Maximizing a non-decreasing non-submodular function subject to various types of constraints

In this paper, we firstly study the problem of maximizing a γ -weakly DR-submodular function under a general matroid constraint. We present a local search algorithm, which is guided by a tailored potential function, for solving this problem. We prove that our algorithm produces a ( 1 - e - γ - ϵ )-a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 83; číslo 4; s. 727 - 751
Hlavní autoři: Lu, Cheng, Yang, Wenguo, Yang, Ruiqi, Gao, Suixiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2022
Springer
Springer Nature B.V
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we firstly study the problem of maximizing a γ -weakly DR-submodular function under a general matroid constraint. We present a local search algorithm, which is guided by a tailored potential function, for solving this problem. We prove that our algorithm produces a ( 1 - e - γ - ϵ )-approximate solution. To the best of our knowledge, it’s the first algorithm achieving the tight approximation guarantee for such maximization problem. In addition, we study the maximization of the sum of submodular and supermodular functions. We show that this problem can be reduced to the maximization of submodular and linear sums. Based on this reduction, we derive new and improved approximation bounds for the problem under various types of constraints.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-021-01123-x