020.04.030_b0025 article-title: On the Jacobi elliptic function expansion method publication-title: J. Math. Res. Expos – volume: 31 start-page: 2243 issue: 8 year: 2017 ident: 10.1016/j.aej.2020.04.030_b0100 article-title: Application of fixed point theorem for stability analysis of a nonlinear Schrodinger with Caputo-Liouville derivative publication-title: Filomat doi: 10.2298/FIL1708243A – volume: 207 year: 2020 ident: 10.1016/j.aej.2020.04.030_b0145 article-title: Fractional optical solitons of the space-time fractional nonlinear Schrödinger equation publication-title: Optik doi: 10.1016/j.ijleo.2020.164405 – volume: 53 start-page: 475 issue: 3 year: 2016 ident: 10.1016/j.aej.2020.04.030_b0170 article-title: The first integral method for Wu–Zhang system with conformable time-fractional derivative publication-title: Calcolo doi: 10.1007/s10092-015-0158-8 – volume: 290 start-page: 72 issue: 1–2 year: 2001 ident: 10.1016/j.aej.2020.04.030_b0010 article-title: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations publication-title: Phys. Lett. A – volume: 23 start-page: 2351 issue: 4 year: 2019 ident: 10.1016/j.aej.2020.04.030_b0190 article-title: A fractal derivative model for snow’s thermal insulation property publication-title: Therm. Sci. doi: 10.2298/TSCI1904351W – year: 1991 ident: 10.1016/j.aej.2020.04.030_b0040 |
| SSID | ssj0000579496 |
| Score | 2.2110732 |
| Snippet | In this study, the new traveling wave solutions resulting from the interaction of the long-short wave system were obtained by using the exp-function method.... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Index Database Publisher |
| StartPage | 1705 |
| SubjectTerms | 35C07 39A23 74G10 74H40 93C20 Exp-function method Kink type, hyperbolic and trigonometric function solutions Long-short interaction wave system |
| Title | Interaction Solutions of Long and Short Waves in a Flexible Environment |
| URI | https://dx.doi.org/10.1016/j.aej.2020.04.030 https://doaj.org/article/7b25747c844448ca8709b637a66a1f0e |
| Volume | 59 |
| WOSCitedRecordID | wos000542588900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (WRLC) issn: 1110-0168 databaseCode: DOA dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0000579496 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlJQ9MSBG24zjOCKiFAVVIgOhm-XGGVihFbenvx86jZEEsZIwSO_runDvbn79D6CIzXABIHYa4EQm3zCbGWpo4C5QK6y23rio2kQ-HcjQqHjulviInrJYHroG7yk1wKp5bycMlrQ7-VRiR5loITT2B-PcledGZTNWq3sHPquJcYSxH5pWQ7ZZmRe7SMAlzQ0YqmdPIgO4EpUq7vxObOvFmsIO2m0QRX9cfuIvWoNxDWx35wH10Vy3n1ScT8Gp9C089fpiWb1iXDj-9h_Qav-olzPG4xBoPogCm-QDc_znhdoBeBv3n2_ukKYyQ2DSTiyQ30kQdM8iIMdQZkVmW555JCs5pycB7CYUDQQBImjIAranIUq4lCaDR9BCtl9MSjhC2hAIJb3pWAE-Z09ZIL2UGLiQCgvAeumyRUZ-1_oVqiWETFWBUEUZFuAow9tBNxG71YJSurm4Eg6rGoOovg_YQb5FXTRZQR_fQ1Pj3vo__o-8TtBmbrKlgp2h9MfuCM7Rhl4vxfHZeudg3vODS2Q |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+Solutions+of+Long+and+Short+Waves+in+a+Flexible+Environment&rft.jtitle=Alexandria+engineering+journal&rft.au=Akturk%2C+Tolga&rft.date=2020-06-01&rft.issn=1110-0168&rft.volume=59&rft.issue=3&rft.spage=1705&rft.epage=1716&rft_id=info:doi/10.1016%2Fj.aej.2020.04.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aej_2020_04_030 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon |