Huber loss based distributed robust learning algorithm for random vector functional-link network

In this paper, we propose two algorithms based on the random vector functional link network (RVFLN) and alternating direction method of multipliers algorithm to solve distributed learning (DL) problems with datasets containing outliers. In distributed scenarios, training datasets are separately divi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Artificial intelligence review Ročník 56; číslo 8; s. 8197 - 8218
Hlavní autori: Xie, Jin, Liu, Sanyang, Chen, Jiaxi, Jia, Jinping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.08.2023
Springer
Springer Nature B.V
Predmet:
ISSN:0269-2821, 1573-7462
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we propose two algorithms based on the random vector functional link network (RVFLN) and alternating direction method of multipliers algorithm to solve distributed learning (DL) problems with datasets containing outliers. In distributed scenarios, training datasets are separately divided and stored on each node of the communication network and cannot be shared or collected over the communication network due to privacy-preserving policy and network environmental restrictions. Thus, each node of the communication network only deals with local data and shares updated output weights of the global RVFLN model with its neighbors. However, the majority of existing DL algorithms are not robust enough when the dataset contain outliers. To overcome the this drawback, we intend to apply the L 1 norm and Huber based error terms to the global loss function and propose the corresponding distributed robust learning algorithms and denote them as the L1-DRVFL and Huber-DRVFL algorithms, respectively. The proposed algorithms work in fully distributed manner and are privacy-preserving methods. Experiments show that the proposed algorithms are robust and efficient in distributed learning with data including outliers. Moreover, the Huber-DRVFL algorithm is more stable than the L1-DRVFL algorithm when the parameters vary.
AbstractList In this paper, we propose two algorithms based on the random vector functional link network (RVFLN) and alternating direction method of multipliers algorithm to solve distributed learning (DL) problems with datasets containing outliers. In distributed scenarios, training datasets are separately divided and stored on each node of the communication network and cannot be shared or collected over the communication network due to privacy-preserving policy and network environmental restrictions. Thus, each node of the communication network only deals with local data and shares updated output weights of the global RVFLN model with its neighbors. However, the majority of existing DL algorithms are not robust enough when the dataset contain outliers. To overcome the this drawback, we intend to apply the L1 norm and Huber based error terms to the global loss function and propose the corresponding distributed robust learning algorithms and denote them as the L1-DRVFL and Huber-DRVFL algorithms, respectively. The proposed algorithms work in fully distributed manner and are privacy-preserving methods. Experiments show that the proposed algorithms are robust and efficient in distributed learning with data including outliers. Moreover, the Huber-DRVFL algorithm is more stable than the L1-DRVFL algorithm when the parameters vary.
In this paper, we propose two algorithms based on the random vector functional link network (RVFLN) and alternating direction method of multipliers algorithm to solve distributed learning (DL) problems with datasets containing outliers. In distributed scenarios, training datasets are separately divided and stored on each node of the communication network and cannot be shared or collected over the communication network due to privacy-preserving policy and network environmental restrictions. Thus, each node of the communication network only deals with local data and shares updated output weights of the global RVFLN model with its neighbors. However, the majority of existing DL algorithms are not robust enough when the dataset contain outliers. To overcome the this drawback, we intend to apply the L 1 norm and Huber based error terms to the global loss function and propose the corresponding distributed robust learning algorithms and denote them as the L1-DRVFL and Huber-DRVFL algorithms, respectively. The proposed algorithms work in fully distributed manner and are privacy-preserving methods. Experiments show that the proposed algorithms are robust and efficient in distributed learning with data including outliers. Moreover, the Huber-DRVFL algorithm is more stable than the L1-DRVFL algorithm when the parameters vary.
In this paper, we propose two algorithms based on the random vector functional link network (RVFLN) and alternating direction method of multipliers algorithm to solve distributed learning (DL) problems with datasets containing outliers. In distributed scenarios, training datasets are separately divided and stored on each node of the communication network and cannot be shared or collected over the communication network due to privacy-preserving policy and network environmental restrictions. Thus, each node of the communication network only deals with local data and shares updated output weights of the global RVFLN model with its neighbors. However, the majority of existing DL algorithms are not robust enough when the dataset contain outliers. To overcome the this drawback, we intend to apply the [Formula omitted] norm and Huber based error terms to the global loss function and propose the corresponding distributed robust learning algorithms and denote them as the L1-DRVFL and Huber-DRVFL algorithms, respectively. The proposed algorithms work in fully distributed manner and are privacy-preserving methods. Experiments show that the proposed algorithms are robust and efficient in distributed learning with data including outliers. Moreover, the Huber-DRVFL algorithm is more stable than the L1-DRVFL algorithm when the parameters vary.
Audience Academic
Author Liu, Sanyang
Chen, Jiaxi
Jia, Jinping
Xie, Jin
Author_xml – sequence: 1
  givenname: Jin
  orcidid: 0000-0001-8007-5683
  surname: Xie
  fullname: Xie, Jin
  organization: School of Mathematics and Statistics, Xidian University
– sequence: 2
  givenname: Sanyang
  surname: Liu
  fullname: Liu, Sanyang
  organization: School of Mathematics and Statistics, Xidian University
– sequence: 3
  givenname: Jiaxi
  surname: Chen
  fullname: Chen, Jiaxi
  email: jxchen208@163.com
  organization: School of Mathematics and Statistics, Xidian University
– sequence: 4
  givenname: Jinping
  surname: Jia
  fullname: Jia, Jinping
  organization: School of Mathematics and Statistics, Tianshui Normal University
BookMark eNp9kE1rFjEQgINU8H2rf8BTwPPWfG52j6W0tlDwoueYj8lr2n2TmmRb_PdNXUHwUHLIZJhnJvPs0UnKCRD6SMkZJUR9rpSIkQ2EsYES3iP1Bu2oVHxQPX-CdoSN88AmRt-hfa13hBDJBN-hH9erhYKXXCu2poLHPtZWol1bj0u2a214AVNSTAdslkMusf084pALLib5fMSP4Fp_hTW5FnMyy7DEdI8TtKdc7t-jt8EsFT78vU_R96vLbxfXw-3XLzcX57eD43JqgzLBejFxCcQJYRSfpRKcUpCWGC8CmezMgiFeQt8kiNGCUMBtIN55FSg_RZ-2vg8l_1qhNn2X19J_U3Vfe57VOI1zrzrbqg5mAR1TyK0Y14-HY3TdaYg9f66kmEc1MdkBtgGudEUFgn4o8WjKb02JflGvN_W6q9d_1GvVoek_yMVmXuT0aXF5HeUbWvucdIDyb41XqGexaZvs
CitedBy_id crossref_primary_10_1109_TCOMM_2024_3502667
crossref_primary_10_1515_polyeng_2024_0048
crossref_primary_10_3390_min15030286
crossref_primary_10_1371_journal_pone_0331095
crossref_primary_10_1109_TIM_2025_3546376
crossref_primary_10_1016_j_asoc_2024_112185
crossref_primary_10_1016_j_compag_2025_110689
crossref_primary_10_1007_s12239_025_00233_9
crossref_primary_10_3390_electronics12183911
crossref_primary_10_1109_LPT_2025_3562386
Cites_doi 10.1016/j.jnca.2018.05.003
10.1109/18.382009
10.1109/TAC.2008.2009515
10.1016/0925-2312(94)90053-1
10.1109/TNNLS.2017.2748585
10.1016/j.ins.2015.11.039
10.1016/j.knosys.2018.01.015
10.1016/j.comcom.2021.02.014
10.1016/j.neucom.2018.10.001
10.1109/TAC.2012.2184199
10.1109/TKDE.2012.191
10.1109/TSP.2008.917383
10.1016/j.artmed.2019.01.006
10.1109/72.471375
10.1109/TCYB.2016.2588526
10.5465/annals.2018.0057
10.1016/j.asoc.2017.07.059
10.1016/j.ins.2016.09.016
10.1126/science.1127647
10.1016/j.eswa.2019.112828
10.1109/TNNLS.2014.2315535
10.1016/j.ins.2015.01.007
10.1016/j.neunet.2019.09.039
10.1109/JPROC.2006.887293
10.1016/j.ins.2017.08.010
10.1016/j.neunet.2017.12.007
10.1016/j.neunet.2018.10.014
10.1109/JPROC.2014.2306253
10.1561/2200000016
10.1016/j.jco.2021.101570
10.1016/j.psep.2020.07.044
10.1016/j.neunet.2021.06.020
10.1109/TSP.2010.2055862
10.1016/j.knosys.2020.105577
10.1016/j.ins.2015.09.025
10.1016/j.ins.2017.11.050
10.1016/j.knosys.2021.106841
10.1016/j.asoc.2020.106708
10.1007/s10957-010-9737-7
10.1016/j.neucom.2019.03.097
10.1016/j.patcog.2021.108147
10.1016/j.compchemeng.2017.10.008
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright Springer Nature B.V. Aug 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
– notice: Copyright Springer Nature B.V. Aug 2023
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-022-10362-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
Library & Information Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM global
Computing Database
Library Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 8218
ExternalDocumentID A754967825
10_1007_s10462_022_10362_7
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: JB210701; JB210718
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61877047; 61877046; 62063031; 62063031
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PRQQA
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-7afbd4835e0c44a739574311e5b0ad4f08b92fa0d5e269f46be47e3bf0dcd7f13
IEDL.DBID M0C
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000903993600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-2821
IngestDate Fri Nov 14 18:44:47 EST 2025
Sat Nov 29 10:30:10 EST 2025
Sat Nov 29 02:43:27 EST 2025
Tue Nov 18 22:33:11 EST 2025
Fri Feb 21 02:43:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Alternating direction method of multipliers
Huber loss function
Distributed learning
Random vector functional link network
Distributed robust learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-7afbd4835e0c44a739574311e5b0ad4f08b92fa0d5e269f46be47e3bf0dcd7f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8007-5683
PQID 2829976869
PQPubID 36790
PageCount 22
ParticipantIDs proquest_journals_2829976869
gale_infotracacademiconefile_A754967825
crossref_primary_10_1007_s10462_022_10362_7
crossref_citationtrail_10_1007_s10462_022_10362_7
springer_journals_10_1007_s10462_022_10362_7
PublicationCentury 2000
PublicationDate 20230800
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 8
  year: 2023
  text: 20230800
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2023
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Boyd, Parikh, Chu, Peleato (CR4) 2011; 3
Chen, Paschalidis (CR6) 2018; 19
Elaziz, Essa, Elsheikh (CR10) 2021; 47
Zhang, Li, Kong (CR43) 2019; 360
Orimoloye, Sung, Ma, Johnson (CR25) 2020; 139
Olfati-Saber, Fax, Murray (CR24) 2007; 95
Pao, Park, Sobajic (CR26) 1994; 6
Xie, Liu, Dai (CR35) 2019; 118
Xie, Liu, Dai, Rong (CR36) 2020; 195
Wang, Xu, Yang, Zurada (CR33) 2018; 29
Ai, Chen, Xie (CR2) 2017; 418–419
Pratama, Angelov, Lughofer, Er (CR27) 2018; 430
Balasundaram, Prasad (CR3) 2020; 97
Lian, Liu, Fan (CR19) 2021; 143
Xie, Chen, Dai, Liu, Ai (CR34) 2019; 323
Donoho (CR9) 1995; 41
Ren, Suganthan, Srikanth, Amaratunga (CR29) 2016; 367
Essa, Elaziz, Elsheikh (CR11) 2020; 144
Scardapane, Wang, Panella, Uncini (CR31) 2015; 301
Guliyev, Ismailov (CR13) 2018; 98
Ram, Nedić, Veeravalli (CR28) 2010; 147
Lu, Tang (CR21) 2012; 57
Zhang, Yang (CR42) 2020; 122
Mateos, Bazerque, Giannakis (CR22) 2010; 58
Lee, Shin, Realff (CR18) 2018; 114
Xu, Li, Yang (CR37) 2017; 49
Zhao, Gao, Lu, Sun, Cheng (CR45) 2021; 218
Daoud, Mayo (CR8) 2019; 97
Sayed (CR30) 2014; 102
Chen, Hua, Zhang (CR7) 2015; 26
Igelnik, Pao (CR17) 1995; 6
Zhang, Suganthan (CR40) 2016; 367
Zhang, Gao, Zhou (CR44) 2021; 120
Gupta, Raskar (CR14) 2018; 116
Xueheng, Ponnuthurai, SuganthanaGehan (CR38) 2018; 145
Nedić, Ozdaglar (CR23) 2009; 54
Zhang, Suganthan (CR41) 2016; 47
Ai, Chen, Xie (CR1) 2016; 373
Huang, Wu (CR16) 2021; 66
Chamikara, Bertok, Khalil, Liu, Camtepe (CR5) 2021; 171
Lopes, Sayed (CR20) 2008; 56
Wang, Wen, Ye, Jian, Chen (CR32) 2017; 61
Yan, Sundaram, Vishwanathan, Qi (CR39) 2013; 25
Glikson, Woolley (CR12) 2020; 14
Hinton, Salakhutdinov (CR15) 2006; 313
W Ai (10362_CR2) 2017; 418–419
J Wang (10362_CR32) 2017; 61
O Gupta (10362_CR14) 2018; 116
J Lu (10362_CR21) 2012; 57
MAP Chamikara (10362_CR5) 2021; 171
MA Elaziz (10362_CR10) 2021; 47
G Mateos (10362_CR22) 2010; 58
DL Donoho (10362_CR9) 1995; 41
YH Pao (10362_CR26) 1994; 6
SS Ram (10362_CR28) 2010; 147
F Yan (10362_CR39) 2013; 25
F Essa (10362_CR11) 2020; 144
AH Sayed (10362_CR30) 2014; 102
M Daoud (10362_CR8) 2019; 97
GE Hinton (10362_CR15) 2006; 313
L Zhang (10362_CR43) 2019; 360
W Chen (10362_CR7) 2015; 26
CG Lopes (10362_CR20) 2008; 56
L Zhang (10362_CR40) 2016; 367
S Scardapane (10362_CR31) 2015; 301
JH Lee (10362_CR18) 2018; 114
S Balasundaram (10362_CR3) 2020; 97
R Olfati-Saber (10362_CR24) 2007; 95
P-B Zhang (10362_CR42) 2020; 122
NJ Guliyev (10362_CR13) 2018; 98
K-K Xu (10362_CR37) 2017; 49
W Ai (10362_CR1) 2016; 373
S Huang (10362_CR16) 2021; 66
H Lian (10362_CR19) 2021; 143
S Boyd (10362_CR4) 2011; 3
J Xie (10362_CR36) 2020; 195
J Wang (10362_CR33) 2018; 29
B Igelnik (10362_CR17) 1995; 6
L Zhang (10362_CR41) 2016; 47
J Xie (10362_CR34) 2019; 323
E Glikson (10362_CR12) 2020; 14
LO Orimoloye (10362_CR25) 2020; 139
Q Xueheng (10362_CR38) 2018; 145
M Zhang (10362_CR44) 2021; 120
A Nedić (10362_CR23) 2009; 54
M Pratama (10362_CR27) 2018; 430
R Chen (10362_CR6) 2018; 19
Y Ren (10362_CR29) 2016; 367
D Zhao (10362_CR45) 2021; 218
J Xie (10362_CR35) 2019; 118
References_xml – volume: 373
  start-page: 404
  year: 2016
  end-page: 418
  ident: CR1
  article-title: A zero-gradient-sum algorithm for distributed cooperative learning using a feedforward neural network with random weights
  publication-title: Inf Sci
– volume: 6
  start-page: 163
  issue: 2
  year: 1994
  end-page: 180
  ident: CR26
  article-title: Learning and generalization characteristics of the random vector functional-link net
  publication-title: Neurocomputing
– volume: 95
  start-page: 215
  issue: 1
  year: 2007
  end-page: 233
  ident: CR24
  article-title: Consensus and cooperation in networked multi-agent systems
  publication-title: Proc IEEE
– volume: 26
  start-page: 331
  issue: 2
  year: 2015
  end-page: 345
  ident: CR7
  article-title: Consensus-based distributed cooperative learning from closed-loop neural control systems
  publication-title: IEEE Trans Neural Netw Learning Syst
– volume: 118
  start-page: 300
  year: 2019
  end-page: 309
  ident: CR35
  article-title: A distributed semi-supervised learning algorithm based on manifold regularization using wavelet neural network
  publication-title: Neural Netw
– volume: 171
  start-page: 112
  year: 2021
  end-page: 125
  ident: CR5
  article-title: Privacy preserving distributed machine learning with federated learning
  publication-title: Comput Commun
– volume: 98
  start-page: 296
  year: 2018
  end-page: 304
  ident: CR13
  article-title: On the approximation by single hidden layer feedforward neural networks with fixed weights
  publication-title: Neural Netw
– volume: 143
  start-page: 368
  year: 2021
  end-page: 376
  ident: CR19
  article-title: Distributed learning for sketched kernel regression
  publication-title: Neural Netw
– volume: 145
  start-page: 182
  year: 2018
  end-page: 196
  ident: CR38
  article-title: Ensemble incremental learning random vector functional link network for short-term electric load forecasting
  publication-title: Knowl-Based Syst
– volume: 56
  start-page: 3122
  issue: 7
  year: 2008
  end-page: 3136
  ident: CR20
  article-title: Diffusion least-mean squares over adaptive networks: formulation and performance analysis
  publication-title: IEEE Trans Signal Process
– volume: 61
  start-page: 354
  year: 2017
  end-page: 363
  ident: CR32
  article-title: Convergence analysis of bp neural networks via sparse response regularization
  publication-title: Appl Soft Comput
– volume: 323
  start-page: 244
  year: 2019
  end-page: 255
  ident: CR34
  article-title: A distributed cooperative learning algorithm based on zero-gradient-sum strategy using radial basis function network
  publication-title: Neurocomputing
– volume: 360
  start-page: 25
  year: 2019
  end-page: 36
  ident: CR43
  article-title: Evolving feedforward artificial neural networks using a two-stage approach
  publication-title: Neurocomputing
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  ident: CR15
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 139
  start-page: 112828
  year: 2020
  ident: CR25
  article-title: Comparing the effectiveness of deep feedforward neural networks and shallow architectures for predicting stock price indices
  publication-title: Expert Syst Appl
– volume: 6
  start-page: 1320
  issue: 6
  year: 1995
  end-page: 1329
  ident: CR17
  article-title: Stochastic choice of basis functions in adaptive function approximation and the functional-link net
  publication-title: IEEE Trans Neural Netw
– volume: 58
  start-page: 5262
  issue: 10
  year: 2010
  end-page: 5276
  ident: CR22
  article-title: Distributed sparse linear regression
  publication-title: IEEE Trans Signal Process
– volume: 25
  start-page: 2483
  issue: 11
  year: 2013
  end-page: 2493
  ident: CR39
  article-title: Distributed autonomous online learning: regrets and intrinsic privacy-preserving properties
  publication-title: IEEE Trans Knowl Data Eng
– volume: 19
  start-page: 1
  issue: 13
  year: 2018
  end-page: 48
  ident: CR6
  article-title: A robust learning approach for regression models based on distributionally robust optimization
  publication-title: J Mach Learning Res
– volume: 430
  start-page: 519
  year: 2018
  end-page: 537
  ident: CR27
  article-title: Parsimonious random vector functional link network for data streams
  publication-title: Inf Sci
– volume: 102
  start-page: 460
  issue: 4
  year: 2014
  end-page: 497
  ident: CR30
  article-title: Adaptive networks
  publication-title: Proc IEEE
– volume: 218
  start-page: 106841
  year: 2021
  ident: CR45
  article-title: Consistency and diversity neural network multi-view multi-label learning
  publication-title: Knowl-Based Syst
– volume: 66
  start-page: 101570
  year: 2021
  ident: CR16
  article-title: Robust pairwise learning with Huber loss
  publication-title: J Complex
– volume: 29
  start-page: 2012
  issue: 5
  year: 2018
  end-page: 2024
  ident: CR33
  article-title: A novel pruning algorithm for smoothing feedforward neural networks based on group lasso method
  publication-title: IEEE Trans Neural Netw Learning Syst
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  end-page: 61
  ident: CR23
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans Autom Control
– volume: 97
  start-page: 204
  year: 2019
  end-page: 214
  ident: CR8
  article-title: A survey of neural network-based cancer prediction models from microarray data
  publication-title: Artif Intell Med
– volume: 301
  start-page: 271
  year: 2015
  end-page: 284
  ident: CR31
  article-title: Distributed learning for random vector functional-link networks
  publication-title: Inf Sci
– volume: 122
  start-page: 94
  year: 2020
  end-page: 105
  ident: CR42
  article-title: A new learning paradigm for random vector functional-link network: Rvfl+
  publication-title: Neural Netw
– volume: 47
  start-page: 3243
  issue: 10
  year: 2016
  end-page: 3253
  ident: CR41
  article-title: Visual tracking with convolutional random vector functional link network
  publication-title: IEEE Trans Cybern
– volume: 41
  start-page: 613
  issue: 3
  year: 1995
  end-page: 627
  ident: CR9
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Trans Inf Theory
– volume: 57
  start-page: 2348
  issue: 9
  year: 2012
  end-page: 2354
  ident: CR21
  article-title: Zero-gradient-sum algorithms for distributed convex optimization: the continuous-time case
  publication-title: IEEE Trans Autom Control
– volume: 147
  start-page: 516
  issue: 3
  year: 2010
  end-page: 545
  ident: CR28
  article-title: Distributed stochastic subgradient projection algorithms for convex optimization
  publication-title: J Optim Theory Appl
– volume: 144
  start-page: 322
  year: 2020
  end-page: 329
  ident: CR11
  article-title: Prediction of power consumption and water productivity of seawater greenhouse system using random vector functional link network integrated with artificial ecosystem-based optimization
  publication-title: Process Saf Environ Protect
– volume: 418–419
  start-page: 136
  year: 2017
  end-page: 152
  ident: CR2
  article-title: A general framework for population-based distributed optimization over networks
  publication-title: Inf Sci
– volume: 49
  start-page: 1016
  issue: 5
  year: 2017
  end-page: 1026
  ident: CR37
  article-title: Kernel-based random vector functional-link network for fast learning of spatiotemporal dynamic processes
  publication-title: IEEE Trans Syst Man Cybern
– volume: 97
  start-page: 106708
  year: 2020
  ident: CR3
  article-title: On pairing huber support vector regression
  publication-title: Appl Soft Comput
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  ident: CR4
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found Trends Mach Learning
– volume: 47
  start-page: 101405
  year: 2021
  ident: CR10
  article-title: Utilization of ensemble random vector functional link network for freshwater prediction of active solar stills with nanoparticles
  publication-title: Sustain Energy Technol Assess
– volume: 116
  start-page: 1
  year: 2018
  end-page: 8
  ident: CR14
  article-title: Distributed learning of deep neural network over multiple agents
  publication-title: J Netw Comput Appl
– volume: 14
  start-page: 627
  issue: 2
  year: 2020
  end-page: 660
  ident: CR12
  article-title: Human trust in artificial intelligence: review of empirical research
  publication-title: Acad Manag Ann
– volume: 114
  start-page: 111
  year: 2018
  end-page: 121
  ident: CR18
  article-title: Machine learning: overview of the recent progresses and implications for the process systems engineering field
  publication-title: Comput Chem Eng
– volume: 367
  start-page: 1078
  year: 2016
  end-page: 1093
  ident: CR29
  article-title: Random vector functional link network for short-term electricity load demand forecasting
  publication-title: Inf Sci
– volume: 195
  start-page: 105577
  year: 2020
  ident: CR36
  article-title: Distributed semi-supervised learning algorithms for random vector functional-link networks with distributed data splitting across samples and features
  publication-title: Knowl-Based Syst
– volume: 120
  start-page: 108147
  year: 2021
  ident: CR44
  article-title: A unified weight learning and low-rank regression model for robust complex error modeling
  publication-title: Pattern Recogn
– volume: 367
  start-page: 1094
  year: 2016
  end-page: 1105
  ident: CR40
  article-title: A comprehensive evaluation of random vector functional link networks
  publication-title: Inf Sci
– volume: 116
  start-page: 1
  year: 2018
  ident: 10362_CR14
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2018.05.003
– volume: 41
  start-page: 613
  issue: 3
  year: 1995
  ident: 10362_CR9
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.382009
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  ident: 10362_CR23
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2008.2009515
– volume: 6
  start-page: 163
  issue: 2
  year: 1994
  ident: 10362_CR26
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(94)90053-1
– volume: 29
  start-page: 2012
  issue: 5
  year: 2018
  ident: 10362_CR33
  publication-title: IEEE Trans Neural Netw Learning Syst
  doi: 10.1109/TNNLS.2017.2748585
– volume: 367
  start-page: 1078
  year: 2016
  ident: 10362_CR29
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.11.039
– volume: 49
  start-page: 1016
  issue: 5
  year: 2017
  ident: 10362_CR37
  publication-title: IEEE Trans Syst Man Cybern
– volume: 145
  start-page: 182
  year: 2018
  ident: 10362_CR38
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.01.015
– volume: 171
  start-page: 112
  year: 2021
  ident: 10362_CR5
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2021.02.014
– volume: 323
  start-page: 244
  year: 2019
  ident: 10362_CR34
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.001
– volume: 57
  start-page: 2348
  issue: 9
  year: 2012
  ident: 10362_CR21
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2012.2184199
– volume: 25
  start-page: 2483
  issue: 11
  year: 2013
  ident: 10362_CR39
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.191
– volume: 56
  start-page: 3122
  issue: 7
  year: 2008
  ident: 10362_CR20
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2008.917383
– volume: 47
  start-page: 101405
  year: 2021
  ident: 10362_CR10
  publication-title: Sustain Energy Technol Assess
– volume: 97
  start-page: 204
  year: 2019
  ident: 10362_CR8
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.01.006
– volume: 6
  start-page: 1320
  issue: 6
  year: 1995
  ident: 10362_CR17
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.471375
– volume: 47
  start-page: 3243
  issue: 10
  year: 2016
  ident: 10362_CR41
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2016.2588526
– volume: 19
  start-page: 1
  issue: 13
  year: 2018
  ident: 10362_CR6
  publication-title: J Mach Learning Res
– volume: 14
  start-page: 627
  issue: 2
  year: 2020
  ident: 10362_CR12
  publication-title: Acad Manag Ann
  doi: 10.5465/annals.2018.0057
– volume: 61
  start-page: 354
  year: 2017
  ident: 10362_CR32
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.07.059
– volume: 373
  start-page: 404
  year: 2016
  ident: 10362_CR1
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.09.016
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10362_CR15
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 139
  start-page: 112828
  year: 2020
  ident: 10362_CR25
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.112828
– volume: 26
  start-page: 331
  issue: 2
  year: 2015
  ident: 10362_CR7
  publication-title: IEEE Trans Neural Netw Learning Syst
  doi: 10.1109/TNNLS.2014.2315535
– volume: 301
  start-page: 271
  year: 2015
  ident: 10362_CR31
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.01.007
– volume: 122
  start-page: 94
  year: 2020
  ident: 10362_CR42
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.09.039
– volume: 95
  start-page: 215
  issue: 1
  year: 2007
  ident: 10362_CR24
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2006.887293
– volume: 418–419
  start-page: 136
  year: 2017
  ident: 10362_CR2
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.08.010
– volume: 98
  start-page: 296
  year: 2018
  ident: 10362_CR13
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2017.12.007
– volume: 118
  start-page: 300
  year: 2019
  ident: 10362_CR35
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.10.014
– volume: 102
  start-page: 460
  issue: 4
  year: 2014
  ident: 10362_CR30
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2014.2306253
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 10362_CR4
  publication-title: Found Trends Mach Learning
  doi: 10.1561/2200000016
– volume: 66
  start-page: 101570
  year: 2021
  ident: 10362_CR16
  publication-title: J Complex
  doi: 10.1016/j.jco.2021.101570
– volume: 144
  start-page: 322
  year: 2020
  ident: 10362_CR11
  publication-title: Process Saf Environ Protect
  doi: 10.1016/j.psep.2020.07.044
– volume: 143
  start-page: 368
  year: 2021
  ident: 10362_CR19
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2021.06.020
– volume: 58
  start-page: 5262
  issue: 10
  year: 2010
  ident: 10362_CR22
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2010.2055862
– volume: 195
  start-page: 105577
  year: 2020
  ident: 10362_CR36
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.105577
– volume: 367
  start-page: 1094
  year: 2016
  ident: 10362_CR40
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.09.025
– volume: 430
  start-page: 519
  year: 2018
  ident: 10362_CR27
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.11.050
– volume: 218
  start-page: 106841
  year: 2021
  ident: 10362_CR45
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.106841
– volume: 97
  start-page: 106708
  year: 2020
  ident: 10362_CR3
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106708
– volume: 147
  start-page: 516
  issue: 3
  year: 2010
  ident: 10362_CR28
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-010-9737-7
– volume: 360
  start-page: 25
  year: 2019
  ident: 10362_CR43
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.097
– volume: 120
  start-page: 108147
  year: 2021
  ident: 10362_CR44
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108147
– volume: 114
  start-page: 111
  year: 2018
  ident: 10362_CR18
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2017.10.008
SSID ssj0005243
Score 2.4235864
Snippet In this paper, we propose two algorithms based on the random vector functional link network (RVFLN) and alternating direction method of multipliers algorithm...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8197
SubjectTerms Algorithms
Analysis
Artificial Intelligence
Communication
Communications networks
Computational linguistics
Computer Science
Data mining
Datasets
Environmental policy
Experiments
Language processing
Learning
Machine learning
Natural language interfaces
Networks
Outliers (statistics)
Privacy
Robustness
Vectors (mathematics)
SummonAdditionalLinks – databaseName: Springer Nature - Connect here FIRST to enable access
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8QgEJ74OnjxbVxf4WDiQUlKl5ZyNEbjyRhf8YZQQE3WXbPb9fc7tNS3JnprUwqTGWAG5vEB7BgrvS_yLpU6l5T71FEtGafCauskz43zSQ02IU5Pi5sbeRaTwkZttHvrkqx36nfJbjxPaYg-Z3Wuj5iEaVR3RQBsOL-4fhfY0cTKpTg4HihYTJX5vo8P6ujzpvzFO1orneP5_5G7AHPRyCQHzaxYhAnXX4L5FsCBxPW8DLcnY4PvPaSMBHVmiQ11dAMEFj4PB2Y8qkjElbgjunc3GD5U948EDV2COs4OHslzfetPgnpsbhVpIJb0m-jyFbg6Pro8PKERcoGW3ayoqNDeWI5WmUtKznXtxUMTg7nMJNpynxRGpl4nNnPIXh9kyYXrGp_Y0grPuqsw1R_03RoQVkovvXBMYjuUg07zkhthMu-ZTZzvAGs5r8pYjzzAYvTUWyXlwEKFLFQ1C5XowN7rP09NNY5fW-8GgaqwVLHnUseMA6QvFL1SBwIPx6is06wDm63MVVzDIxV8zGisFbnswH4r47fPP4-7_rfmGzAbMOybqMJNmKqGY7cFM-Vz9TAabtdz-wVpD_Q1
  priority: 102
  providerName: Springer Nature
Title Huber loss based distributed robust learning algorithm for random vector functional-link network
URI https://link.springer.com/article/10.1007/s10462-022-10362-7
https://www.proquest.com/docview/2829976869
Volume 56
WOSCitedRecordID wos000903993600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMXylNdWlY-IHEAizjrxPEJlapVJcSyKq_CJfhZkLa77W62v5-ZxGF5iF64WInix8hjeyaexwfwxHodY1WOuDal5jLmgRstJFfe-KBlaUPMWrAJNR5Xp6d6ki7clsmtsj8T24Pazx3dkb8gix-KzqrULy8uOaFGkXU1QWhswBZpNuTS9yY7-MXFo_Oay5EMbC9S0EwKnZNlzsmXXbSRQ-o3wfTn8fyXnbQVP0fb_0v4HbidFE-2362Uu3AjzO7Bdg_qwNIevw9fj1cW36dIIyMR55mn3LoEi4XPi7ldLRuWsCbOmJme4VjNt3OGyi9Duefn5-yqtQQwEpndTSMnMzGbdR7nD-DD0eH7g2OeYBi4GxVVw5WJ1kvU1ELmpDStZQ_VDhEKmxkvY1ZZnUeT-SLgREfir1RhZGPmnVdRjB7C5mw-CzvAhNNRRxWExno4MSYvnbTKFjEKn4U4ANHzoHYpRzlBZUzrdXZl4luNfKtbvtVqAM9-trnoMnRcW_spsbam7Ys9O5OiEJA-SoRV7yv8YUYBnhcD2Ov5Wad9vazXzBzA835FrD__e9xH1_e2C7cIx77zLNyDzWaxCo_hprtqvi8XQ9hQnz4PYevV4Xhygm-vFR-2K51K8RbLSfEFy5N3H38AupAE_g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQkulFUMLeADiANYxI4Tx4eqqoBqqikjDkXqzfVakKYzZSZT1D_Fb-Q5C8MieuuBW6IkjpfP773kLR_Ac-tVjFWZU2VKRUXkgRrFBJXe-KBEaUPMGrIJOR5XR0fq4xp873NhUlhlLxMbQe1nLv0jf5M8fqg6q1LtnH2liTUqeVd7Co0WFqNw8Q0_2Rbb--9wfV9wvvf-8O2QdqwC1OVFVVNpovUCDY-QOSFM46hCLcpCYTPjRcwqq3g0mS8CL1VM3RUy5DZm3nkZWY7tXoPrIq9k2lcjSX8JKWmj9PA5iv1lXZJOl6onSk5T7DxrMpXkb4rwT3Xwl1-2UXd7G__bRN2B251hTXbbnXAX1sL0Hmz0pBWkk2H34Xi4tHg-wTkhSYV74lPt4ET7hcfzmV0uatJxaZwQMznBsdWfTwka9wT1up-dkvPG00GSSdD-SaXJDU6mbUT9A_h0JeN8COvT2TQ8AsKciirKwBTehwtheOmElbaIkfksxAGwfs2162qwJyqQiV5Vj0440YgT3eBEywG8-vnMWVuB5NK7XyYo6SSesGVnuiwL7F8q9KV3ZSEUGii8GMBWjx_dya2FXoFnAK97BK4u__u9jy9v7RncHB5-ONAH--PRJtziaCm2UZRbsF7Pl-EJ3HDn9ZfF_GmzowgcXzUyfwAen1y5
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXyqtiSws-gDiA1cTrxPEBoapl1apotQeQKi6unwVpu9vuZov4a_11HScOy0P01gO3RLEdPz7PjD0vgJfGyRCqsk-lLiXlgXmqZc6pcNp5yUvjQ9YkmxDDYXV0JEcrcNn5wkSzyo4mNoTaTW28I9-OGj9knVUpt0MyixjtDd6fndOYQSpqWrt0Gi1EDv2P73h8m7872MO1fsXY4MOn3X2aMgxQ2y-qmgodjOMohPjMcq4bpRVy1NwXJtOOh6wykgWducKzUobYdS5834TMWSdC3sd2b8FtgWfMaE44Kr78Yl7SWuxhPYp9z5PDTnLb4yWj0Y4-b7yWxG9M8U_W8JeOtmF9g7X_edIewP0kcJOddoc8hBU_eQRrXTILkmjbYzjeXxh8H-P8kMjaHXExpnBMB4bPs6lZzGuScmycED0-wbHVX08JCv0E-b2bnpKLRgNCoqjQ3rDSqB4nk9bS_gl8vpFxrsPqZDrxT4HkVgYZhM8llsNF0ay03AhThJC7zIce5N36K5tis8cUIWO1jCodMaMQM6rBjBI9ePOzzlkbmeTa0q8jrFQkW9iy1cn7AvsXA4CpHVFwiYILK3qw2WFJJXo2V0sg9eBth8bl53__d-P61l7AXQSk-ngwPHwG9xgKkK1x5Sas1rOF34I79qL-Np89bzYXgeObBuYVDWxl3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Huber+loss+based+distributed+robust+learning+algorithm+for+random+vector+functional-link+network&rft.jtitle=The+Artificial+intelligence+review&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=56&rft.issue=8&rft.spage=8197&rft.epage=8218&rft_id=info:doi/10.1007%2Fs10462-022-10362-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon